884 research outputs found

    Acronyms as an integral part of multi–word term recognition - A token of appreciation

    Get PDF
    Term conflation is the process of linking together different variants of the same term. In automatic term recognition approaches, all term variants should be aggregated into a single normalized term representative, which is associated with a single domain–specific concept as a latent variable. In a previous study, we described FlexiTerm, an unsupervised method for recognition of multi–word terms from a domain–specific corpus. It uses a range of methods to normalize three types of term variation – orthographic, morphological and syntactic variation. Acronyms, which represent a highly productive type of term variation, were not supported. In this study, we describe how the functionality of FlexiTerm has been extended to recognize acronyms and incorporate them into the term conflation process. The main contribution of this study is not acronym recognition per se, but rather its integration with other types of term variation into the term conflation process. We evaluated the effects of term conflation in the context of information retrieval as one of its most prominent applications. On average, relative recall increased by 32 percent points, whereas index compression factor increased by 7 percent points. Therefore, evidence suggests that integration of acronyms provides non–trivial improvement of term conflation

    NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition

    Get PDF
    BACKGROUND: Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. RESULTS: To develop our ML-based Bio-NER system, we employ conditional random fields, which have performed effectively in several well-known tasks, as our underlying ML model. Adding selected conjunction features, applying numerical normalization, and employing pattern-based post-processing improve the F-scores by 1.67%, 1.04%, and 0.57%, respectively. The combined increase of 3.28% yields a total score of 72.98%, which is better than the baseline system that only uses singleton features. CONCLUSION: We demonstrate the benefits of using the sequential forward search algorithm to select effective conjunction feature groups. In addition, we show that numerical normalization can effectively reduce the number of redundant and unseen features. Furthermore, the Smith-Waterman local alignment algorithm can help ML-based Bio-NER deal with difficult cases that need longer context windows

    Semi-automated curation of protein subcellular localization: a text mining-based approach to Gene Ontology (GO) Cellular Component curation

    Get PDF
    Background: Manual curation of experimental data from the biomedical literature is an expensive and time-consuming endeavor. Nevertheless, most biological knowledge bases still rely heavily on manual curation for data extraction and entry. Text mining software that can semi- or fully automate information retrieval from the literature would thus provide a significant boost to manual curation efforts. Results: We employ the Textpresso category-based information retrieval and extraction system http://www.textpresso.org webcite, developed by WormBase to explore how Textpresso might improve the efficiency with which we manually curate C. elegans proteins to the Gene Ontology's Cellular Component Ontology. Using a training set of sentences that describe results of localization experiments in the published literature, we generated three new curation task-specific categories (Cellular Components, Assay Terms, and Verbs) containing words and phrases associated with reports of experimentally determined subcellular localization. We compared the results of manual curation to that of Textpresso queries that searched the full text of articles for sentences containing terms from each of the three new categories plus the name of a previously uncurated C. elegans protein, and found that Textpresso searches identified curatable papers with recall and precision rates of 79.1% and 61.8%, respectively (F-score of 69.5%), when compared to manual curation. Within those documents, Textpresso identified relevant sentences with recall and precision rates of 30.3% and 80.1% (F-score of 44.0%). From returned sentences, curators were able to make 66.2% of all possible experimentally supported GO Cellular Component annotations with 97.3% precision (F-score of 78.8%). Measuring the relative efficiencies of Textpresso-based versus manual curation we find that Textpresso has the potential to increase curation efficiency by at least 8-fold, and perhaps as much as 15-fold, given differences in individual curatorial speed. Conclusion: Textpresso is an effective tool for improving the efficiency of manual, experimentally based curation. Incorporating a Textpresso-based Cellular Component curation pipeline at WormBase has allowed us to transition from strictly manual curation of this data type to a more efficient pipeline of computer-assisted validation. Continued development of curation task-specific Textpresso categories will provide an invaluable resource for genomics databases that rely heavily on manual curation

    Impact of translation on biomedical information extraction from real-life clinical notes

    Full text link
    The objective of our study is to determine whether using English tools to extract and normalize French medical concepts on translations provides comparable performance to French models trained on a set of annotated French clinical notes. We compare two methods: a method involving French language models and a method involving English language models. For the native French method, the Named Entity Recognition (NER) and normalization steps are performed separately. For the translated English method, after the first translation step, we compare a two-step method and a terminology-oriented method that performs extraction and normalization at the same time. We used French, English and bilingual annotated datasets to evaluate all steps (NER, normalization and translation) of our algorithms. Concerning the results, the native French method performs better than the translated English one with a global f1 score of 0.51 [0.47;0.55] against 0.39 [0.34;0.44] and 0.38 [0.36;0.40] for the two English methods tested. In conclusion, despite the recent improvement of the translation models, there is a significant performance difference between the two approaches in favor of the native French method which is more efficient on French medical texts, even with few annotated documents.Comment: 26 pages, 2 figures, 5 table

    Large-scale extraction of brain connectivity from the neuroscientific literature

    Get PDF
    Motivation: In neuroscience, as in many other scientific domains, the primary form of knowledge dissemination is through published articles. One challenge for modern neuroinformatics is finding methods to make the knowledge from the tremendous backlog of publications accessible for search, analysis and the integration of such data into computational models. A key example of this is metascale brain connectivity, where results are not reported in a normalized repository. Instead, these experimental results are published in natural language, scattered among individual scientific publications. This lack of normalization and centralization hinders the large-scale integration of brain connectivity results. In this article, we present text-mining models to extract and aggregate brain connectivity results from 13.2 million PubMed abstracts and 630 216 full-text publications related to neuroscience. The brain regions are identified with three different named entity recognizers (NERs) and then normalized against two atlases: the Allen Brain Atlas (ABA) and the atlas from the Brain Architecture Management System (BAMS). We then use three different extractors to assess inter-region connectivity. Results: NERs and connectivity extractors are evaluated against a manually annotated corpus. The complete in litero extraction models are also evaluated against invivo connectivity data from ABA with an estimated precision of 78%. The resulting database contains over 4 million brain region mentions and over 100 000 (ABA) and 122 000 (BAMS) potential brain region connections. This database drastically accelerates connectivity literature review, by providing a centralized repository of connectivity data to neuroscientists. Availability and implementation: The resulting models are publicly available at github.com/BlueBrain/bluima. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics onlin
    • …
    corecore