6,597 research outputs found

    Cross-Lingual Adaptation using Structural Correspondence Learning

    Full text link
    Cross-lingual adaptation, a special case of domain adaptation, refers to the transfer of classification knowledge between two languages. In this article we describe an extension of Structural Correspondence Learning (SCL), a recently proposed algorithm for domain adaptation, for cross-lingual adaptation. The proposed method uses unlabeled documents from both languages, along with a word translation oracle, to induce cross-lingual feature correspondences. From these correspondences a cross-lingual representation is created that enables the transfer of classification knowledge from the source to the target language. The main advantages of this approach over other approaches are its resource efficiency and task specificity. We conduct experiments in the area of cross-language topic and sentiment classification involving English as source language and German, French, and Japanese as target languages. The results show a significant improvement of the proposed method over a machine translation baseline, reducing the relative error due to cross-lingual adaptation by an average of 30% (topic classification) and 59% (sentiment classification). We further report on empirical analyses that reveal insights into the use of unlabeled data, the sensitivity with respect to important hyperparameters, and the nature of the induced cross-lingual correspondences

    Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data

    Get PDF
    Background: High-throughput proteomics techniques, such as mass spectrometry (MS)-based approaches, produce very high-dimensional data-sets. In a clinical setting one is often interested in how mass spectra differ between patients of different classes, for example spectra from healthy patients vs. spectra from patients having a particular disease. Machine learning algorithms are needed to (a) identify these discriminating features and (b) classify unknown spectra based on this feature set. Since the acquired data is usually noisy, the algorithms should be robust against noise and outliers, while the identified feature set should be as small as possible. Results: We present a new algorithm, Sparse Proteomics Analysis (SPA), based on the theory of compressed sensing that allows us to identify a minimal discriminating set of features from mass spectrometry data-sets. We show (1) how our method performs on artificial and real-world data-sets, (2) that its performance is competitive with standard (and widely used) algorithms for analyzing proteomics data, and (3) that it is robust against random and systematic noise. We further demonstrate the applicability of our algorithm to two previously published clinical data-sets
    • …
    corecore