
Z. angew. Math. Phys. 48 (1997) 480–524
0044-2275/97/030480-46 $ 1.50+0.20/0
c© 1997 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

Algorithms for computing normally hyperbolic invariant
manifolds

H. W. Broer, H. M. Osinga1 and G. Vegter

Abstract. An efficient algorithm is developed for the numerical computation of normally hy-
perbolic invariant manifolds, based on the graph transform and Newton’s method. It fits in the
perturbation theory of discrete dynamical systems and therefore allows application to the setting
of continuation. A convergence proof is included. The scope of application is not restricted to
hyperbolic attractors, but extends to normally hyperbolic manifolds of saddle type. It also com-
putes stable and unstable manifolds. The method is robust and needs only little specification of
the dynamics, which makes it applicable to e.g. Poincaré maps. Its performance is illustrated on
examples in 2D and 3D, where a numerical discussion is included.

Mathematics Subject Classification (1991). 34C30, 58F35, 58F15.

Keywords. Dynamical systems, invariant manifolds, normal hyperbolicity, stable and unsta-
ble manifolds, graph transform, constructive proofs, algorithms, Newton’s method, numerical
experiments.

1. Introduction

Invariant manifolds play an important role in the qualitative analysis of dynamical
systems. This paper focuses on normally hyperbolic manifolds, like closed orbits,
invariant tori and their stable and unstable manifolds.

Methods dealing with special cases have been around for some time. The
first general method, based on the graph transform, was developed by Hirsch,
Pugh and Shub in [10]. Normal hyperbolicity guarantees that the graph transform
is a contraction on a space of embeddings, its fixed point corresponding to the
desired invariant manifold. For related work on invariant manifolds and hyperbolic
dynamical systems we refer to Palis and Takens [15], Ruelle [16], and Shub [17].

The graph transform method is constructive, and therefore provides a basis
for the development of an algorithm, executable on a computer. However, the
context of the graph transform involves geometric objects like manifolds, maps and

1Supported by NWO grant 611-306-523

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen Digital Archive

https://core.ac.uk/display/12923142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Vol. 48 (1997) Algorithms for computing invariant manifolds 481

bundles. The main problem is to provide finite representations for these objects.
Such representations, necessary for manipulation by a computer, are introduced
in this paper, and the graph transform method is adapted accordingly. A similar
program, for the computation of stable and unstable manifolds of hyperbolic fixed
points, is developed in Homburg, Osinga and Vegter [12].

Section 2.1 contains a brief review of the Invariant Manifold Theorem [10]. We
restrict ourselves to diffeomeorphisms whose domain is an open subset of Rd, see
section 2.2. In this context we design an algorithm that has a straightforward
implementation, and yet covers many interesting applications.

Section 3 describes a special version of the algorithm in the simple case of
absence of normal expansion. It presents the graph transform as a key ingredi-
ent of the algorithm, see section 3.1. The graph transform, associated with the
diffeomorphism fε, may be considered as a contraction, defined on the space of
embeddings of H0 in Rd. (For brevity’s sake we are cheating a little here, since the
graph transform is actually defined on the space of sections of a certain normal
bundle.) Its fixed point is an embedding, whose image Hε is the invariant manifold
of fε. The image of an embedding under the graph transform is defined, however,
in terms of an implicit equation. To solve this equation efficiently we first derive
a global version of Newton’s method in section 3.2, that may be of some indepen-
dent significance. This rather general method is applied to the computation of the
normally hyperbolic invariant manifold Hε of fε in section 3.3, that also contains
rather precise estimates concerning the speed of convergence of the algorithm. The
computation of the Dfε–invariant splitting of the tangent bundle (see section 2.2
for a definition) along Hε is described in section 3.4. We also indicate how our
algorithm can be used to compute invariant manifolds in a continuation context,
where the parameter ε ranges over an interval that is not necessarily small, see
section 3.5. This setting arises frequently in applications.

After a brief description of some special features of the algorithm in the absence
of normal contraction, see section 4, we sketch the general case in section 5. Here
we describe the computation of the normally hyperbolic invariant manifold, and
its stable and unstable manifolds, when both normal expansion and normal con-
traction are present. Section 7 contains some numerical examples, illustrating the
method first in the simple case of absence of normal expansion, see section 7.1, and
subsequently in the general case, see section 7.2. Finally, we show, in section 7.3,
how to apply the method to compute the invariant manifold of the Poincaré first–
return map of a continuous system. More examples can be found in Osinga [14],
which also contains an extensive survey of related literature.

Acknowledgements. The authors like to thank D. Aronson, L. Dieci, E. Doedel,
J. Guckenheimer, M. W. Hirsch, I. G. Kevrekidis, B. Krauskopf, Yu. Kuznetsov,
J. Lorenz, R. McGehee, R.D. Russell, J.A. Sanders, M. Shub, C. Simó, F. Takens,
B. Werner, F. W. Wubs and J. Yorke for helpful discussions and encouragement.
We are also indebted to the anonymous referees for their suggestions.

482 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

2. Normally hyperbolic submanifolds

2.1. The Invariant Manifold Theorem

First we present an overview of some basic definitions and results from [10]. Con-
sider a CK diffeomorphism f0 on a CK manifold M , having a K–normally hyper-
bolic invariant manifold H0 ⊂ M . Recall that H0 is K–normally hyperbolic for
f0, K ≥ 1, if there is a continuous Df0–invariant splitting

TH0(M) = Nu(H0)⊕ TH0 ⊕Ns(H0),

and a Riemannian structure on the tangent bundle TH0(M), such that, for r ∈ H0
and 0 ≤ k ≤ K:

‖Df0 | Ns
r (H0)‖ · ‖(Df0 | Tr(H0))−1‖k < 1,

‖(Df0 | Nu
r (H0))−1‖ · ‖Df0 | Tr(H0)‖k < 1.

(1)

Here the norms are associated with the Riemann structure on TH0(M).
According to the Invariant Manifold Theorem a CK diffeomorphism f , that is

CK–near f0, has a K–normally hyperbolic invariant manifold H, that is CK and
CK–near H0. In particular, there is a continuous Df–invariant splitting TH(M) =
Nu(H)⊕ T (H)⊕Ns(H), of the tangent bundle TH(M). Our primary goal is the
computation of both H and the invariant splitting of TH(M). Furthermore the
Invariant Manifold Theorem states that, for some neighborhood U of H, the sets

W s(H) =
⋂
n≥0

f−n(U) and Wu(H) =
⋂
n≥0

fn(U)

are CK submanifolds of M , tangent to Tr(H) ⊕ Ns
r (H) and Nu

r (H) ⊕ Tr(H), at
r ∈ H. These manifolds, called the stable and unstable manifolds of H, can also
be computed using the method developed in this paper, as we describe briefly in
section 5.2. In this paper we assume, for technical reasons, that K ≥ 3.

2.2. Normally hyperbolic submanifolds of Rd

Let f0 : U ⊂ Rd → Rd be a diffeomorphism, defined on an open subset U of Rd,
having a 1–normally hyperbolic invariant manifold H0 ⊂ U . (We usually write
f0 : Rd → Rd, even though in general U is a proper subset of Rd.) We assume
throughout this paper that H0 is compact. In this section we describe how to
represent the geometric objects that show up in the computation of invariant
manifolds, taking advantage of the fact that the ambient manifold is a euclidean
space.

Vol. 48 (1997) Algorithms for computing invariant manifolds 483

0 Ì
d

H RR H
d

É 0R H

f0

f0
–1

j0 j0

s0

r0

H0 H0

Figure 1.
The abstract manifold H0 and its embedding in Rd.

Representation of the invariant manifold

Let ϕ0 : H0 → Rd be the canonical embedding of H0. We distinguish between the
abstract manifold H0, and its image ϕ0(H0), which is a submanifold of Rd. To
stress this distinction, we denote ϕ0(H0) byH0. The tangent space Tϕ0(r)(ϕ0(H0))
can be identified with an affine subspace of Rd of the form ϕ0(r) +Tr(H0), where
Tr(H0) is a linear subspace of Rd. Since f0 leaves H0 invariant, there is a diffeo-
morphism σ0 : H0 → H0 such that f0(ϕ0(r)) = ϕ0(σ0(r)), for r ∈ H0. Its inverse
is denoted by %0. Note that σ0 and %0 may be regarded as the restriction of f0
and f−1

0 to H0, respectively. See also figure 1. Although the distinction between
the abstract manifold H0 and its ϕ0–image H0 in Rd involves rather extensive
notation, our intention to develop algorithms that manipulate geometric objects
like manifolds, maps, and bundles, requires that we are quite specific about the
representation of these objects. If e.g. H0 ⊂ Rd the ’user’ of the algorithm may
choose to represent points on H0 by their coordinates in Rd, in which case ϕ0 is the
inclusion map of H0 in Rd. However, in some applications it may be more natural
to represent the manifold H0 by coordinates that are adapted to the dynamics of
f0 on H0, like the case in which H0 is a (higher–dimensional) torus, represented
by angular coordinates.

Representation of normal bundles

The restricted context, in which the ambient manifold is Rd, enables us to identify
neighborhoods of the 0-sections the stable and unstable normal bundles ofH0 with
certain subsets of Rd. To see this, let the dimension of H0 be denoted by c, and the
dimension of the fibers of the bundlesNs(H0) andNu(H0) by s and u, respectively.
In particular, c + s + u = d. As observed above, for r ∈ H0, the space Tr(H0)
corresponds to the affine subspace ϕ0(r) + Tr(H0) of Rd. Similarly Ns

r (H0) and
Nu
r (H0) correspond to affine subspaces of Rd, going through the point ϕ0(r) ∈ H0.

484 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

They are, therefore, of the form ϕ0(r) +Nsr(H0) and ϕ0(r) +Nur (H0), respectively,
where Nsr(H0) and Nur (H0) are s–dimensional and u–dimensional linear subspaces
of Rd. We identify Tϕ0(r)(Rd) with Tr(H0)⊕ Nsr(H0)⊕ Nur (H0). Finally

Πc
r : Rd → Tr(H0), Πs

r : Rd → Nsr(H0) and Πu
r : Rd → Nur (H0) (2)

are the canonical projections.
The Riemannian metric on Rd (in terms of which normal hyperbolicity is de-

fined — see (1)) induces an inner product on the spaces Tr(H0), Nsr(H0) and
Nur (H0). We represent this pointwise inner product by bases, consisting of vectors
in Rd, that are by definition orthonormal with respect to the Riemannian struc-
ture. More specifically, consider an orthonormal basis vs1(r), · · · , vss(r) of Nsr(H0),
for r ∈ H0. Note that in general the vector valued functions vsi : H0 → Rd are not
globally continuous, since this amounts to triviality of the normal bundle Ns(H0).
However, in this paper we make the following assumption:

Assumption 1 (Triviality of normal bundles). There are C0 functions vs1, · · · , vss :
H0 → Rd such that vs1(r), · · · , vss(r) form a basis of Nsr(H0), for r ∈ H0. Similarly,
there are C0 functions vu1 , · · · , vuu : H0 → Rd such that vu1 (r), · · · , vuu(r) form a
basis of Nur (H0), for r ∈ H0. Moreover, we may even assume that these bases are
orthonormal with respect to the Riemannian metric.

The identification map ιsr : Nsr(H0)→ Rs is defined by

ιsr

(s∑
i=1

ηsi v
s
i (r)

)
= (ηs1, · · · , ηss). (3)

The identification map ιur : Nur (H0)→ Ru is defined similarly.
Due to the triviality of the normal bundle the manifold H0 has a neighborhood

in Rd that is diffeomorphic to H0 × Rs × Ru. More precisely, the map Φ : H0 ×
Rs × Ru → Rd, defined by

Φ(r, ηs, ηu) = ϕ0(r) +
s∑
i=1

ηsi v
s
i (r) +

u∑
i=1

ηui v
u
i (r),

is a diffeomorphism from a neighborhood of H0 × {0} × {0} to a neighborhood of
H0 in Rd. Note that Φ({r}×Rs×{0}) = ϕ0(r)+Nsr(H0), and Φ({r}×{0}×Ru) =
ϕ0(r) + Nur (H0). The maps πc : Rd → H0, πs : Rd → Rs and πu : Rd → Ru are
defined on a neighborhood of H0 by mapping inverse images under Φ onto H0, Rs
and Ru, respectively, under the canonical projections. In this way we identify the
stable normal bundle Ns(H0) with the space H0 × Rs, and the unstable normal
bundle Nu(H0) with H0×Ru. Therefore it is justifiable to refer to maps ηs : H0 →
Rs and ηu : H0 → Ru as sections. With a pair of sections (ηs, ηu) we associate

Vol. 48 (1997) Algorithms for computing invariant manifolds 485

the embedding ϕ : H0 → Rd, defined by ϕ(r) = Φ(r, ηs(r), ηu(r)). In particular,
the embedding ϕ0 is associated with the 0–sections of the normal bundles. If f0
is defined on a manifold other than Rd, or if the normal bundles are not trivial,
the methods of this paper still apply. However, the need for local coordinates
introduces more complicated (multiple) representations of the geometric objects
the algorithm manipulates; cf [16] for a proof of the Invariant Manifold Theorem
along these lines. A different approach can be found in [10], where the exponential
map, associated with the Riemannian metric, is used to identify a neighborhood
of the 0–section in the normal bundle with a neighborhood of H0 in the ambient
manifold. It seems hard to turn the latter method into an efficient algorithm.

