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Algorithms for computing normally hyperbolic invariant
manifolds

H. W. Broer, H. M. Osinga! and G. Vegter

Abstract. An efficient algorithm is developed for the numerical computation of normally hy-
perbolic invariant manifolds, based on the graph transform and Newton’s method. It fits in the
perturbation theory of discrete dynamical systems and therefore allows application to the setting
of continuation. A convergence proof is included. The scope of application is not restricted to
hyperbolic attractors, but extends to normally hyperbolic manifolds of saddle type. It also com-
putes stable and unstable manifolds. The method is robust and needs only little specification of
the dynamics, which makes it applicable to e.g. Poincaré maps. Its performance is illustrated on
examples in 2D and 3D, where a numerical discussion is included.
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1. Introduction

Invariant manifolds play an important role in the qualitative analysis of dynamical
systems. This paper focuses on normally hyperbolic manifolds, like closed orbits,
invariant tori and their stable and unstable manifolds.

Methods dealing with special cases have been around for some time. The
first general method, based on the graph transform, was developed by Hirsch,
Pugh and Shub in [10]. Normal hyperbolicity guarantees that the graph transform
is a contraction on a space of embeddings, its fixed point corresponding to the
desired invariant manifold. For related work on invariant manifolds and hyperbolic
dynamical systems we refer to Palis and Takens [15], Ruelle [16], and Shub [17].

The graph transform method is constructive, and therefore provides a basis
for the development of an algorithm, executable on a computer. However, the
context of the graph transform involves geometric objects like manifolds, maps and
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bundles. The main problem is to provide finite representations for these objects.
Such representations, necessary for manipulation by a computer, are introduced
in this paper, and the graph transform method is adapted accordingly. A similar
program, for the computation of stable and unstable manifolds of hyperbolic fixed
points, is developed in Homburg, Osinga and Vegter [12].

Section 2.1 contains a brief review of the Invariant Manifold Theorem [10]. We
restrict ourselves to diffeomeorphisms whose domain is an open subset of R?, see
section 2.2. In this context we design an algorithm that has a straightforward
implementation, and yet covers many interesting applications.

Section 3 describes a special version of the algorithm in the simple case of
absence of normal expansion. It presents the graph transform as a key ingredi-
ent of the algorithm, see section 3.1. The graph transform, associated with the
diffeomorphism f., may be considered as a contraction, defined on the space of
embeddings of Hy in R?. (For brevity’s sake we are cheating a little here, since the
graph transform is actually defined on the space of sections of a certain normal
bundle.) Its fixed point is an embedding, whose image H. is the invariant manifold
of f.. The image of an embedding under the graph transform is defined, however,
in terms of an implicit equation. To solve this equation efficiently we first derive
a global version of Newton’s method in section 3.2, that may be of some indepen-
dent significance. This rather general method is applied to the computation of the
normally hyperbolic invariant manifold H, of f. in section 3.3, that also contains
rather precise estimates concerning the speed of convergence of the algorithm. The
computation of the D f.—invariant splitting of the tangent bundle (see section 2.2
for a definition) along H, is described in section 3.4. We also indicate how our
algorithm can be used to compute invariant manifolds in a continuation context,
where the parameter € ranges over an interval that is not necessarily small, see
section 3.5. This setting arises frequently in applications.

After a brief description of some special features of the algorithm in the absence
of normal contraction, see section 4, we sketch the general case in section 5. Here
we describe the computation of the normally hyperbolic invariant manifold, and
its stable and unstable manifolds, when both normal expansion and normal con-
traction are present. Section 7 contains some numerical examples, illustrating the
method first in the simple case of absence of normal expansion, see section 7.1, and
subsequently in the general case, see section 7.2. Finally, we show, in section 7.3,
how to apply the method to compute the invariant manifold of the Poincaré first—
return map of a continuous system. More examples can be found in Osinga [14],
which also contains an extensive survey of related literature.
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2. Normally hyperbolic submanifolds

2.1. The Invariant Manifold Theorem

First we present an overview of some basic definitions and results from [10]. Con-
sider a C¥ diffeomorphism fo on a C¥ manifold M, having a K-normally hyper-
bolic invariant manifold Hy C M. Recall that Hgy is K—normally hyperbolic for
fo, K > 1, if there is a continuous D fp—invariant splitting

