39,855 research outputs found

    Unsupervised Domain Adaptation for 3D Keypoint Estimation via View Consistency

    Full text link
    In this paper, we introduce a novel unsupervised domain adaptation technique for the task of 3D keypoint prediction from a single depth scan or image. Our key idea is to utilize the fact that predictions from different views of the same or similar objects should be consistent with each other. Such view consistency can provide effective regularization for keypoint prediction on unlabeled instances. In addition, we introduce a geometric alignment term to regularize predictions in the target domain. The resulting loss function can be effectively optimized via alternating minimization. We demonstrate the effectiveness of our approach on real datasets and present experimental results showing that our approach is superior to state-of-the-art general-purpose domain adaptation techniques.Comment: ECCV 201

    Semantics-Aligned Representation Learning for Person Re-identification

    Full text link
    Person re-identification (reID) aims to match person images to retrieve the ones with the same identity. This is a challenging task, as the images to be matched are generally semantically misaligned due to the diversity of human poses and capture viewpoints, incompleteness of the visible bodies (due to occlusion), etc. In this paper, we propose a framework that drives the reID network to learn semantics-aligned feature representation through delicate supervision designs. Specifically, we build a Semantics Aligning Network (SAN) which consists of a base network as encoder (SA-Enc) for re-ID, and a decoder (SA-Dec) for reconstructing/regressing the densely semantics aligned full texture image. We jointly train the SAN under the supervisions of person re-identification and aligned texture generation. Moreover, at the decoder, besides the reconstruction loss, we add Triplet ReID constraints over the feature maps as the perceptual losses. The decoder is discarded in the inference and thus our scheme is computationally efficient. Ablation studies demonstrate the effectiveness of our design. We achieve the state-of-the-art performances on the benchmark datasets CUHK03, Market1501, MSMT17, and the partial person reID dataset Partial REID. Code for our proposed method is available at: https://github.com/microsoft/Semantics-Aligned-Representation-Learning-for-Person-Re-identification.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), code has been release

    ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban Scenes

    Full text link
    Exploiting synthetic data to learn deep models has attracted increasing attention in recent years. However, the intrinsic domain difference between synthetic and real images usually causes a significant performance drop when applying the learned model to real world scenarios. This is mainly due to two reasons: 1) the model overfits to synthetic images, making the convolutional filters incompetent to extract informative representation for real images; 2) there is a distribution difference between synthetic and real data, which is also known as the domain adaptation problem. To this end, we propose a new reality oriented adaptation approach for urban scene semantic segmentation by learning from synthetic data. First, we propose a target guided distillation approach to learn the real image style, which is achieved by training the segmentation model to imitate a pretrained real style model using real images. Second, we further take advantage of the intrinsic spatial structure presented in urban scene images, and propose a spatial-aware adaptation scheme to effectively align the distribution of two domains. These two modules can be readily integrated with existing state-of-the-art semantic segmentation networks to improve their generalizability when adapting from synthetic to real urban scenes. We evaluate the proposed method on Cityscapes dataset by adapting from GTAV and SYNTHIA datasets, where the results demonstrate the effectiveness of our method.Comment: Add experiments on SYNTHIA, CVPR 2018 camera-ready versio

    Can a biologically-plausible hierarchy e ectively replace face detection, alignment, and recognition pipelines?

    Get PDF
    The standard approach to unconstrained face recognition in natural photographs is via a detection, alignment, recognition pipeline. While that approach has achieved impressive results, there are several reasons to be dissatisfied with it, among them is its lack of biological plausibility. A recent theory of invariant recognition by feedforward hierarchical networks, like HMAX, other convolutional networks, or possibly the ventral stream, implies an alternative approach to unconstrained face recognition. This approach accomplishes detection and alignment implicitly by storing transformations of training images (called templates) rather than explicitly detecting and aligning faces at test time. Here we propose a particular locality-sensitive hashing based voting scheme which we call “consensus of collisions” and show that it can be used to approximate the full 3-layer hierarchy implied by the theory. The resulting end-to-end system for unconstrained face recognition operates on photographs of faces taken under natural conditions, e.g., Labeled Faces in the Wild (LFW), without aligning or cropping them, as is normally done. It achieves a drastic improvement in the state of the art on this end-to-end task, reaching the same level of performance as the best systems operating on aligned, closely cropped images (no outside training data). It also performs well on two newer datasets, similar to LFW, but more difficult: LFW-jittered (new here) and SUFR-W.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216
    corecore