Representation of derivatives

In computations it is important to have explicit representations for the derivative
of e.g. f0 in points of H0, cf (1). Since the linear spaces Nsr(H0), r ∈ H0, form
a Df0–invariant family, there are globally defined CK−1 functions κsij : H0 → R,
1 ≤ i, j ≤ s, such that

Df0(ϕ0(r))(vsi (r)) =
s∑

j=1

κsij(r)v
s
j (σ0(r)),

for i = 1, · · · , s. Let Ks
0(r) be the s× s matrix with entries κsij(r). Similarly there

are CK−1 functions κuij : H0 → R, 1 ≤ i, j ≤ u, such that

Df0(ϕ0(r))(vui (r)) =
s∑

j=1

κuij(r)v
u
j (σ0(r)),

for i = 1, · · · , u. Let Ku
0 (r) be the u × u matrix with entries κuij(r). Then

0–normal hyperbolicity of H0 boils down to λs := supr∈H0
‖Ks

0(r)‖ < 1, and
λu := supr∈H0

‖Ku
0 (r)−1‖ < 1. Here we take the matrix norm with respect to the

standard inner product on Rs and Ru, respectively. Although the matrices Ks
0(r)

and Ku
0 (r) do depend on the particular choice of the functions vsi , 1 ≤ i ≤ s, and

vui , 1 ≤ i ≤ u, their norms are independent of this choice.
To express 1–normal hyperbolicity, let vc1(r), · · · , vcc(r) span the tangent space

Tr(H0). (Note that in general vci is not globally continuous, since this would
amount to parallellizability of H0.) Since H0 is f0–invariant, there are locally
defined αij(r) ∈ R, 1 ≤ i, j ≤ c, such that

Df0(ϕ0(r))(vci (r)) =
c∑

j=1

αij(r)vcj (σ0(r)),

for i = 1, · · · , c. Let A0(r) be the c × c–matrix with entries αij(r). Then µs :=
supr∈H0

‖Ks
0(r)‖‖A0(r)−1‖ < 1, and µu := supr∈H0

‖Ku
0 (r)−1‖‖A0(r)‖ < 1, since

H0 is a 1–normally hyperbolic invariant manifold for f0.

486 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

Perturbation context

We study diffeomorphisms on Rd that are CK–near f0 (K ≥ 3). More specifically,
we restrict to a perturbation context in which these diffeomorphisms occur in a
CK family f : Rd × R→ Rd, such that f0(p) = f(p, 0), for p ∈ Rd.

In this setting families of embeddings, sections of bundles, etc., are maps g :
X × R → Y , depending on (x, ε) ∈ X . Here ε ∈ R is considered as a parameter,
ranging over some neighborhood of 0 ∈ R. Individual members of a family like
g are denoted by subscripting the family name with the parameter name, e.g.
gε(x) = g(x, ε). This convention applies throughout the paper.

3. Special case I: absence of normal expansion

In this section we develop an algorithm for the computation of the invariant man-
ifold in the special case of absence of normal expansion, viz Nu(H0) = 0. If no
confusion is possible we drop the superscript s from our notation, by writing e.g.
K0(r), κij(r), λ, ιr instead of Ks

0(r), κsij(r), λ
s, ιsr, etc.

3.1. The graph transform

Our goal is to obtain the normally hyperbolic invariant manifold Hε for fε by
constructing an embedding ϕε : H0 → Rd with Hε = ϕε(H0). We follow [10], by
considering special embeddings associated with sections ηε : H0 → Rs according
to ϕε(r) = Φ(r, ηε(r)).

The graph of a section η : H0 → Rs is the subset graph(η) of Rd, defined by
graph(η) = {Φ(r, η(r)) | r ∈ H0}. The graph transform Γfε is uniquely determined
by the condition that it maps a section hε : H0 → Rs onto a section ηε : H0 → Rs,
such that fε(graph(hε)) = graph(ηε). In other words, there is a unique point
% ∈ H0 such that the point Φ(r, η(r, ε)) is of the form f(Φ(%, h(%, ε)), ε). It is
convenient to express the dependence of % on r and ε by writing % = %(r, ε). Note
that we suppress the dependence of % on h in our notation. We define the graph
transform Γf on families of sections, i.e. we take Γf (h)(r, ε) = Γfε(ηε)(r). Let
Σ(ε0) be the space of continuous families of sections h : H0× [−ε0, ε0]→ Rs, with
h(r, 0) = 0 for r ∈ H0. Since H0 is f0–invariant, the 0–section is a fixed point of
Γf0 , and hence Σ(ε0) is invariant under Γf , provided ε0 is sufficiently small.

For h ∈ Σ(ε0) the family η = Γf (h) is the second component of the solution
(%(r, ε), η(r, ε)) of the equation

F (%, η, r, ε) = 0, (4)

where F : H0 × Rs ×H0 × R→ Rd is defined by

F (%, η, r, ε) = f(Φ(%, h(%, ε)), ε)− Φ(r, η). (5)

Vol. 48 (1997) Algorithms for computing invariant manifolds 487

H0H

N H
s

rre() 0()N H

N H
s
r ()0N H

H0H

F r r((), (()))e e er h r

j r0 e(())r

fe

F h(, ())r re

j0()r

graph ()he

graph ()he

Figure 2.
The graph transform Γfε maps hε onto ηε. Its fixed point hε defines an embedding ϕε : H0 → Rd
by ϕε(r) = Φ(r, hε(r)), whose image Hε is the normally hyperbolic invariant manifold of fε.

See also figure 2.
Note that F is defined on a neighborhood of the subset

{(%0(r), 0, r, 0) | r ∈ H0}.

Since πcΦ(r, η) = r, the solution of equation (4) can be obtained by first solving
% = %(r, ε) from the equation

σ(%, ε) = r, (6)

where σ : H0 × R→ H0 is defined by

σ(%, ε) = πcf(Φ(%, h(%, ε)), ε). (7)

In other words: %ε : H0 → H0 is the inverse of σε : H0 → H0. Then η is defined
by

η(r, ε) = πsf(Φ(%(r, ε), h(%(r, ε), ε)), ε).

Using the fact that h(%, 0) = 0 for h ∈ Σ(ε0), we see that

σ(%, 0) = πcf(Φ(%, 0), 0) = πcf0(ϕ0(%)) = σ0(%).

Consequently %(r, 0) = %0(r).
Equation (6) can be solved by introducing local coordinates on H0 near %0(r)

and r, and by numerically constructing a solution, viz a local inverse to σε, in terms
of these local coordinates. However, we prefer to obtain η globally, exploiting the
fact that we have identified the bundle Ns(H0) with a neighborhood of H0 in Rd

488 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

under the mapping Φ. To this end we transform equation (4) into an equation of
the form

G(y, r, ε) = 0, (8)

where G : Rd×H0×R→ Rd is a CK function, K ≥ 3, defined on a neighborhood
of ϕ0H0 ×H0 × {0}, that satisfies, for r ∈ H0:

G(ϕ0(r), r, 0) = 0.

We construct G in section 3.3, but first we develop a global version of Newton’s
method for solving equations of the form (8).

3.2. A global version of Newton’s method

In this section we develop a rather general method for solving equations of the
form (8). This method, which may be considered as a global version of Newton’s
method for determining implicitly defined functions, may be of some independent
significance. In this paper it provides a key subroutine for the algorithms that
compute the normally hyperbolic submanifold and its stable and unstable mani-
folds.

First we consider in more detail the spaces of functions we are working with.
In this general setting we consider a CK function, K ≥ 3, G : Rd×H0 ×R→ Rd,
and a CK function y0 : H0 → Rd satisfying, for r ∈ H0,

G(y0(r), r, 0) = 0, DyG(y0(r), r, 0) is invertible. (9)

(In our case y0 = ϕ0.) Here DyG(y0(r), r, 0) is the restriction of the derivative
DG(y0(r), r, 0) to the space Ty0(r)(Rd)× {0} × {0}; We denote this map by L(r).

Note that the solution of equation (8) is a function H0 × R → Rd, defined
on a neighborhood of H0 × {0}, and near y0. The Newton operator N starts
with such a function, and computes a better approximation to the solution of (8).
More specifically, consider the Banach space B(ε0) of continuous functions y :
H0 × [−ε0, ε0]→ Rd, endowed with the sup–norm, viz

‖y‖ = sup
r∈H0,| ε |≤ε0

|y(r, ε)|.

Here |y(r, ε)| is the length of y(r, ε) ∈ Rd with respect to the standard inner
product on Rd. We consider y0 as an element of this space by identifying it with
the map (r, ε) 7→ y0(r). The Newton operator N is defined on B(ε0) by

Ny(r, ε) = y(r, ε)− L(r)−1 ·G(y(r, ε), r, ε).

We first derive a precise expression for Ny, that is useful in the proof of later
results.

Lemma 2. Let G(y, r, ε) = G0(y, r) + εG1(y, r) + O(ε2), uniformly for (y, r) in
some compact neighborhood of {(y0(r), r) | r ∈ H0}. Then for y ∈ B(ε0):

Ny(r, ε) = y0(r)− εL(r)−1 ·G1(y0(r), r) +O(ε2 + ‖y − y0‖2).

Vol. 48 (1997) Algorithms for computing invariant manifolds 489

Proof. Considering the Taylor series of G(y, r, ε) at (y0(r), r, 0) we see that

G(y, r, ε) = G0(y0(r), r) +DyG0(y0(r), r) · (y − y0(r))

+ εG1(y0(r), r)) +O(ε2 + ‖y − y0‖2).

Since G0(y0(r), r) = 0 and DyG0(y0(r), r) = L(r), it follows from the definition
of N that

Ny(r, ε) = y(r, ε)− L(r)−1 · L(r) · (y(r, ε)− y0(r))

− εL(r)−1 ·G1(y0(r), r) + O(ε2 + ‖y − y0‖2)

= y0(r) − εL(r)−1 ·G1(y0(r), r)) +O(ε2 + ‖y − y0‖2).

This completes the proof of the lemma. �

The preceding lemma shows that Ny(r, ε) is of the form y0(r)+O(ε), provided
y(r, ε) = y0(r) + O(ε). To make this observation more precise we introduce the
space

B(ε0, β) = {y : H0 × [−ε0, ε0]→ Rd | sup
r∈H0

|y(r, ε)− y0(r)| ≤ βε},

where ε0 and β are positive constants; ε0 is small, β is specified later. The space
B(ε0, β) is a closed subspace of B(ε0), so in particular it is a complete metric space.
The following properties of the Newton operator are crucial in the derivation of
our algorithm.

Theorem 3. Let β be a constant such that

β > sup
r∈H0

‖L(r)−1 ·G1(y0(r), r)‖.

(i) For small values of ε0 the space B(ε0, β) is N–invariant, i.e.:

N (B(ε0, β)) ⊂ B(ε0, β).

(ii) For small values of ε0 the Newton operator N is a contraction on B(ε0, β)
with contraction factor O(ε0). Its fixed point y satisfies

G(y(r, ε), r, ε) = 0,

and is of the form y(r, ε) = y0(r) + εy1(r) + O(ε2), uniformly in r ∈ H0,
where

y1(r) = −L(r)−1 ·G1(y0(r), r). (10)

490 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

(iii) Let {yn} ⊂ B(ε0, β) be a sequence with y0 ∈ B(ε0, β), and yn+1 = Nyn.
Then, for all γ with 0 < γ < 1, there is an ε0 > 0 such that:

yn(r, ε) = y(r, ε) +O(εγn),

uniformly for |ε| ≤ ε0 and r ∈ H0, as n→∞.