THO(M) = NU(HO) EBTHO @ NS(HO)7

and a Riemannian structure on the tangent bundle Tg, (M), such that, for r € Hy
and 0 < k < K:

1D fo | N (Ho)ll - (D fo | T(Ho))~HI* < 1,

1
I(Dfo | Ny*(Ho)™ || - |1 Dfo | T (Ho)|* < 1. .
Here the norms are associated with the Riemann structure on T, (M).

According to the Invariant Manifold Theorem a CX diffeomorphism f, that is
CX -near fy, has a K-normally hyperbolic invariant manifold H, that is C¥ and
CK-near Hy. In particular, there is a continuous D f—invariant splitting Ty (M) =
N*“(H)® T(H)® N*(H), of the tangent bundle Ty (M). Our primary goal is the
computation of both H and the invariant splitting of T (M). Furthermore the
Invariant Manifold Theorem states that, for some neighborhood U of H, the sets

WeH) = () £7(U) and W (H) = () f1(0)

n>0 n>0

are CX submanifolds of M, tangent to T,.(H) & N5(H) and N*(H) & T,(H), at
r € H. These manifolds, called the stable and unstable manifolds of H, can also
be computed using the method developed in this paper, as we describe briefly in
section 5.2. In this paper we assume, for technical reasons, that K > 3.

2.2. Normally hyperbolic submanifolds of R?

Let fo : U € R? — R? be a diffeomorphism, defined on an open subset U of R?,
having a l-normally hyperbolic invariant manifold Hy C U. (We usually write
fo : R* — R?, even though in general U is a proper subset of R%.) We assume
throughout this paper that Hg is compact. In this section we describe how to
represent the geometric objects that show up in the computation of invariant
manifolds, taking advantage of the fact that the ambient manifold is a euclidean
space.
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Figure 1.
The abstract manifold Hy and its embedding in R<.

Representation of the invariant manifold

Let @g : Hy — R? be the canonical embedding of Hy. We distinguish between the
abstract manifold Hy, and its image po(Hp), which is a submanifold of R?. To
stress this distinction, we denote o (Ho) by Ho. The tangent space T, (,-)(w0(Ho))
can be identified with an affine subspace of R? of the form ¢q(r) + T, (Hy), where
T, (Hg) is a linear subspace of R?. Since fy leaves Hy invariant, there is a diffeo-
morphism oq : Hy — Hy such that fo(po(r)) = po(oo(r)), for r € Hy. Its inverse
is denoted by pg. Note that og and pg may be regarded as the restriction of fy
and f Lo Hy, respectively. See also figure 1. Although the distinction between
the abstract manifold Hy and its ¢g-image Hy in R? involves rather extensive
notation, our intention to develop algorithms that manipulate geometric objects
like manifolds, maps, and bundles, requires that we are quite specific about the
representation of these objects. If e.g. Hg C R the 'user’ of the algorithm may
choose to represent points on Hy by their coordinates in R¢, in which case ¢ is the
inclusion map of Hy in R%. However, in some applications it may be more natural
to represent the manifold Hg by coordinates that are adapted to the dynamics of
fo on Hy, like the case in which Hy is a (higher—dimensional) torus, represented
by angular coordinates.

Representation of normal bundles

The restricted context, in which the ambient manifold is R?, enables us to identify
neighborhoods of the 0-sections the stable and unstable normal bundles of Hy with
certain subsets of R?. To see this, let the dimension of Hy be denoted by ¢, and the
dimension of the fibers of the bundles N*(Hg) and N*“(Hp) by s and u, respectively.
In particular, ¢+ s +u = d. As observed above, for r € Hy, the space T,.(Hy)
corresponds to the affine subspace ¢g(r) + T,.(Hg) of R%. Similarly N3(Hp) and
NY(Hp) correspond to affine subspaces of R?, going through the point ¢q(r) € Hy.
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They are, therefore, of the form ¢q(r) + N2 (Hg) and ¢g(r) + N¥(Hjy), respectively,
where N2 (Hp) and N¥*(Hg) are s—dimensional and u—dimensional linear subspaces
of RY. We identify T, (,y(R?) with T, (Ho) & N;(Hp) ® Ny(Hp). Finally

¢ : R — T,.(Hp), I : RY — N5(Hp) and ¥ :R% — N¥(Hp) (2)

are the canonical projections.

