255 research outputs found

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Bifurcations of attractors in 3D diffeomorphisms : a study in experimental mathematics

    Get PDF
    The research presented in this PhD thesis within the framework of nonlinear deterministic dynamical systems depending on parameters. The work is divided into four Chapters, where the first is a general introduction to the other three. Chapter two deals with the investigation of a time-periodic three-dimensional system of ordinary differential equations depending on three parameters, the Lorenz-84 model with seasonal forcing. The model is a variation on an autonomous system proposed in 1984 by the meteorologist E. Lorenz to describe general atmospheric circulation at mid latitude of the northern hemisphere. ... Zie: Summary

    Algorithms for computing normally hyperbolic invariant manifolds

    Get PDF
    An effcient algorithm is developed for the numerical computation of normally hyperbolic invariant manifolds, based on the graph transform and Newton's method. It fits in the perturbation theory of discrete dynamical systems and therefore allows application to the setting of continuation. A convergence proof is included. The scope of application is not restricted to hyperbolic attractors, but extends to normally hyperbolic manifolds of saddle type. It also computes stable and unstable manifolds. The method is robust and needs only little specification of the dynamics, which makes it applicable to e.g. Poincaré maps. Its performance is illustrated on examples in 2D and 3D, where a numerical discussion is included.

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning

    Full text link
    Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case of time series data that can ultimately be modelled as a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system themselves need to be identified - to emerge from - the data mining process. We will first validate this emergent space reconstruction for time series sampled without space labels in known PDEs; this brings up the issue of observability of physical space from temporal observation data, and the transition from spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining kernels. We will then present actual emergent space discovery illustrations. Our illustrative examples include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous networks. We also discuss how data-driven spatial coordinates can be extracted in ways invariant to the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of heterogeneous observations of the same system, to the possible matching of apparently different systems

    Linear And Nonlinear Arabesques: A Study Of Closed Chains Of Negative 2-Element Circuits

    Full text link
    In this paper we consider a family of dynamical systems that we call "arabesques", defined as closed chains of 2-element negative circuits. An nn-dimensional arabesque system has nn 2-element circuits, but in addition, it displays by construction, two nn-element circuits which are both positive vs one positive and one negative, depending on the parity (even or odd) of the dimension nn. In view of the absence of diagonal terms in their Jacobian matrices, all these dynamical systems are conservative and consequently, they can not possess any attractor. First, we analyze a linear variant of them which we call "arabesque 0" or for short "A0". For increasing dimensions, the trajectories are increasingly complex open tori. Next, we inserted a single cubic nonlinearity that does not affect the signs of its circuits (that we call "arabesque 1" or for short "A1"). These systems have three steady states, whatever the dimension is, in agreement with the order of the nonlinearity. All three are unstable, as there can not be any attractor in their state-space. The 3D variant (that we call for short "A1\_3D") has been analyzed in some detail and found to display a complex mixed set of quasi-periodic and chaotic trajectories. Inserting nn cubic nonlinearities (one per equation) in the same way as above, we generate systems "A2\_nnD". A2\_3D behaves essentially as A1\_3D, in agreement with the fact that the signs of the circuits remain identical. A2\_4D, as well as other arabesque systems with even dimension, has two positive nn-circuits and nine steady states. Finally, we investigate and compare the complex dynamics of this family of systems in terms of their symmetries.Comment: 22 pages, 12 figures, accepted for publication at Int. J. Bif. Chao
    corecore