Proof. (i) This is a straightforward consequence of lemma 2.
(ii) Let y1, y2 ∈ B(ε0, β). To prove that N is a contraction, we Taylor–expand

G(y, r, ε) at (y1(r, ε), r, ε) to obtain:

G(y2(r, ε), r, ε) = G(y1(r, ε), r, ε) +DyG(y1(r, ε), r, ε) · (y2(r, ε)− y1(r, ε))

+O(|y2(r, ε)− y1(r, ε)|2).

Since DyG(y1(r, ε), r, ε) = L(r) +O(ε+ |y1(r, ε)− y0(r)|), we derive that

Ny2(r, ε)−Ny1(r, ε) = O(ε+ |y1(r, ε)− y0(r)|) · (y2(r, ε)− y1(r, ε))+

O(|y2(r, ε)− y1(r, ε)|2).

Since |y1(r, ε)− y0(r)| ≤ cε, and |y2(r, ε)− y1(r, ε)| ≤ 2cε, we see that

|Ny2(r, ε)−Ny1(r, ε)| = O(ε)|y2(r, ε)− y1(r, ε)|,

so ‖Ny2 − Ny1‖ ≤ O(ε0)‖y2 − y1‖. Hence N is a contraction, with contraction
factor O(ε0).

Obviously Ny = y is equivalent to G(y(r, ε), r, ε) = 0. Furthermore lemma 2
yields y(r, ε) = y0(r) + εy1(r) +O(ε2).

(iii) We use induction with respect to n. Our inductive hypothesis for n ≥ 1
is: |yn(r, ε)− y(r, ε)| ≤ εγn, for r ∈ H0 and |ε| ≤ ε0. (We determine the constant
ε0 > 0 in the inductive step.) Observe that lemma 2 and part (ii) imply

sup
r∈H0

|y(r, ε)− yn(r, ε)| = O(ε2),

for all n ≥ 1, we see that the inductive hypothesis holds for n = 1, 2. So assume
it holds true for n ≥ 2.

Using G(y(r, ε), r, ε) = 0, we see that the Taylor expansion of G at (y(r, ε), r, ε)
is of the form

G(y, r, ε) = DyG(y(r, ε), r, ε) · (y − y(r, ε)) +R(y, r, ε),

where the higher order term R satisfies

|R(y, r, ε)| ≤ c0|y − y(r, ε)|2,

Vol. 48 (1997) Algorithms for computing invariant manifolds 491

for some positive constant c0, uniformly for (y, r, ε) ranging over some compact
neighborhood of {y0(r), r, 0) | r ∈ H0} in Rd ×H0 × [−ε0, ε0].

Furthermore, DyG(y(r, ε), r, ε) is of the form L(r) + ∆(r, ε), where ‖∆(r, ε)‖ ≤
c1ε for some positive constant c1. Then

yn+1(r, ε)− y(r, ε) = −L(r)−1(∆(r, ε) · (yn(r, ε)− y(r, ε)) +R(yn(r, ε), r, ε)).

Therefore

|yn+1(r, ε)− y(r, ε)| ≤ ‖L(r)−1‖(c1εγn+1 + c0ε
2γn)

= εγ(n+1)‖L(r)−1‖(c1ε1−γ + c0ε
γ(n−1)).

Therefore the inductive hypothesis holds for n + 1, provided we started out with
a value of ε0 satisfying

sup
r∈H0

‖L(r)−1‖(c1ε1−γ
0 + c0ε

γ
0) ≤ 1.

�

Theorem 3(ii) reveals that y1(r, ε) = y0(r) + εy1(r) is a good initial guess
for the solution of (8), and theorem 3(iii) guarantees that each application of the
Newton operatorN brings us closer to the fixed point roughly by a factor of O(εγ).
In the next section we apply these observations to the computation of the graph
transform.

3.3. Computing the invariant manifold

In this section we apply the results of section 3.2 to compute the graph transform.
To this end we first derive, in section 3.3.1, a more precise expression for equa-
tion (8), and apply our extension of Newton’s method to solve it. It turns out that
we can determine the image of the graph transform analytically up to terms of
order ε2, see section 3.3.2. This analysis enables us to iterate the graph transform
starting from a good initial guess of the fixed point. A priori, the fixed point of
the graph transform defines a C0 invariant manifold Hε of fε, for small values of
ε. According to [10] it is even C1. Although we can extend the analysis of this
section to prove this stronger result as well, we abstain from doing so, since we are
merely heading for an algorithm to compute the invariant manifold. In section 3.4
we present a method to compute the continuous Dfε–invariant splitting of the
tangent bundle of Hε.

We assume that (a representation of) the invariant splitting Tr(H0)⊕Nsr(H0),
the restrictions %0 and σ0 of f−1

0 and f0 to H0, and the derivative Df0(r) =
A0(r) ⊕K0(r) are given for all r ∈ H0.

492 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

3.3.1. The Newton operator

First we transform equation (4) into an equation of the form (8). Ideally we like
to find a function G : Rd × H0 × R → Rd such that Gε(y, r) = 0 iff y is the
point on graph(ηε) above r ∈ H0, where ηε is the image of hε under the graph
transform Γfε , see figure 2. In other words, ηε(r) is the second component of
the solution (%ε(r), ηε(r)) of equation ((4)). This could be achieved by designing
a diffeomorphism ψε : H0 × Rs → Rd such that ψε(%ε(r), ηε(r)) = Φ(r, ηε(r)),
and by taking G such that Gε(ψε(ξ, η), r) = Fε(ξ, η, r). An obvious definition is
ψε(ξ, η) = Φ(σε(ξ), η), with σε(ξ) = σ(ξ, ε) defined by ((7)). However, σε is rather
awkward to compute for ε 6= 0. In view of our assumption that (a representation
of) σ0 is given, we use ψ0 instead of ψε even for ε 6= 0, i.e. we consider the map
Ψ : H0 × Rs → Rd, defined by

Ψ(ξ, η) = Φ(σ0(ξ), η), (11)

which is a diffeomorphism from a neighborhood of H0 × {0} in H0 × Rs to a
neighborhood of H0 in Rd. Then define G by:

G(Ψ(ξ, η), r, ε) = F (ξ, η, r, ε). (12)

Since ϕ0(r) = Φ(r, 0) = Ψ(%0(r), 0), for r ∈ H0, we see that G(ϕ0(r), r, 0) =
F (%0(r), 0, r, 0) = 0, so the first part of condition (9) is satisfied for y0 = ϕ0.
To check that the second part holds as well, we first derive an expression for
L(r) = DyG(ϕ0(r), r, 0) : Rd → Rd. It turns out that L(r) has a very simple
expression with respect to the splitting Tr(H0)⊕Nsr(H0) on both its domain and
its range. More precisely:

Lemma 4. For r ∈ H0, the splitting Rd = Tr(H0) ⊕ Nsr(H0) is L(r)–invariant,
and for vc ∈ Tr(H0), vs ∈ Nsr(H0)

L(r)(vc ⊕ vs) = vc ⊕ (−vs).

In particular L(r) is invertible, and L(r)−1 = L(r).

Proof. Recall that for (ξ, η, r) ∈ H0 × Rs ×H0:

F0(ξ, η, r) = f0(Φ(ξ, 0))− Φ(r, η) = Ψ(ξ, 0)−Ψ(%0(r), η), (13)

since f0(Φ(ξ, 0)) = f0(ϕ0(ξ)) = ϕ0(σ0(ξ)) = Ψ(ξ, 0), and Φ(r, η) = Φ(σ0(%0(r)), η)
= Ψ(%0(r), η). From (13) we derive

DξF0(%0(r), 0, r) = DξΨ(%0(r), 0),
DηF0(%0(r), 0, r) = −DηΨ(%0(r), 0).

Vol. 48 (1997) Algorithms for computing invariant manifolds 493

Since

D(ξ,η)F0(%0(r), 0, r) = DyG0(ϕ0(r), r) ·DΨ(%0(r), 0) = L(r) ·DΨ(%0(r), 0),

the proof is complete. �

Lemma 4 yields the following straightforward method of computing Ny for
y ∈ B(ε0, β).

Algorithm Newton

Input : y : H0 × [−ε0, ε0]→ Rd.
Output : Ny : H0 × [−ε0, ε0]→ Rd.
forall r ∈ H0, ε ∈ [−ε0, ε0] do
1 x← πc(y(r, ε))

Comment: x ∈ H0 and y(r, ε)− ϕ0(x) ∈ Nsx(H0)
2 η ← ιx(y(r, ε)− ϕ0(x))

Comment: y(r, ε) = Φ(x, η)
3 Y ← F (%0(x), η, r, ε)

Comment: Y = G(y(r, ε), r, ε)
4 Y c ← Πc

r(Y)
Y s ← Πs

r(Y)
5 Ny(r, ε)← y(r, ε)− Y c + Y s

Comment: L(r)−1 ·G(y(r, ε), r, ε) = Y c − Y s

A few further comments are in order. Execution of line 1 amounts to finding
the point ϕ0(x) ∈ H0 such that y(r, ε) ∈ ϕ0(x) + Nsx(H0). The maps ιx, Πc

x,
Πs
x and F have straightforward implementations; see their definitions (3), (2) and

(5), respectively. In section 6, where we discuss the discretization problem, we
indicate how to find implementations that have a predescribed accuracy. Since
also (a representation of) the map %0 : H0 → H0 is given, lines 2, 3 and 4 can be
implemented in a straightforward way. To justify the comment at line 3, observe
that

G(y(r, ε), r, ε) = G(Φ(x, η), r, ε)
= G(Ψ(%0(x), η), r, ε)
= F (%0(x), η, r, ε)
= Y.

Finally the correctness of line 5 follows from lemma 4.

3.3.2. Using the graph transform to compute Hε

The map Ψ : H0 × Rs → Rd, transforming F into G, also establishes a 1:1–
correspondence between sections η ∈ Σ(ε0) and maps y : H0 × R → Rd, defined

494 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

by y(r, ε) = Φ(r, η(r, ε)). To apply the Newton operator, we should restrict the
domain of the graph transform to sections, corresponding to maps in the domain
B(ε0, β) of the Newton operator. Therefore we consider the subset Σ(ε0, α) of
Σ(ε0), defined by

Σ(ε0, α) = {h ∈ Σ(ε0) | sup
r∈H0

|h(r, ε)| ≤ αε}.

Since H0 is compact, for β > 0 there is an α > 0 such that a section in Σ(ε0, α)
corresponds to a map in B(ε0, β). Hence, the image of a section h ∈ Σ(ε0, α0)
under the graph transform Γf can be determined using algorithm Newton, de-
signed in section 3.3.1. To obtain a good starting point for repeated application of

the Newton operator, we first have to determine G1(ϕ0(r), r) =
∂G

∂ε
(ϕ0(r), r, 0),

see theorem 3(ii), equation (10). To express G1 in terms of the linear part of f
and h, let

f(p, ε) = f0(p) + εf1(p) +O(ε2),

and
h(r, ε) = ε(h1(r), · · · , hs(r)) +O(ε2).

Lemma 5. For r ∈ H0

G1(ϕ0(r), r) =
s∑

i,j=1

hi(%0(r))κij(%0(r))vsj (r) + f1(ϕ0(%0(r))).

Proof. Let (y, r) ∈ Rd × H0, then G1(y, r) =
∂G

∂ε
(y, r, 0). Furthermore, let

y = Ψ(ξ0, η0), for (ξ0, η0) ∈ H0 × Rs), with Ψ as in (11), i.e.

y = Φ(σ0(ξ0), η0),

then G(y, r, ε) = F (ξ0, η0, r, ε). Therefore,

G(y, r, ε) = f(p(ε), ε)− Φ(r, η0),

where p(ε) = Φ(ξ0, εh(ξ0, ε)). In particular p0 := p(0) = ϕ0(ξ0). Hence,

G1(y, r) = Df0(p0) · ṗ(0) + f1(p0),

with

ṗ(0) =
s∑
i=1

hi(ξ0)vsi (ξ0).

Vol. 48 (1997) Algorithms for computing invariant manifolds 495

Therefore,

G1(y, r) = Df0(p0) ·
(s∑
i=1

hi(ξ0)vsi (ξ0)
)

+ f1(p0)

=
s∑

i,j=1

hi(ξ0)κij(ξ0)vsj (σ0(ξ0)) + f1(p0).

