1,553,636 research outputs found

    Exploiting c\mathbf{c}-Closure in Kernelization Algorithms for Graph Problems

    Full text link
    A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure of a graph G is the smallest number such that G is c-closed. Fox et al. [ICALP '18] defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size k^O(c), that Induced Matching admits a kernel with O(c^7*k^8) vertices, and that Irredundant Set admits a kernel with O(c^(5/2)*k^3) vertices. Our kernelization exploits the fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show

    An efficient way to assemble finite element matrices in vector languages

    Full text link
    Efficient Matlab codes in 2D and 3D have been proposed recently to assemble finite element matrices. In this paper we present simple, compact and efficient vectorized algorithms, which are variants of these codes, in arbitrary dimension, without the use of any lower level language. They can be easily implemented in many vector languages (e.g. Matlab, Octave, Python, Scilab, R, Julia, C++ with STL,...). The principle of these techniques is general, we present it for the assembly of several finite element matrices in arbitrary dimension, in the P1 finite element case. We also provide an extension of the algorithms to the case of a system of PDE's. Then we give an extension to piecewise polynomials of higher order. We compare numerically the performance of these algorithms in Matlab, Octave and Python, with that in FreeFEM++ and in a compiled language such as C. Examples show that, unlike what is commonly believed, the performance is not radically worse than that of C : in the best/worst cases, selected vector languages are respectively 2.3/3.5 and 2.9/4.1 times slower than C in the scalar and vector cases. We also present numerical results which illustrate the computational costs of these algorithms compared to standard algorithms and to other recent ones

    New recurrence relationships between orthogonal polynomials which lead to new Lanczos-type algorithms

    Get PDF
    Lanczos methods for solving Ax = b consist in constructing a sequence of vectors (Xk),k = 1,... such that rk = b-AXk= Pk(A)r0, where Pk is the orthogonal polynomial of degree at most k with respect to the linear functional c defined as c(εi) = (y, Air0). Let P(1)k be the regular monic polynomial of degree k belonging to the family of formal orthogonal polynomials (FOP) with respect to c(1) defined as c(1)(εi) = c(εi+1). All Lanczos-type algorithms are characterized by the choice of one or two recurrence relationships, one for Pk and one for P(1)k. We shall study some new recurrence relations involving these two polynomials and their possible combinations to obtain new Lanczos-type algorithms. We will show that some recurrence relations exist, but cannot be used to derive Lanczos-type algorithms, while others do not exist at all
    corecore