2 research outputs found

    Algorithms for Point Processes Analysis

    No full text
    16 pagesInternational audienceA time point process can be defined either by the statistical properties of the time intervals between successive points or by those of the number of points in arbitrary time intervals. There are mathematical expressions to link up these two points of view, but they are in many cases too complicated to be used in practice. In this article, we present an algorithmic procedure to obtain the number of points of a stationary point process recorded in some time intervals by processing the values of the distances between successive points. We present some results concerning the statistical analysis of these numbers of points and when analytical calculations are possible the experimental results obtained with our algorithms are in excellent agreement with those predicted by the theory. Some properties of point processes in which theoretical calculations are almost impossible are also presented

    Simulations of some Doubly Stochastic Poisson Point Processes

    No full text
    International audienceComputer simulations of point processes are important either to verify the results of certain theoretical calculations that can be very awkward at times, or to obtain practical results when these calculations become almost impossible. One of the most common methods for the simulation of nonstationary Poisson processes is random thinning. Its extension when the intensity becomes random (doubly stochastic Poisson processes) depends on the structure of this intensity. If the random density takes only discrete values, which is a common situation in many physical problems where quantum mechanics introduces discrete states, it is shown that the thinning method can be applied without error. We study in particular the case of binary density and we present the kind of theoretical calculations that then become possible. The results of various experiments realized with data obtained by simulation show fairly good agreement with the theoretical calculations
    corecore