We obtain the desired expression by substituting y = ϕ0(r), in which case σ0(ξ0) =
r and hence ξ0 = %0(r). �

For p = ϕ0(r), with r ∈ H0, the curve ε 7→ f(ϕ0(r), ε) passes through
f0(ϕ0(r)) = ϕ0(σ0(r)). Therefore its tangent vector at this point, viz f1(ϕ0(r)),
belongs to Tϕ0(σ0(r))(Rd), which we identify with Tσ0(r)(H0)⊕Ns

σ0(r)(H0). There-

fore there are unique C0 functions V c, V s → Rd, with V c(r) ∈ Tr(H0) and
V s(r) ∈ Nsr(H0), such that f1(ϕ0(r)) = V c(σ0(r)) + V s(σ(r)). Since %0 is the
inverse of σ0, we see that f1(ϕ0(%0(r))) = V c(r) + V s(r), in other words:

V c(r) = Πc
r(f1(ϕ0(%0(r)))) and V s(r) = Πs

r(f1(ϕ0(%0(r)))).

Corollary 6. The fixed point y of N is of the form y(r, ε) = ϕ0(r)+εy1(r)+O(ε2),
where

y1(r) =
s∑

i,j=1

hi(%0(r))κij(%0(r))vsj (r)− V c(r) + V s(r) (14)

Algorithm Graph Transform

Input : h ∈ Σ(ε0, α), δ > 0 (maximal error)
Output : Γf (h) ∈ Σ(ε0, α)
forall r ∈ H0, ε ∈ [−ε0, ε0] do
1 y(r, ε)← ϕ0(r) + εy1(r)

Comment: cf corollary 6
2 repeat
3 ynew ← Ny

Comment: Use algorithm Newton

4 error ← ‖y − ynew‖
5 y ← ynew
6 until error ≤ δ
7 Γf (h)(r, ε)← πs(y)

Comment: πs(y) = πs(Ψ−1(y))

Remark 7. To compute y1(r) in line 1 we use expression (14). In view of lemma 2
the variable y in algorithm Graph Transform satisfies the invariant y = ϕ0(r)+

496 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

εy1(r) +O(ε2). In particular the output Γf (h) is of the form

Γf (h)(r, ε) = ε(h1(r), · · · , hs(r)) +O(ε2),

where (h1(r), · · · , hs(r)) = πs(y1(r)), i.e.

s∑
i=1

hi(r)vsi (r) =
s∑

i,j=1

hi(%0(r))κij(%0(r))vsj (r) + V s(r). (15)

This enables us to initialize y(r, ε) properly upon repeated application of the graph
transform Γf . In fact, we can even compute the fixed point of Γf up to terms of
order ε2 by repeated application of (15).

The crucial properties of the graph transform Γf are reflected by the following
theorem.

Theorem 8. For any constant λ, such that λ < λ < 1, there are values of α and
ε0 such that:

(i) Γf leaves Σ(ε0, α) invariant, i.e.

Γf (Σ(ε0, α)) ⊂ Σ(ε0, α).

(ii) Γf is a contraction on Σ(ε0, α), whose contraction factor does not exceed λ.
(iii) The fixed point h of Γf defines a continuous family of C1 embeddings ϕε :

H0 × [−ε0, ε0]→ Rd by ϕε(r) = Φ(r, hε(r)), such that Hε := ϕε(H0) is the
1–normally hyperbolic invariant manifold of fε.

Proof. (i) The first property is in fact equivalent to theorem 3 (i). Let C be a
constant such that supr∈H0

‖V s(r)‖ < C. In view of the expression for Γf(h),
derived in remark 7, we see that

|Γf (h)(r, ε)| ≤ ε(λ|h(r, ε)|+ C) +O(ε).

Taking α such that λα + C < α, and taking ε0 sufficiently small, we see that
Σ(ε0, α) is Γf–invariant.

(ii) Note that (15) implies that for h1, h2 ∈ Σ(ε0, α):

‖Γf(h2)− Γf (h1)‖ ≤ λ‖h2 − h1‖,

provided ε0 is sufficiently small. This proves that Γf is a contraction.
(iii) Note that (i) and (ii) only guarantee that the fixed point h is a continuous

section. Therefore, the map ϕε is a C0 embedding, and the set Hε = ϕε(H0) is a
C0 invariant manifold for fε. We can even prove, with the machinery of the next
subsection, that Hε is a C1 manifold. We postpone completion of this part of the
proof to the next subsection, viz to the proof of theorem 10. �

Vol. 48 (1997) Algorithms for computing invariant manifolds 497

3.4. Computing the invariant splitting of the tangent bundle

In the previous subsection we derived an algorithm that computes the invariant
manifold Hε ⊂ Rd of fε as the image of an embedding ϕε : H0 → Rd. This
algorithm computes a pair (%, h), with % : H0 × R → H0 and h : H0 × R → Rs,
such that ϕε(r) = Φ(r, hε(r)), and

fε(ϕε(%ε(r))) = ϕε(r).

The inverse of %ε is denoted by σε(r). Therefore

fε(ϕε(r)) = ϕε(σε(r)).

Hence
σε(r) = πcfε(ϕε(r)),

so σε can easily be computed from ϕε.
Our goal in this section is to compute the Dfε–invariant splitting T (Hε) ⊕

Ns(Hε) of the tangent bundle THε(Rd). To this end we write the map Dfε(ϕε(r))
with respect to the splittings Tr(H0)⊕ Nsr(H0) and Tσε(r)(H0)⊕ Ns

σε(r)
(H0) as(

Aε(r) Bε(r)
Cε(r) Kε(r)

)
,

where Aε(r) : Tr(H0) → Tσε(r)(H0), Bε(r) : Nsr(H0) → Tσε(r)(H0), Cε(r) :
Tr(H0) → Ns

σε(r)
(H0) and Kε(r) : Nsr(H0) → Ns

σε(r)
(H0) are linear maps, de-

pending continously on (r, ε). Note in particular that B0(r) = 0 and C0(r) = 0,
and ‖Aε(r)‖ = ‖A0(r)‖+O(ε), etc.

The algorithm that computes the Dfε–invariant splitting of THε(Rd) is again
based on a graph transform. Consider, for (r, ε) ∈ H0 × R, linear maps ωε(r) :
Nsr(H0)→ Tr(H0), depending continuously on (r, ε). The space of all such maps,
defined for (r, ε) ∈ H0× [−ε0, ε0], is denoted by Ωs(ε0). It is a Banach space with
norm defined by ‖ω‖ = sup| ε |≤ε0,r∈H0

‖ωε(r)‖. Let Ωs(δ0, ε0) be the subspace
consisting of those ω ∈ Ωs(ε0) for which ‖ω‖ ≤ δ0. Note that this is a closed
subspace of Ωs(ε0), and therefore it is a complete metric space.

The graph of ωε(r) is the subspace graph(ωε(r)) of Rd, defined by

graph(ωε(r)) = {ωε(r) · u⊕ u | u ∈ Nsr(H0)}.

We define the operator Ts on Ωs(δ0, ε0) by the requirement that, for ω = Ts(ω),

graph(ωε(r)) = Dfε(ϕε(r))−1graph(ωε(σε(r))). (16)

Then (16) boils down to: for all v ∈ Ns
σε(r)

(H0) there is a v ∈ Nsr(H0) such that(
ω · v
v

)
=
(
A B
C K

)−1
·
(
ω · v
v

)
,

498 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

where A = Aε(r) (etc.), ω = ωε(r) and ω = ωε(σε(r)). Eliminating v and v we
see that

ω = (A− ω ·C)−1 · (−B + ω ·K),

in other words

(Tsω)ε(r) = (Aε(r) − ωε(σε(r)) ·Cε(r))−1 · (−Bε(r) + ωε(σε(r)) ·Kε(r)). (17)

Theorem 9. Let λ and µ be constants such that λ < λ < 1 and µ < µ < 1. Then,
for δ0 and ε0 sufficiently small:

(i) The space Ωs(δ0, ε0) is Ts–invariant, i.e.

Ts(Ωs(δ0, ε0)) ⊂ Ωs(δ0, ε0).

(ii) The operator Ts is a contraction, whose contraction factor does not exceed
µ. Its fixed point ω determines a Dfε–invariant family {Nsr(Hε)}r∈H0 of
subspaces of Rd, defined by

Nsr(Hε) = graph(ωε(r)).

(iii) For r ∈ H0 and v ∈ Nsr(Hε):

‖Dfε(ϕε(r)) · v‖ ≤ λ‖v‖.

Proof. (i) For r ∈ H0 and |ε| ≤ ε0:

‖(Aε(r) − ωε(r) · Cε(r))−1‖ ≤ ‖Aε(r)−1‖+ O(ε0‖ωε(r)‖),

and
‖ −Bε(r) + ωε(r) ·Kε(r)‖ = O(ε0) + ‖ωε(r)‖‖Kε(r)‖.

Therefore

‖Tsωε(r)‖ ≤ ‖Aε(r)−1‖‖ωε(r)‖‖Kε(r)‖+O(ε0 + ‖ω‖2)

≤ µδ0 +O(ε0 + ‖ω‖2)
≤ δ0,

for δ0 and ε0 sufficiently small.
(ii) Let ω1, ω2 ∈ Ωs(δ0, ε0). Writing again A instead of Aε(r), etc., we see that

Ts is a contraction:

‖Tsω2 − Tsω1‖ ≤ ‖(A− ω2 ·C)−1 · ((−B + ω2 ·K)− (−B + ω1 ·K))‖+
‖((A− ω2 ·C)−1 − (A− ω1 · C)−1) · (−B + ω1 ·K)‖

Vol. 48 (1997) Algorithms for computing invariant manifolds 499

≤ ‖(A− ω2 ·C)−1 · (ω2 − ω1) ·K‖+
‖(A− ω2 ·C)−1 · (ω1 − ω2) · (A− ω1 ·C)−1(−B + ω1 ·K)‖

≤ (‖A−1‖‖K‖(1 +O(δ0 + ε0)) + ‖A−1‖2O(δ0 + ε0))‖ω1 − ω2‖
≤ (µ+O(δ0 + ε0))‖ω1 − ω2‖
≤ µ‖ω1 − ω2‖,

for δ0 and ε0 sufficiently small. (To derive the second inequality we use the identity
S−1

2 − S−1
1 = S−1

2 · (S1 − S2) · S−1
1 .) Hence Ts is a contraction, whose contraction

factor does not exceed µ.
(iii) Let v ∈ Nsr(Hε), then v = ωε(r) · u⊕ u, for some u ∈ Nsr(H0). Since ω is a

fixed point of Ts it follows from (17) that Dfε(ϕε(r)) · v = ω(σε(r)) ·w⊕w, where
w = (Cε(r) · ωε(r) +Kε(r)) · u. Hence

‖Dfε(ϕε(r)) · v‖ ≤ (‖Kε(r)‖+O(‖ωε(r)‖))‖u‖
≤ (λ+O(δ0 + ε0))‖v‖
≤ λ‖v‖,

for δ0 and ε0 sufficiently small. This completes the proof of the theorem. �

To determine the tangent space of the invariant manifold Hε of fε, we similarly
introduce the space Ωc(ε0), consisting of families of linear maps ωε(r) : Tr(H0)→
Nsr(H0), depending continuously on (r, ε) ∈ H0×R. Its subspace Ωc(δ0, ε0) consists
of those ω ∈ Ωc(ε0) with ‖ω‖ ≤ δ0. The operator Tc : Ωc(ε0)→ Ωc(ε0) is defined
by the condition that Dfε(ϕε(%ε(r))) maps the graph of ωε(%ε(r) onto the graph
of ωε(r). More precisely, (

v

ω · v

)
=
(
A B
C K

)
·
(

v

ω · v

)
,

where A = Aε(%ε(r) (etc.), ω = ωε(%ε(r)) and ω = ωε(r). Elimination of v and v
yields the following expression for Tc:

(Tcω)ε(r) = (Cε(%ε(r)) +Kε(%ε(r)) · ωε(%ε(r))·
(Aε(%ε(r)) +Bε(%ε(r)) · ωε(%ε(r)))−1.

The following result is similar to theorem 9.

Theorem 10. Let λ and µ be constants such that λ < λ < 1 and µ < µ < 1.
Then, for δ0 and ε0 sufficiently small:

(i) The space Ωc(δ0, ε0) is Tc–invariant, i.e.

Tc(Ωc(δ0, ε0)) ⊂ Ωc(δ0, ε0).

500 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

(ii) The operator Tc is a contraction, whose contraction factor does not exceed
µ. Its fixed point ω defines the tangent bundle of Hε, i.e.

Tr(Hε) = {u⊕ ω(r) · u | u ∈ Tr(H0)}.

