1,147 research outputs found

    On finding dense sub-lattices as low energy states of a quantum Hamiltonian

    Full text link
    Lattice-based cryptography has emerged as one of the most prominent candidates for post-quantum cryptography, projected to be secure against the imminent threat of large-scale fault-tolerant quantum computers. The Shortest Vector Problem (SVP) is to find the shortest non-zero vector in a given lattice. It is fundamental to lattice-based cryptography and believed to be hard even for quantum computers. We study a natural generalization of the SVP known as the KK-Densest Sub-lattice Problem (KK-DSP): to find the densest KK-dimensional sub-lattice of a given lattice. We formulate KK-DSP as finding the first excited state of a Z-basis Hamiltonian, making KK-DSP amenable to investigation via an array of quantum algorithms, including Grover search, quantum Gibbs sampling, adiabatic, and Variational Quantum Algorithms. The complexity of the algorithms depends on the basis through which the input lattice is presented. We present a classical polynomial-time algorithm that takes an arbitrary input basis and preprocesses it into inputs suited to quantum algorithms. With preprocessing, we prove that O(KN2)O(KN^2) qubits suffice for solving KK-DSP for NN dimensional input lattices. We empirically demonstrate the performance of a Quantum Approximate Optimization Algorithm KK-DSP solver for low dimensions, highlighting the influence of a good preprocessed input basis. We then discuss the hardness of KK-DSP in relation to the SVP, to see if there is reason to build post-quantum cryptography on KK-DSP. We devise a quantum algorithm that solves KK-DSP with run-time exponent (5KNlogN)/2(5KN\log{N})/2. Therefore, for fixed KK, KK-DSP is no more than polynomially harder than the SVP

    Core Decomposition in Multilayer Networks: Theory, Algorithms, and Applications

    Get PDF
    Multilayer networks are a powerful paradigm to model complex systems, where multiple relations occur between the same entities. Despite the keen interest in a variety of tasks, algorithms, and analyses in this type of network, the problem of extracting dense subgraphs has remained largely unexplored so far. In this work we study the problem of core decomposition of a multilayer network. The multilayer context is much challenging as no total order exists among multilayer cores; rather, they form a lattice whose size is exponential in the number of layers. In this setting we devise three algorithms which differ in the way they visit the core lattice and in their pruning techniques. We then move a step forward and study the problem of extracting the inner-most (also known as maximal) cores, i.e., the cores that are not dominated by any other core in terms of their core index in all the layers. Inner-most cores are typically orders of magnitude less than all the cores. Motivated by this, we devise an algorithm that effectively exploits the maximality property and extracts inner-most cores directly, without first computing a complete decomposition. Finally, we showcase the multilayer core-decomposition tool in a variety of scenarios and problems. We start by considering the problem of densest-subgraph extraction in multilayer networks. We introduce a definition of multilayer densest subgraph that trades-off between high density and number of layers in which the high density holds, and exploit multilayer core decomposition to approximate this problem with quality guarantees. As further applications, we show how to utilize multilayer core decomposition to speed-up the extraction of frequent cross-graph quasi-cliques and to generalize the community-search problem to the multilayer setting

    Basic Understanding of Condensed Phases of Matter via Packing Models

    Full text link
    Packing problems have been a source of fascination for millenia and their study has produced a rich literature that spans numerous disciplines. Investigations of hard-particle packing models have provided basic insights into the structure and bulk properties of condensed phases of matter, including low-temperature states (e.g., molecular and colloidal liquids, crystals and glasses), multiphase heterogeneous media, granular media, and biological systems. The densest packings are of great interest in pure mathematics, including discrete geometry and number theory. This perspective reviews pertinent theoretical and computational literature concerning the equilibrium, metastable and nonequilibrium packings of hard-particle packings in various Euclidean space dimensions. In the case of jammed packings, emphasis will be placed on the "geometric-structure" approach, which provides a powerful and unified means to quantitatively characterize individual packings via jamming categories and "order" maps. It incorporates extremal jammed states, including the densest packings, maximally random jammed states, and lowest-density jammed structures. Packings of identical spheres, spheres with a size distribution, and nonspherical particles are also surveyed. We close this review by identifying challenges and open questions for future research.Comment: 33 pages, 20 figures, Invited "Perspective" submitted to the Journal of Chemical Physics. arXiv admin note: text overlap with arXiv:1008.298

    Random perfect lattices and the sphere packing problem

    Full text link
    Motivated by the search for best lattice sphere packings in Euclidean spaces of large dimensions we study randomly generated perfect lattices in moderately large dimensions (up to d=19 included). Perfect lattices are relevant in the solution of the problem of lattice sphere packing, because the best lattice packing is a perfect lattice and because they can be generated easily by an algorithm. Their number however grows super-exponentially with the dimension so to get an idea of their properties we propose to study a randomized version of the algorithm and to define a random ensemble with an effective temperature in a way reminiscent of a Monte-Carlo simulation. We therefore study the distribution of packing fractions and kissing numbers of these ensembles and show how as the temperature is decreased the best know packers are easily recovered. We find that, even at infinite temperature, the typical perfect lattices are considerably denser than known families (like A_d and D_d) and we propose two hypotheses between which we cannot distinguish in this paper: one in which they improve Minkowsky's bound phi\sim 2^{-(0.84+-0.06) d}, and a competitor, in which their packing fraction decreases super-exponentially, namely phi\sim d^{-a d} but with a very small coefficient a=0.06+-0.04. We also find properties of the random walk which are suggestive of a glassy system already for moderately small dimensions. We also analyze local structure of network of perfect lattices conjecturing that this is a scale-free network in all dimensions with constant scaling exponent 2.6+-0.1.Comment: 19 pages, 22 figure

    Densest Lattice Packings of 3-Polytopes

    Get PDF
    Based on Minkowski's work on critical lattices of 3-dimensional convex bodies we present an efficient algorithm for computing the density of a densest lattice packing of an arbitrary 3-polytope. As an application we calculate densest lattice packings of all regular and Archimedean polytopes.Comment: 37 page

    Precise Algorithm to Generate Random Sequential Addition of Hard Hyperspheres at Saturation

    Full text link
    Random sequential addition (RSA) time-dependent packing process, in which congruent hard hyperspheres are randomly and sequentially placed into a system without interparticle overlap, is a useful packing model to study disorder in high dimensions. Of particular interest is the infinite-time {\it saturation} limit in which the available space for another sphere tends to zero. However, the associated saturation density has been determined in all previous investigations by extrapolating the density results for near-saturation configurations to the saturation limit, which necessarily introduces numerical uncertainties. We have refined an algorithm devised by us [S. Torquato, O. Uche, and F.~H. Stillinger, Phys. Rev. E {\bf 74}, 061308 (2006)] to generate RSA packings of identical hyperspheres. The improved algorithm produce such packings that are guaranteed to contain no available space using finite computational time with heretofore unattained precision and across the widest range of dimensions (2d82 \le d \le 8). We have also calculated the packing and covering densities, pair correlation function g2(r)g_2(r) and structure factor S(k)S(k) of the saturated RSA configurations. As the space dimension increases, we find that pair correlations markedly diminish, consistent with a recently proposed "decorrelation" principle, and the degree of "hyperuniformity" (suppression of infinite-wavelength density fluctuations) increases. We have also calculated the void exclusion probability in order to compute the so-called quantizer error of the RSA packings, which is related to the second moment of inertia of the average Voronoi cell. Our algorithm is easily generalizable to generate saturated RSA packings of nonspherical particles
    corecore