1,192 research outputs found

    Uniqueness and minimal obstructions for tree-depth

    Get PDF
    A k-ranking of a graph G is a labeling of the vertices of G with values from {1,...,k} such that any path joining two vertices with the same label contains a vertex having a higher label. The tree-depth of G is the smallest value of k for which a k-ranking of G exists. The graph G is k-critical if it has tree-depth k and every proper minor of G has smaller tree-depth. We establish partial results in support of two conjectures about the order and maximum degree of k-critical graphs. As part of these results, we define a graph G to be 1-unique if for every vertex v in G, there exists an optimal ranking of G in which v is the unique vertex with label 1. We show that several classes of k-critical graphs are 1-unique, and we conjecture that the property holds for all k-critical graphs. Generalizing a previously known construction for trees, we exhibit an inductive construction that uses 1-unique k-critical graphs to generate large classes of critical graphs having a given tree-depth.Comment: 14 pages, 4 figure

    Minimax-optimal Inference from Partial Rankings

    Full text link
    This paper studies the problem of inferring a global preference based on the partial rankings provided by many users over different subsets of items according to the Plackett-Luce model. A question of particular interest is how to optimally assign items to users for ranking and how many item assignments are needed to achieve a target estimation error. For a given assignment of items to users, we first derive an oracle lower bound of the estimation error that holds even for the more general Thurstone models. Then we show that the Cram\'er-Rao lower bound and our upper bounds inversely depend on the spectral gap of the Laplacian of an appropriately defined comparison graph. When the system is allowed to choose the item assignment, we propose a random assignment scheme. Our oracle lower bound and upper bounds imply that it is minimax-optimal up to a logarithmic factor among all assignment schemes and the lower bound can be achieved by the maximum likelihood estimator as well as popular rank-breaking schemes that decompose partial rankings into pairwise comparisons. The numerical experiments corroborate our theoretical findings.Comment: 16 pages, 2 figure

    Join-Reachability Problems in Directed Graphs

    Full text link
    For a given collection G of directed graphs we define the join-reachability graph of G, denoted by J(G), as the directed graph that, for any pair of vertices a and b, contains a path from a to b if and only if such a path exists in all graphs of G. Our goal is to compute an efficient representation of J(G). In particular, we consider two versions of this problem. In the explicit version we wish to construct the smallest join-reachability graph for G. In the implicit version we wish to build an efficient data structure (in terms of space and query time) such that we can report fast the set of vertices that reach a query vertex in all graphs of G. This problem is related to the well-studied reachability problem and is motivated by emerging applications of graph-structured databases and graph algorithms. We consider the construction of join-reachability structures for two graphs and develop techniques that can be applied to both the explicit and the implicit problem. First we present optimal and near-optimal structures for paths and trees. Then, based on these results, we provide efficient structures for planar graphs and general directed graphs

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Competitive Online Search Trees on Trees

    Full text link
    We consider the design of adaptive data structures for searching elements of a tree-structured space. We use a natural generalization of the rotation-based online binary search tree model in which the underlying search space is the set of vertices of a tree. This model is based on a simple structure for decomposing graphs, previously known under several names including elimination trees, vertex rankings, and tubings. The model is equivalent to the classical binary search tree model exactly when the underlying tree is a path. We describe an online O(loglogn)O(\log \log n)-competitive search tree data structure in this model, matching the best known competitive ratio of binary search trees. Our method is inspired by Tango trees, an online binary search tree algorithm, but critically needs several new notions including one which we call Steiner-closed search trees, which may be of independent interest. Moreover our technique is based on a novel use of two levels of decomposition, first from search space to a set of Steiner-closed trees, and secondly from these trees into paths

    NCUWM Poster Abstracts 2013

    Get PDF

    構造的グラフに対する効率的アルゴリズムの統一的設計法

    Get PDF
    平成9年度-平成10年度科学研究費補助金(基盤研究(C)(2))研究成果報告書,課題番号.0968032
    corecore