(iii) For r ∈ H0, let Aε(r)⊕Kε(r) be the expression for Dfε(ϕε(r)) with respect
to the Dfε–invariant splitting Tr(Hε)⊕Nsr(Hε) and Tσε(r)(Hε)⊕Nsσε(r)(Hε)
on domain and range. Then

‖(Aε(r))−1‖‖Kε(r)‖ ≤ µ.

In other words: Hε is a 1–normally hyperbolic invariant manifold of fε.

Proof. Arguing as in the proof of theorem 9 we can prove that Tc (i) leaves
Ωc(δ0, ε0) invariant, and (ii) is a contraction on this space, for sufficiently small
δ0 and ε0. The proof of part (iii) is again similar to the proof of theorem 9. �

Theorem 10 enables us to complete the proof of theorem 8. We have already
seen that the fixed point ϕε of the graph transform is continuous. However, with
a little more work we can even establish a similar result if we restrict the domain
of the graph transform to Lipschitz–sections; see [10] or [17] for details. This fact,
viz that ϕε is Lipschitz , together with the observation that the family of spaces
graph(ωε(r)), r ∈ H0, is Dfε–invariant, implies that graph(ωε(r)) is tangent to
Hε at ϕε(r), for all r ∈ H0. Therefore ϕε is a C1 embedding, whose image Hε is
therefore C1 as well.

3.5. Continuation

In many examples one may want to compute a continuous family of invariant
manifolds for a family fε of diffeomorphisms, where ε ranges over a parameter
interval that is not necessarily small. To apply the algorithm to such continuation
problems we increase the parameter in small steps (possibly adapting the step size
near parameter values for which the normal hyperbolicity is weak), and adjust
the invariant splitting after each increase of the parameter ε. In this setting the
algorithm has to deliver output, that serves as input to the next step in the con-
tinuation process, viz the increase of the parameter ε. The input to the algorithm,
that computes the invariant manifold, has been described at the beginning of sec-
tion 3.3. In view of the condition that the output of the algorithm has to be of
the same type as the input, we therefore require that for a certain value of ε the
algorithm computes:

• An embedding ϕε : H0 → Rd, whose image is the invariant manifold Hε of
fε. This embedding is computed by repeated application of algorithm Graph

Transform; see section 3.3.2.

Vol. 48 (1997) Algorithms for computing invariant manifolds 501

• A diffeomorphism %ε : H0 → H0, together with its inverse σε, such that
fε(ϕε(%ε(r))) = ϕε(r) (as we have seen, %ε may be considered as the restriction
of f−1

ε to Hε). In fact, repeated application of algorithm Graph Transform

not only yields the embedding ϕε, but also the map %ε; see again section 3.3.2.
• The Dfε–invariant splitting T(Hε)⊕Ns(Hε) of the tangent bundle THε(Rd). In

particular, we assume that Nsr(Hε) is represented by the vectors vsi (r, ε) ∈ Rd,
1 ≤ i ≤ s, which define an orthonormal system with respect to the Riemannian
metric on Rd. The computation of this splitting is described in section 3.4.

Hence the algorithm can be applied without further adaptations to the compu-
tation of invariant manifolds in a continuation setting. We illustrate our method
with several examples in section 7.

4. Special case II: absence of normal contraction

In this section we develop an algorithm for the computation of the invariant man-
ifold in the special case of absence of normal contraction, viz Ns(H0) = 0. Here
we drop the superscript u from our notation, by writing e.g. K0(r), κij(r), instead
of Ku

0 (r), κuij(r), etc.
Again we define the graph transform h 7→ η by requiring that f−1

ε maps a point
of the form Φ(σ, h(σ, ε)) onto a point of the form Φ(r, η). In other words: η is the
second component of the solution (σ(r, ε), η(r, ε)) of the equation

f−1
ε (Φ(σ, h(σ, ε))) = Φ(r, η). (18)

This leads to a version of the algorithm that is completely similar to that of
section 3.3, with the understanding that fε is replaced with f−1

ε .
From an algorithmic point of view the computation of f−1

ε may degrade the
performance dramatically. So we briefly describe an alternative approach, in which
the graph transform is obtained by solving the equation

F (σ, η, r, ε) = 0, (19)

where F : H0 × Ru ×H0 × R→ Rd is defined by

F (σ, η, r, ε) = f(Φ(r, η), ε)− Φ(σ, h(σ(r, ε), ε)). (20)

This equation is equivalent to (18), but releaves us from the burden of computing
f−1
ε in the evaluation of F . Note that F (σ0(r), 0, r, 0) = f0(ϕ0(r))−ϕ0(σ0(r)) = 0.

Therefore, in this case we define G : Rd ×H0 × R→ Rd by

G(Ψ(ξ, η), r, ε) = F (ξ, η, r, ε), (21)

with Ψ : H0 × Rs → Rd defined by

Ψ(ξ, η) = Φ(%0(ξ), η). (22)

502 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

Note that, since ϕ0(r) = Ψ(σ0(r), 0), we have G(ϕ0(r), r, 0) = 0.
As in lemma 4 the linear map L(r) = DyG(ϕ0(r), r, 0) has a simple expression,

that is convenient for the implementation of our algorithm if there is no normal
contraction.

Lemma 11. The linear map

L(r) : Nur (H0)⊕ Tr(H0)→ Nuσ0(r)(H0)⊕ Tσ0(r)(H0)

leaves the direct sum composition invariant, and for vc ∈ Tr(H0), vu ∈ Nur (H0)

L(r)(vu ⊕ vc) = K0(r)vu ⊕ (−A0(r)vc).

In particular, L(r) is invertible, and L(r)−1 = K0(r)−1 ⊕ (−A0(r)−1).

Proof. Taking ε = 0 in (20) we see that:

F0(ξ, η, r) = f0(Φ(r, η))− Φ(ξ, 0)
= f0(Φ(r, η))− ϕ0(ξ).

Therefore

DξF0(σ0(r), 0, r) = −Dϕ0(σ0(r)), (23)
DηF0(σ0(r), 0, r) = Df0(ϕ0(r)) ·DηΦ(r, 0). (24)

Since L(r) = DyG0(ϕ0(r), r), and F0(ξ, η, r) = G0(Ψ(ξ, η), r), we see that

DξF0(σ0(r), 0, r) = L(r) ·DξΨ(σ0(r), 0)
= L(r) ·DξΦ(r, 0) ·D%0(σ0(r))
= L(r) ·Dϕ0(r) ·D%0(σ0(r)). (25)

On the other hand we have ϕ0(r) = f0(ϕ0(%0(r))), so

Dϕ0(σ0(r)) = Df0(ϕ0(r)) ·Dϕ0(r) ·D%0(σ0(r)). (26)

Since Dϕ0(r)·D%0(σ0(r)) is an isomorphism Tσ0(r)(H0)→ Tr(H0), we derive from
(23), (25) and (26) that

L(r) | Tr(H0) = −Df0(ϕ0(r)) | Tr(H0).

Using (24) we conclude similarly

L(r) | Nur (H0) = Df0(ϕ0(r)) | Nur (H0).

Vol. 48 (1997) Algorithms for computing invariant manifolds 503

Since Df0(ϕ0(r)) | Tr(H0) = A0(r) and Df0(ϕ0(r)) | Nur (H0) = K0(r), this
completes the proof. �

Suppose that h : H0 → Ru is of the form:

h(r, ε) = ε(h1(r), · · · , hu(r)) +O(ε2). (27)

The expression for G1 in this case is (cf lemma 5):

Lemma 12. For r ∈ H0:

G1(ϕ0(r), r) = f1(ϕ0(r)) −
u∑
i=1

hi(σ0(r))vui (σ0(r)). (28)

Proof. For y ∈ Rd we have G(y, r, ε) = F (ξ, η, r, ε), where (ξ, η) = Ψ−1(y), with
Ψ as in (11), i.e.

y = Φ(%0(ξ), η).

Therefore
G(y, r, ε) = f(Φ(r, η), ε)− Φ(ξ, h(ξ, ε)),

Since G1(y, r) =
∂G

∂ε
(y, r, 0), we see that

G1(y, r) = f1(Φ(r, η)) −
u∑
i=1

hi(ξ)vui (ξ).

Since ϕ0(r) = Ψ(σ0(r), 0), we see that

G1(ϕ0(r), r) = f1(ϕ0(r)) −
u∑
i=1

hi(σ0(r))vui (σ0(r)).

�

As in section 3, corollary 6, the fixed point y of N is of the form y(r, ε) =
ϕ0(r) + εy1(r) +O(ε2), with

y1(r) = − L(r)−1 ·G1(φ0(r), r)

=
u∑

i,j=1

hi(σ0(r))(K0(r))−1
ij vj(σ0(r)) −K0(r)−1V u(σ0(r))+

A0(r)−1V c(σ0(r)).

Therefore we have a good starting point for the Newton operator. Note that this
version of the algorithm does not need to compute f−1

ε , which in practical cases
may turn out to be a very convenient feature.

504 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

5. The general case

There are several ways to extend algorithm Graph Transform to compute the
invariant manifold Hε of fε in the case where both normal expansion and normal
contraction are present. One straightforward method is presented in section 5.1.
To the best of our knowledge this is the first algorithm that computes invariant
manifolds for which the normal dynamics exhibits both contraction and expansion.

A second algorithm first computes Ws(Hε) and Wu(Hε), the stable and unsta-
ble manifolds of Hε, see section 2.1, and determines Hε as the intersection of these
manifolds. We describe this version in section 5.2. A drawback is the need for a
separate algorithm to compute the intersection of submanifolds.

5.1. Computing Hε

Combining the algorithms of section 3 and section 4 yields a hybrid method for
the computation of Hε. As before Hε is of the form

Hε = {Φ(r, h
s

ε(r), h
u

ε (r)) | r ∈ H0},
where h

s
: H0×R→ Rs and h

u
: H0×R→ Ru are C1 functions. (Again we adopt

the notation introduced in section 2.2.) The pair (h
s
, h
u
) is the fixed point of the

graph transform Γf , defined on the space of pairs (hs, hu) (as before endowed with
a suitable norm that turns it into a complete metric space). The graph transform
is of the form

Γf (hs, hu) = (Γsf (hs, hu),Γuf (hs, hu)).

The operator Γsf , called the forward graph transform, is similar to the operator
defined in section 3, whereas Γuf , called the backward graph transform, is similar
to the operator defined in section 4.

More precisely, for a section h = (hs, hu) : H0 × R → Rs × Ru, there is a
section η = (ηs, ηu) : H0 × R → Rs × Ru, such that fε(graph(hε)) = graph(ηε).
The forward graph transform is defined by

Γsf (h) = ηs. (29)

Similarly, there is a section ξ = (ξs, ξu) : H0 × R → Rs × Ru, such that
f−1
ε (graph(hε)) = graph(ξε). The backward graph transform is then defined by

Γuf (h) = ξu. (30)

Again Γf is a contraction, whose fixed point defines the invariant manifold Hε.
The geometric conditions (29) and (30) are both equivalent to equations of the

form F (τ, ys, yu, ε) = 0, where F : H0 × Rs × Ru × R→ Rd is a C1 map, defined
as in section 3, equation (4) and section 4, equation (19), respectively. Again
Newton’s method can be used to solve these equations. Although more involved,
the details of the implementation are similar to those of the ‘pure’ versions of
Newton’s method. We omit these details, but refer to section 7.2 for an illustration
of the performance of this approach.

Vol. 48 (1997) Algorithms for computing invariant manifolds 505

5.2. Computing Ws(Hε) and Wu(Hε)

We construct the stable manifoldWs(Hε) as the graph of a function yε : H0×Rs →
Ru (Actually, the domain of yε is a neighborhood of H0 × {0} in H0 × Rs). This
graph is defined by

graph(yε) = {Φ(r, x, yε(r, x)) | (r, x) ∈ H0 × Rs}.

The graph transform Γfε is defined by the following geometric condition:

f−1
ε (graph(yε)) = graph(Γfε(yε)). (31)

Apart from technical details, we are now in the context of section 3.1. Therefore, it
is possible to translate condition (31) into an equation of the form (8). Solving this
equation using algorithm Newton yields again a straighforward implementation
of the graph transform, whose fixed point defines the invariant manifold Ws(Hε).
Since the unstable manifold of Hε is the stable manifold with respect to f−1

ε , it
can be computed similarly.

This approach yields an other method for the computation of Hε. Let us
assume that the stable manifold Ws(Hε) has been computed as the graph of a
map yε : H0 × Rs → Ru. The manifold Hε ⊂Ws(Hε) can then be determined as
the graph of a map hε : H0 → Rs, i.e. as a set of the form

graph(hε) = {Φ(r, hε(r), yε(r, hε(r))) | r ∈ H0}.

In fact, restricting to the stable manifold Ws(Hε) brings us back to the special
case of absence of normal expansion. The map yε establishes a diffeomorphism
between H0×Rs and Ws(Hε). Proceeding as in section 3, we introduce the graph
transform Γfε on the space of families of maps (sections) H0 → Rs. More precisely,
for a section hε : H0 → Rs the section hε = Γfε(hε) is defined by the condition

graph(hε) = fε(graph(hε)).

The section hε is well–defined, since graph(yε) is fε–invariant. The Dfε–invariant
splitting of THε(Rd) can be computed as in the case of absence of normal expansion.

5.3. Continuation: the computation of Nu(Hε)⊕ T(Hε)⊕ Ns(Hε)

As explained in section 3.5, the algorithm can be applied in a continuation context,
provided there is a subroutine that computes the Dfε–invariant splitting Nu(Hε)⊕
T(Hε)⊕Ns(Hε) of the tangent bundle THε(Rd). Such a subroutine can be obtained
by applying some minor changes to the method of section 3.4.

To see this, consider the space Ωs(ε0), where an element ω ∈ Ωs(ε0) maps a
pair (r, ε) ∈ H0 × [−ε0, ε0] continuously onto a linear map ω(r, ε) : Nsr(H0) →

506 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

Nur (H0)⊕ Tr(H0). The stable normal bundle is obtained by iterating an operator
Ts : Ωs(ε0)→ Ωs(ε0), defined by the requirement that, for ω = Ts(ω),

graph(ωε(r)) = Dfε(ϕε(r))−1graph(ωε(σε(r))).

See also (16). As in section 3.4 one proves that Ts is a contraction, whose fixed
point ωs defines Ns(Hε) by

Nsr(Hε) = {ωε(r) · u⊕ u | u ∈ Nsr(H0)}.

The unstable bundle Nu(Hε) is obtained from the fixed point of a similarly
defined contraction Tu, defined on the space of linear maps

ω(r, ε) : Nur (H0)→ Tr(H0)⊕ Nsr(H0),

that depend continuously on (r, ε) ∈ H0 × R.
The tangent bundle T(Hε) is computed in two steps. First, we compute the

space Nur (Hε) ⊕ Tr(Hε) from the fixed point of an operator Tcu : Ωcu(ε0) →
Ωcu(ε0), that is similar to the operator Tc, introduced in section 3.4. Here Ωcu(ε0)
consists of families of linear maps ω(r, ε) : Nur (Hε)⊕Tr(Hε)→ Nsr(Hε), depending
continuously on (r, ε). Then ω = Tcu(ω) is defined by

graph(ωε(r)) = Dfε(ϕε(%(r)))graph(ωε(%(r))).

The space Tr(H0) ⊕ Nsr(H0) is computed similarly. Finally, the tangent space
Tr(Hε) is determined by intersecting the spaces Nur (Hε) ⊕ Tr(Hε) and Tr(H0) ⊕
Nsr(H0).

6. The discretized graph transform

6.1. The discretization problem

In implementations of the graph transform infinite dimensional objects need to be
approximated by finite dimensional spaces, that have a finite representation. We
sketch a feasible approximation scheme for manifolds and function spaces, thereby
obtaining a discretized version of the graph transform. An important parameter
of any approximation scheme is the discretization error . We derive a bound for
the discretization error in terms of a geometric parameter of the approximation
scheme. Numerical experiments corroborate this bound. First, however, we sketch
the approximation scheme and state the main result concerning the discretization
error. Related papers dealing with computational issues are e.g. [5, 6]. For a more
complete survey, see [14].

Vol. 48 (1997) Algorithms for computing invariant manifolds 507

G

G
C H0

0(,)
s

R

L(,)
s

K RK R L(,)
s

K RK R

C H0
0(,)

s
R

I P

Figure 3.
The discretized Graph Transform Γ.

The manifold H0 is approximated by a finite simplicial complex K, embedded
in Rd. E.g. if H0 is two-dimensional, such a complex is a polyhedral surface
with affine triangles, whose vertices are points on H0. The discretization error is
expressed in terms of the mesh width m(K), viz the maximal diameter of any of
the simplices of K.

In our continuation scheme we increase the parameter ε by small steps. At
this moment we fix the value of ε, suppressing ε from the notation (e.g. by writing
Γ instead of Γfε , by considering sections as maps H0 → Rs instead of H0 ×
[−ε0, ε0]→ Rs).

The domain of both the graph transform and the Newton operator are spaces
of functions H0 → Rk, with k = s and k = d, respectively. These function spaces
are approximated by the space L(K,Rk) of simplexwise linear functions. We shall
describe how to construct this finite dimensional function space, together with a
projection-like approximation map P : C0(H0,Rk)→ L(K,Rk), and an inclusion-
like map I : L(K,Rk) → C0(H0,Rk), a right inverse of P . The discretized graph
transform is the operator Γ on the space L(K,Rs), with Γ ≈ P · Γ · I. See also
Figure 3. The definition of the graph transform implies that Γ can be extended as
an operator on C0(H0,Rs). The implementation establishes a discretized graph
transform Γ, such that the diagram in Figure 3 commutes up to O(m(K)2); see
section 6.4. More precisely, we construct an operator Γ on the space L(K,Rs) such
that

‖ΓPh−PΓh‖C0 = O(m(K)2). (32)

For (32) to hold we need to assume that f0 and H0 are C3. In particular we
assume that H0 is a 3-normally hyperbolic invariant manifold of f0. In particular
we shall use that under these conditions the subspace C2

b (H0,Rs) of C2-sections
with bounded second derivatives is invariant under Γ.

The operator Γ is not guaranteed to be a contraction, so a priori it seems hard
to speak of convergence of iteration under this operator. Fortunately, condition
(32) turns out to be sufficient for obtaining a good estimate for the accuracy of
this iteration process.

508 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

To see this, consider the ideal sequence hn, defined by hn := Γnh0, with h0
some well chosen initial value, cf section 3, remark 7. This sequence converges to
the fixed point h∞ of the graph transform, which defines the invariant manifold
we set out to compute. The computed sequence hn is defined by

hn =
{ Ph0, if n = 0,

Γhn−1, if n > 0.

The next result gives information on when to stop iterating under Γ.

Theorem 13 (Discretization Error). Let f0 be C3, and let H0 be a 3-normally
hyperbolic invariant manifold of f0. Let hn and hn be as above. Then
Termination: There is an N ≥ 0 such that, for n ≥ N :

‖hn+1 − hn‖C0 = O(m(K)2). (33)

Approximation: If (33) holds, then

‖Ihn − h∞‖C0 = O(m(K)2). (34)

As usual in numerical contexts, the constants implicit in (33) and (34) are not
known in general. However, numerical experiments may give a clue on the size of
the constants.

The termination clause of the theorem states that we may terminate the com-
putation as soon as the distance between successive iterates under the implemented
graph transform is of the order of the square of the mesh-width. The approxima-
tion clause guarantees that, upon termination, also the accuracy of the output is
of the order of the square of the mesh-width.

In the remainder of this section we first describe the simplicial approximation
scheme, subsequently prove theorem 13, and finally discuss the implementation of
discretized versions of the Newton operator and the graph transform.

6.2. Simplicial approximation

First we describe how to approximate the invariant manifold H0. To this end
we shall use a finite simplicial complex, whose vertices are points of H0. See e.g.
[13] for a full account on simplicial complexes, and [8] for the use of simplicial
complexes in approximation problems where non-structured grids are used.

Recall that a geometric c-simplex in Rd, 0 ≤ c ≤ d, is the convex hull of
c + 1 points p0, p1, · · · , pc in Rd, that are in general position (i.e. they span a c-
dimensional affine subspace of Rd). This c-simplex is denoted by ∆(p0, p1, · · · , pc).
The points pi are called vertices of the simplex. The convex hull of any j + 1 of

Vol. 48 (1997) Algorithms for computing invariant manifolds 509

the vertices is called a j-face of the simplex. Note that a c-simplex has exactly
one c-face. Furthermore, the set of 0-faces coincides with the set of vertices.

By definition, every point p ∈ ∆(p0, p1, · · · , pc) can be written uniquely as
p =

∑c
i=0 αi(p)pi, with

∑c
i=0 αi(p) = 1. The scalars αi(p), i = 0, · · · , c, are called

the barycentric coordinates of p (with respect to the simplex ∆(p0, p1, · · · , pc)).
Note that all barycentric coordinates of p are non-negative.

In this section we define a (geometric) simplicial complex in Rd as a finite
collection K of geometric simplices in Rd, satisfying the following conditions:

1. If ∆j is a simplex of K, and ∆h is a h-face of ∆j , then ∆h is a simplex in
K;

2. If ∆ and ∆′ are simplices in K, then their intersection ∆ ∩ ∆′ is either
empty, or a common face of ∆ and ∆′.

The union of all simplices is denoted by K, and the set of all vertices is denoted
by K0. We turn K into a metric space, using the metric induced from Rd. The
metric space K is called the underlying space of K. The mesh-width of K, denoted
by m(K), is the maximum of the diameters of its simplices.

We say that the simplicial complex K supports the invariant manifold H0 if
all its vertices are points of H0 (i.e. K0 ⊂ H0), and the underlying space K is a
topological manifold homeomorphic to H0. It is well known that every compact
submanifold of Rd has a supporting simplicial complex, see e.g. [4]. In fact, the
Hausdorff distance between H0 and the underlying space of a simplicial complex
K supporting it can be made arbitrarily small by taking the mesh-width of K
sufficiently small.

The latter property makes simplicial complexes attractive from the compu-
tational point of view, since they are finite, and yet approximate the invariant
manifold arbitrarily well (with respect to the Hausdorff-metric).

Recall that the projection πc maps a point p in a neighborhood of H0 onto the
manifold H0, by projecting Φ−1(p) ∈ H0×Rs onto H0. Assuming that the mesh-
width of the supporting simplicial complex K is sufficiently small, the restriction
of πc to K is a homeomorphism, that is even smooth restricted to simplices of
K. With this assumption, the canonical map πc

∗ : C0(H0,Rk) → C0(K,Rk),
defined by πc

∗(y) = y · (πc | K), is an isometry with respect to the sup-norms
on its domain and range. The existence of this isometry enables us to identify
continuous functions on H0 with continuous functions on K.

Let L(K,Rk) be the space of simplexwise linear functions, and let I : L(K,Rk)→
C0(K,Rk) be the inclusion map. We shall use k = s and k = d in the algorithms.
The latter map has a left-inverse P , defined as follows. Consider a point p ∈ K,
and let ∆(p0, . . . , pc) be a simplex of K containing p. Then:

(Py)(p) =
c∑
i=0

αi(p)pi. (35)

Obviously P is a projection operator (P 2 = P). Furthermore, the approximation
operator used in the implementation of the discretized graph transform is the

510 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

operator P : C0(H0,Rk)→ L(K,Rk), defined as the composite map P ·πc∗. Since
πc
∗ is an isometry, we see that the operator P has the following crucial property:

‖Py2 −Py1‖C0 ≤ ‖y2 − y1‖C0 , (36)

for all y1, y2 ∈ C0(H0,Rd).
The right inverse I : L(K,Rk) → C0(H0,Rk) of P is the map (πc−1)∗ · I.

Again, using the fact that πc∗ is an isometry, we see that

‖Iu2 − Iu1‖C0 ≤ ‖u2 − u1‖C0 , (37)

for all u1, u2 ∈ L(K,Rk).
The following result indicates that I is a left-inverse of P up to a quadratic

term in the mesh-width, provided we restrict the domain of P to a suitable subset
of C0(H0,Rk). Let C2

b (H0,Rk) be the space of C2-maps whose second derivative
is uniformly bounded (with respect to the Riemannian metric on H0 and the
Euclidean metric on Rk).

Lemma 14. For y ∈ C2
b (H0,Rk):

‖y − IPy‖C0 = O(m(K)2). (38)

Proof. Use the fact that πc∗ is an isometry to restrict to C2-functions defined on
simplices of K. The result then follows directly from [18], theorem 3.1.

The preceding result provides us with an upper bound on the discretization
error we make when approximating a function by its P-image. From condition
(38) we derive:

Lemma 15. For u ∈ L(K,Rk) and y ∈ C2
b (H0,Rk):

‖y − Iu‖C0 ≤ ‖Py − u‖C0 +O(m(K)2). (39)

Proof. Apply (37) and (38), using

‖y − Iu‖C0 ≤ ‖y − IPy‖C0 + ‖IPy − Iu‖C0 .

�

Vol. 48 (1997) Algorithms for computing invariant manifolds 511

6.3. Proof of Theorem 13

For the purpose of the proof we introduce constants C1, C2 > 0 such that, for
h ∈ C0(K,Rs) and h ∈ L(K,Rs):

‖ΓPh−PΓh‖C0 ≤ C1m(K)2,

‖h− Ih‖C0 ≤ ‖Ph− h‖C0 + C2m(K)2;

see (32) and (39).

Lemma 16. Under the conditions of theorem 13 there is a constant C > 0 such
that

‖hn −Phn‖C0 ≤ Cm(K)2. (40)

Proof. We shall prove inductively that (40) holds, provided we take the constant
C such that

C ≥ C1 + cΓC2
1− cΓ

. (41)

Here cΓ is the contraction factor of the graph transform.
First observe that (40) holds for n = 0, since h0 = Ph0. Assume that (40)

holds for n, then:

‖hn+1 −Phn+1‖C0 = ‖Γhn −PΓhn‖C0

= ‖ΓPIhn −PΓhn‖C0

≤ ‖ΓPIhn −PΓIhn‖C0 + ‖PΓIhn −PΓhn‖C0

≤ C1m(K)2 + cΓ‖Ihn − hn‖C0

≤ C1m(K)2 + cΓ(C2m(K)2 + ‖hn −Phn‖C0)

≤ (C1 + cΓ(C2 + C))m(K)2

≤ Cm(K)2,

provided C1 + cΓ(C2 + C) ≤ C. The latter condition is satisfied if we take C as
indicated in (41). This completes the proof of the lemma. �

Proof of Theorem 13.
Termination: This is an immediate consequence of lemma 16, using

‖hm+1 − hm‖C0 ≤ ‖hm+1 −Phm+1‖C0 + ‖hm −Phm‖C0+
‖hm+1 − hm‖C0 .

Note that ‖hm+1 − hm‖C0 is arbitrarily small for n sufficiently large.

512 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

Approximation:

‖Ihm − h∞‖C0 ≤ ‖Ihm − hm‖C0 + ‖hm − h∞‖C0

≤ C2m(K)2 + ‖Pum − hm‖C0 + ‖hm − h∞‖C0

≤ (C2 + C)m(K)2 + ‖hm − h∞‖C0 .

Here C is as in lemma 16. Furthermore:

‖hm − h∞‖C0 ≤
∞∑
i=m
‖hi − hi+1‖C0

≤
∞∑
i=m

ciΓ‖hm − hm+1‖C0

≤ 1
1− cΓ

‖hm − hm+1‖C0 .

Finally:

‖hm − hm+1‖C0 ≤ ‖hm+1 − Ihm+1‖C0 + ‖Ihm+1 − Ihm‖C0 + ‖Ihm − hm+1‖C0

≤ C2m(K)2 + ‖Phm+1 − hm+1‖C0 + ‖hm+1 − hm‖C0

+ C2m(K)2 + ‖Phm − hm‖C0

≤ 2(C2 + C)m(K)2 + ‖hm+1 − hm‖C0

≤ (2C2 + 3C)m(K)2.

Combining the above estimates we get

‖Ihm − h∞‖C0 ≤
(
C2 + C +

2C2 + 3C
1− cΓ

)
m(K)2.

�

6.4. Implementation of the discretized graph transform

To complete the discussion on the discretization problem we only have to describe
the construction of the discretized version Γ of the graph transform, satisfying (32).

As the pseudo-code of the algorithm Graph Transform of section 3 reveals,
application of the graph transform boils down to iterating the Newton operator.
Observe that theorem 13 gives the termination condition for the iterative appli-
cation of Γ. A similar result settles the termination condition for iteration under
the Newton operator in algorithm Graph Transform. So we focus on the con-
struction of the discretized version N of the Newton operator, satisfying

‖NPy −PNy‖C0 = O(m(K)2), (42)

Vol. 48 (1997) Algorithms for computing invariant manifolds 513

for C2-functions y : K → Rd with bounded second derivatives, cf. the conditions
of theorem 13.

We now indicate how to construct a discretized version of the map Φ : H0 ×
Rs → Rd, that identifies a neighborhood of H0 × {0} with a neighborhood of
H0 in Rd; see section 2. To this end we first introduce discretized versions of
the affine spaces Nsx(H0) of Rd. More specifically, consider x ∈ K, and assume x
belongs to the simplex ∆(p0, . . . , pc). Then Nsx(K) is the space spanned by the
basis u1(x), . . . , us(x), defined by

ui(x) =
c∑

j=0

αj(x)ui(πc(pj)),

for i = 1, . . . , s. Observe that ui(x) = ui(πc(x)) in case x is a vertex of K. Then
Φ : K× Rs → Rd is defined by

Φ(x, η) =
s∑
i=1

ηiui(x).

Note that ui = Pui. In view of the conditions stated in theorem 13, the functions
ui are C2, and have bounded second derivatives (since H0 is compact). Therefore,
lemma 14 allows us to conclude

‖Φ(x, η) − Φ(πc(x), η)‖ = O(m(K)2). (43)

From this we easily construct the discretized versions πc and πs of the projections
πc and πs. More precisely, for y ∈ Rd:

y = Φ(x, η) iff x = πc(y) and η = πs(y).

The constructions of the discretized versions of the remaining objects in algorithm
Discretized Newton below are straightforward. Condition (43) guarantees that
the discretized Newton operator N satisfies (42). For completeness we give the
complete pseudo-code for the implementation of N .
Algorithm Discretized Newton

Input : y ∈ L(K,Rd), y = y for y near y0 as above.
Output : Ny ∈ L(K,Rd) satisfying (42).
forall r ∈ K0 do
1 x← πc(y(r))

Comment: x ∈ K and y(r) − x ∈ Nsx(K)
2 η ← ιx(y(r) − x)

Comment: y(r) = Φ(x, η)
3 Y ← F (%o(x), η, r)

Comment: Y = G(y(r), r)
4 Y c ← Π

c

r(Y)
Y s ← Π

s

r(Y)
5 Ny(r)← y(r) − Y c + Y s

514 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

Remark 17. The use of the space of simplexwise linear functions L(K,Rk) al-
lows us to compute with accuracy O(m(K)2. Higher accuracy can be obtained
by using non-linear splines, provided we assume sufficient regularity and normal
hyperbolicity. The feasibility of such approximations is subject of future research.

7. Numerical examples

Finally we show the performance of our algorithm in some applications, all of
which fall in the continuation context described in section 3.5. For continuation
techniques in a different context: See e.g. [9, 7].

It turns out that in all examples the invariant manifolds are normally hyperbolic
with respect to the Riemannian metric that coincides with the standard euclidean
metric of the ambient space. Obviously, one cannot assume this to be true in
general. More examples are contained in [2, 14].

7.1. The fattened Thom map

First we illustrate the algorithm in the simple case of absence of normal expansion,
cf section 3. To this end consider the diffeomorphism fε, defined on (R/2πZ)2×R
by fε(x, y, z) = (2x + y + εz, x + y + εz, az + ε sinx). (We may consider fε as a
diffeomorphism defined on R3 that is periodic in the first two coordinates.)

We fix the constant a > 0, such that the system f0 has a normally hyperbolic
invariant torus H0 := (R/2πZ)2 × {0} (more specifically, we take a = 0.1; normal
hyperbolictiy can be checked by computing of the eigenvalues of Dfε at (0, 0, 0) ∈
Hε.) This invariant torus may be considered as the image of H0 = (R/2πZ)2

under the canonical embedding ϕ0(x, y) = (x, y, 0). Note that the restriction of
f0 to this torus is the Thom automorphism (x, y) 7→ (2x+ y, x+ y). The tangent
plane of H0 at (x, y, 0) is defined by z = 0, the space Ns(x,y,0)(H0) is spanned by
the unit vector in the z–direction.

In figure 4 (left: top and bottom) the initial data, viz H0 and the splitting
T(H0)⊕Ns(H0), is shown. The normally hyperbolic torus H0 is represented by a
square mesh of 50× 50 equidistant points.

Numerically we detect that for ε ≈ 0.4699 the normal behavior of fε ceases to
dominate the tangential behavior, viz µs ≈ 1, cf section 2.1.

Consequently, we can expect that the continuation cannot go past ε = 0.4699.
Our algorithm computes a family Hε of invariant tori, for ε ranging from 0 to
0.4698, with an estimated accuracy of order 10−4. The initial increment of the
continuation parameter ε is set to 0.02, but is adjusted (viz made smaller) as
the normal hyperbolicity gets weaker. The square mesh, representing Hε, is fixed
during the computations. Figure 4 (right: top and bottom) shows the last invariant
torus we were able to compute. For this value of ε the contraction factor of one of

Vol. 48 (1997) Algorithms for computing invariant manifolds 515

Figure 4.
The continuation of the Thom map in R

3: a = 0.1; ε runs from 0 to 0.4698.
Top: The torus for ε = 0 (left) and ε = 0.4698 (right) embedded in R

3.
Bottom: The data with the normal directions drawn at some of the mesh points for ε = 0 (left)
and ε = 0.4698 (right).

the operators Γfε , see section 3.1, Tc, or Ts; see section 3.4, is close to 1. In other
words, the torus Hε is about to lose its 1–normal hyperbolicity.

Numerical Analysis

The performance of the algorithm is controled by the value of certain constants;
see table 1 for a list of constants in the current example. The algorithm estimates
the contraction factor of the operators involved in the computation of the invariant
manifold Hε and the invariant splitting Ns(Hε)⊕T(Hε) of its tangent bundle. We
allow the process to settle down in 6 iteration steps before we start measuring the

516 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

contraction factor. With a maximal value of 0.98 for this estimated contraction
factor, we can reach ε = 0.4698 for which, however, it takes already 515 iterations
to compute the normal direction Ns(Hε).
Table 1.
Constants controling the performance of the algorithm (Thom map).

Accuracy: 10−4

Accuracy Newton: 10−6

Maximal contraction factor: 0.98
Initial continuation step: 0.02
Minimal continuation step: 10−4

Minimal number of iterations: 6

The numerical performance of the continuation process is shown in Table 2. We
indicate the number of steps needed for the Newton method, and the estimated
contraction factors of the graph transform Γfε , computing Hε, and the invariant
splitting. The contraction factor of the operator Tc, computing the tangent direc-
tion T(Hε), turns out to be equal to the contraction factor of Ts, that computes
the normal direction Ns(Hε).
Table 2.
The continuation process for a = 0.1; the continuation parameter ε runs from 0 to 0.4698. The
table shows the relation between ε, the number of iterations N in the Newton method and
the contraction factors for the computation of the torus Hε and its invariant splitting T(Hε) +
N
s(H ε).

ε N Γfε Tc/Ts ε N Γfε Tc/Ts
0.02 3 0.100 0.26 0.4675 16 0.071 0.87
0.06 3 0.099 0.27 0.4688 16 0.069 0.91
0.14 4 0.094 0.28 0.4694 16 0.069 0.94
0.3 6 0.089 0.36 0.4697 16 0.068 0.96
0.46 15 0.084 0.76 0.4698 16 0.068 0.98
0.465 16 0.079 0.82

The convergence itself is visualized in figure 5. Near the fixed point, the con-
traction behaves like its linear part at the fixed point. Therefore we expect each of
our plots to approach a horizontal line, whose vertical coordinate is the contraction
factor. This is corroborated by the numerical results depicted in figure 5.

7.2. The fattened Arnol′d family

We now apply the general version of the algorithm, sketched in section 5. Consider
the fattened Arnol ′d family of diffeomorphisms on (R/2πZ)× R2:

fε

x
y
z

 =

x+ a+ ε(y + z/2 + sinx)
b(y + sinx)

c(y + z + sinx)

 , (44)

Vol. 48 (1997) Algorithms for computing invariant manifolds 517

0
5

0
50

50

100

100

150

150

200

200 250 300 350 400 450 500

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

0

0.2

0.4

0.6

0.8

1

Figure 5.
The convergence process of the Thom map in R

3: a = 0.1; ε is increasing from bottom to top.
The pictures show the number of iterations versus the estimated contraction factor.
Top down the convergence processes for the computations of Hε , T(Hε) and N

s(Hε) are shown
respectively.

where x ∈ R/2πZ. See also Broer, Simó and Tatjer [3] for a similar diffeomorphism
on S1 × R. The constant a is defined modulo 2π, and the system f0 has an
invariant circle H0, on which the dynamics is (conjugate to) the rigid rotation
σ0(x) = x + a. Furthermore, for 0 < b < 1 and c > 1, the invariant circle H0 is
1–normally hyperbolic with one–dimensional stable and unstable directions. (In

518 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

z

y y

x x

4

3

2

1

0.5 0.5

0

0 0

–1

–0.5 –0.5

–2

–3

–4

z

4

3

2

1

0

–1

–2

–3

–4

p p

2p 2p

Figure 6.
The invariant circle of the fattened Arnol′d family; a = 0.1, b = 0.3 and c = 2.4. Left the initial
data for ε = 0 and right the circle for ε = 0.7125. The normal directions are drawn for 50 mesh
points (left) and 51 mesh points (right).

our example we take a = 0.1, b = 0.3 and c = 2.4.) Consequently, the system has
a 1–normally hyperbolic invariant circle Hε, for small ε. The dynamics of fε | Hε
is either periodic or quasi–periodic, the periodic behavior being characterized by
the existence of so–called Arnol′d tongues, cf [1].

It is easy to represent the embedding ϕ0 by determining an explicit parametriza-
tion of the invariant circle H0. Furthermore, the Df0–invariant splitting Ns(H0)⊕
T(H0)⊕Nu(H0) can also be determined explicitly; see figure 6 (left). The invariant
circle H0 is represented by a mesh of 50 points.

Two saddles appear on the invariant circle in a saddle–node bifurcation for ε =
0.49. Computation of the eigenvalues at these saddles reveals that for ε ≈ 0.7761
the normal behavior of fε ceases to dominate the tangential behavior. So ε cannot
increase beyond 0.7761 during the continuation process. In fact, the algorithm
computes a family Hε of invariant circles, for ε ranging from 0 to 0.7125, with
an estimated accuracy of order 10−4. The initial increment of the continuation
parameter ε is set to 0.2, and is adjusted (viz made smaller) as the normal hy-
perbolicity gets weaker. A picture of the invariant circle for ε = 0.7125 is shown
in figure 6 (right). Notice the change in the normal directions near the inflection
point, compared to the initial circle (left).

Numerical Analysis

For this numerical experiment we implemented the algorithm presented in sec-
tion 5.1. The initial continuation step size was set to 0.2, the other constants
controling the numerical performance were taken as in table 1.

Recall from section 5.1 that the graph transform Γfε is composed of the forward

Vol. 48 (1997) Algorithms for computing invariant manifolds 519

0

0.2 0.2

0.2

0.4 0.4

0.4

0.6 0.6

0.6

0.8 0.8

0.8

1

0

0.2

0.4

0.6

0.8

1

1

1

10

5 5

55

10 10 15 20

10 15 20 25 30 35 40 45 50

Figure 7.
The convergence process of the Arnol′d map: a = 0.1, b = 0.3 and c = 2.4. The pictures show
the number of iterations versus the estimated contraction factor.
Top left shows two typical steps in the computation of Hε . Top right, bottom left and bottom
right show the continuation processes for T(Hε), Ns(H ε) and Nu(Hε), respectively.

graph transform Γsfε and the backward graph transform Γufε . Table 3 summarizes
the numerical behavior of these operators. Here Ns and Nu are the number of
iterations of the Newton operator associated with these operators. (The mesh did
not change significantly; only one point was added for the last two continuation
steps.)

Part of the iteration process is visualized in Figure 7 (top left).
We note in passing that, in case the inverse map f−1

ε is known explicitly, the
backward graph transform Γufε can be replaced with the forward graph transform
Γs
f−1
ε

. We repeated the experiment with this version of the algorithm, and observed
that the Newton method in both the forward and the backward graph transform
needs only 5 to 7 steps. Probably for this reason, the continuation could go as far
as ε = 0.7406.

520 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

y

x

1

1

2

2

3

–1

–1

–2

–2

y

x

1

1

2

2

3

–1

–1

–2

–2

Figure 8.
The invariant circle of the forced Van der Pol oscillator: a = 0.4, ω = 0.9; ε runs from 0 to
0.3609. The initial circle (left) and the last circle (right).

The forced Van der Pol oscillator

Finally, we show how to apply the algorithm to compute the invariant manifold of
the Poincaré first–return map of a continuous system.

To this end consider the forced Van der Pol oscillator Xε, a continuous system
on the generalized phase space R2 × R/2πZ:

ẋ = y

ẏ = −x− a(x2 − 1)y + ε cos t
ṫ = ω.

(45)

Here a and ω are constants, with a > 0 and 0 < ω < 2π, and ε is the continuation
parameter. We naturally get a diffeomorphism on the x, y–plane by considering
the Poincaré map Pε, the stroboscopic map of the 2π–periodic forcing term ε cos t.
For ε = 0 there is no forcing, so the the system decouples to the autonomous
two–dimensional system, called the free Van der Pol oscillator:{

ẋ = y

ẏ = −x− a(x2 − 1)y.
(46)

This planar autonomous system has a closed orbit, which is attracting for a < 2,
see [11]. (In this example we take a = 0.4 and ω = 0.9.) The closed orbit
corresponds to an invariant circle of P0, that is normally hyperbolic.

Vol. 48 (1997) Algorithms for computing invariant manifolds 521

Figure 9.
The invariant torus of the forced Van der Pol oscillator; a = 0.4, ω = 0.9 and ε = 0.3609. We
identified t = 0 with t = 2π and embedded the torus in R3.

Considered in the phase space R2 × R/2πZ of (45), this closed orbit yields an
attracting invariant 2–torus. Due to normal hyperbolicity, the circle and, hence,
the torus, is persistent for small values of ε.

The invariant circle H0 of P0 is a globally attracting limit cycle, and can there-
fore be computed by forward iteration of the planar system (46). A mesh of 50
points represents H0. The invariant splitting TH0(R2) = T(H0)⊕Ns(H0) is found
by computing the eigenvectors of DφT (r), for r ∈ H0, where φT is the time T–map
of the autonomous system (46), and T is the period of the limit cycle. The initial
data is shown in figure 8 (left).

Numerical computations show that for ε ≈ 0.3634 a saddle on the circle and a
source inside it dissapear due to a normal saddle–node bifurcation, destroying the
normally hyperbolic invariant circle. (The saddle is born earlier in the continuation
process, due to a saddle–node bifurcation on the circle.) Hence, we expect the
continuation process to break down for ε ≈ 0.3634.

The algorithm computes the family Hε of invariant circles for ε ranging from
0 to 0.3609, with an estimated accuracy of 10−4. Figure 8 (right) shows the last
invariant circle we were able to compute. The algorithm refines the mesh and
decreases the step size of the continuation parameter as the normal hyperbolicity
gets weaker. Due to the automatic refinement of the mesh the final circle consists
of 61 points. Figure 9 shows the result of saturating the final invariant circle,
by computing the Xε–orbit of every mesh point. Representing each orbit by 50
points, corresponding to fixed length time intervals, we obtain 50 circles as an ap-
proximation of the Xε–invariant torus in the generalized phase space R2×R/2πZ.

522 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

0

0.1

0.22

0.33

0.3609
–2

–2

–1

–1

0

0

1

1

2

2

y

x
®e

Figure 10.
A branch of invariant circles for the Poincaré map of the forced Van der Pol oscillator: a = 0.4
and ω = 0.9; ε ranges from 0 to 0.3609. The circles are drawn as a function of ε.

Table 3.
The continuation process for a = 0.1, b = 0.3 and c = 2.4; the continuation parameter ε runs
from 0 to 0.7125.
The table shows the relation between ε and the numerical behavior of the forward and backward
graph transforms involved in the computation of Hε . Ns and Nu are the numbers of iterations
needed for Newton’s method.

ε Ns Γsfε Nu Γufε ε Ns Γsfε Nu Γufε
0.2 5 0.41 9 0.44 0.675 5 0.31 9 0.42
0.4 5 0.41 7 0.44 0.6875 5 0.31 10 0.43
0.5 5 0.36 7 0.41 0.7 5 0.31 12 0.48
0.6 5 0.36 8 0.39 0.7063 5 0.34 19 0.50
0.65 5 0.33 9 0.39 0.7125 5 0.35 36 0.53

Numerical Analysis

The constants controling the performance of the algorithm are taken as in table 7.1.
In Figure 10 the continuation steps are shown.

Figure 11 reflects the performance of the algorithm for certain values of the
continuation parameter. Again we separately depict the numerical results for each
of the operators Γfε , Tc and Ts. The Newton method that is integrated in the

Vol. 48 (1997) Algorithms for computing invariant manifolds 523

5 10 15 20

1

0.8

0.6

0.4

0.2

0

5 10

1

0.8

0.6

0.4

0.2

0

5 10

1

0.8

0.6

0.4

0.2

0

Figure 11.
Part of the convergence process of the Van der Pol oscillator: a = 0.4 and ω = 0.9; ε = 0.1,
0.22, 0.33, 0.35, 0.36 and 0.3609 from bottom to top. The pictures show the number of iterations
versus the estimated contraction factor.
Top down the convergence processes for the computation of Hε , T(Hε) and N

s(Hε) are shown
respectively.

iteration of the graph transform Γfε , uses 4 to 8 steps to converge, depending on
the size of the continuation step and the size of the continuation parameter ε.

524 H. W. Broer, H. M. Osinga and G. Vegter ZAMP

References

[1] V. I. Arnol’d, Small denominators I, Transl. Amer. Math. Soc., 2nd series 46 (1965), 213–
284.

[2] H. W. Broer, H. M. Osinga and G. Vegter, On the computation of normally hyperbolic
invariant manifolds, In: H. W. Broer, S. A. van Gils, I. Hoveijn, and F. Takens, editors
Progress in Nonlinear Differential Equations and Their Applications, vol. 19, pp. 423–447.
Birkhäuser Verlag, Basel/Switzerland, 1996.

[3] H. W. Broer, C. Simó, and J. C. Tatjer, Towards global models near homoclinic tangencies
of dissipative diffeomorphisms, Preprint University of Barcelona.

[4] S. S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc.
67 (1961), 389–390.

[5] L. Dieci and J. Lorenz, Computation of invariant tori by the method of characteristics,
SIAM J. Numer. Anal. 32 (5) (1995), 1436–1474.

[6] L. Dieci, J. Lorenz, and R. D. Russel, Numerical calculation of invariant tori, SIAM J. Sci.
Stat. Comput., 12 (3) (1991), 607–647.

[7] E. J. Doedel and J. P. Kernévez, AUTO:Software for continuation and bifurcation prob-
lems in ordinary differential equations, Technical report, California Institute of Technology,
Pasadena, 1986. Applied Mathematics Report.

[8] H. Edelsbrunner, Modeling with simplicial complexes: Topology, geometry, and algorithms.
In: Proc. 6th Canad. Conf. Comput. Geom. 1994, pp. 36–44.

[9] M. J. Friedman and E. J. Doedel, Numerical computation and continuation of invariant
manifolds connecting fixed points, SIAM J. Numer. Anal. 28 (3) (1991), 789–808.

[10] M. W. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, vol. 583 of Lecture Notes in
Mathematics, Springer-Verlag, 1977.

[11] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Alge-
bra, Academic Press, New York, 1974.

[12] A. J. Homburg, H. M. Osinga, and G. Vegter, On the computation of invariant manifolds
of fixed points, Z. Angew. Math. Phys. 46 (1995), 171–187.

[13] S. R. F. Maunder, Algebraic Topology, Van Nostrand Reinhold, London, 1970.
[14] H. M. Osinga, Computing Invariant Manifolds — Variations on the Graph Transform,

PhD thesis, University of Groningen, 1996.
[15] J. Palis and F. Takens, Hyperbolicity & Sensitive Chaotic Dynamics at Homoclinic Bi-

furcations, vol. 35 of Cambridge Studies in Advanced Mathematics, Cambridge University
Press, 1993.

[16] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation Theory, Academic Press,
New York, 1989.

[17] M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, 1987.
[18] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice Hall Series

in Automatic Computation, Prentice Hall, Englewood Cliffs, 1973.

Department of Mathematics and Computing Science
University of Groningen
P.O. Box 800
9700 AV Groningen
The Netherlands
E-mail: broer@math.rug.nl, osinga@cs.rug.nl, vegter@cs.rug.nl

(Received: December 20, 1995; revised July 2, 1996)