The Riemannian metric on R? (in terms of which normal hyperbolicity is de-
fined — see (1)) induces an inner product on the spaces T,(Hy), Ni(Hp) and
N¥(Hp). We represent this pointwise inner product by bases, consisting of vectors
in R?, that are by definition orthonormal with respect to the Riemannian struc-
ture. More specifically, consider an orthonormal basis v{(r),--- ,v5(r) of Ni(Hp),
for r € Hy. Note that in general the vector valued functions v : Hy — R? are not
globally continuous, since this amounts to triviality of the normal bundle N*(Hj).
However, in this paper we make the following assumption:

Assumption 1 (Triviality of normal bundles). There are CV functions vy, ,vs
Hy — R? such that v§(r),- -+ ,v3(r) form a basis of N3 (Hy), for r € Hy. Similarly,
there are CV functions v¥,--- v : Hy — R? such that v} (r),--- ,v¥(r) form a

basis of N*(Hy), for r € Hy. Moreover, we may even assume that these bases are
orthonormal with respect to the Riemannian metric.

The identification map ¢2 : N2(Hp) — R® is defined by
s (Yo mi) = .- nd). (3)
=1

The identification map ¢ : N¥(Hg) — R" is defined similarly.

Due to the triviality of the normal bundle the manifold Hy has a neighborhood
in R¢ that is diffeomorphic to Hy x R® x R*. More precisely, the map ® : Hy x
R® x R* — R, defined by

S u
O(r,n°,0") = o(r) + Y mivi(r) + > _ v (r),
i=1 i=1

is a diffeomorphism from a neighborhood of Hg x {0} x {0} to a neighborhood of
Hp in RY. Note that ®({r} x R* x {0}) = @o(r) +N2(Hp), and ®({r} x {0} x R%) =
©o(r) + N%(Hg). The maps 7. : R? — Hy, 75 : R? — R® and 7, : R — R* are
defined on a neighborhood of Hgy by mapping inverse images under ® onto Hyp, R?
and R*, respectively, under the canonical projections. In this way we identify the
stable normal bundle N*(Hy) with the space Hyp x R®, and the unstable normal
bundle N*(Hy) with HgxR*. Therefore it is justifiable to refer to maps n® : Hy —
R® and n* : Hy — R™ as sections. With a pair of sections (n®,n") we associate
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the embedding ¢ : Hy — R?, defined by o(r) = ®(r,n°(r),n%(r)). In particular,
the embedding g is associated with the O—sections of the normal bundles. If fy
is defined on a manifold other than R?, or if the normal bundles are not trivial,
the methods of this paper still apply. However, the need for local coordinates
introduces more complicated (multiple) representations of the geometric objects
the algorithm manipulates; cf [16] for a proof of the Invariant Manifold Theorem
along these lines. A different approach can be found in [10], where the exponential
map, associated with the Riemannian metric, is used to identify a neighborhood
of the O-section in the normal bundle with a neighborhood of Hy in the ambient
manifold. It seems hard to turn the latter method into an efficient algorithm.

Representation of derivatives

In computations it is important to have explicit representations for the derivative
of e.g. fo in points of Hy, cf (1). Since the linear spaces N#(Hy), » € Hp, form
a D fo-invariant family, there are globally defined C¥~1 functions ki Ho — R,
1 <1i,j5 < s, such that

D fo(po(r) ZH” o(r),

fori=1,---,s. Let KO( 7) be the s x s matrix with entries «5;(r). Similarly there
are CK— 1 functlons ki; + Ho — R, 1 <4, j < u, such that

D fo(o(r)) Z% 0(r)),

for i = 1,---,u. Let Kg(r) be the u X u matrix with entries x};(r). Then
0-normal hyperbolicity of Hy boils down to \* := sup,cp, [K§(r)|]| < 1, and
AY 1= sup,.cp, | K4(r)~Y| < 1. Here we take the matrix norm with respect to the
standard inner product on R® and R", respectively. Although the matrices K§j(r)
and K§(r) do depend on the partlcular choice of the functions v;, 1 <¢ <'s, and
vy, 1 <4 < w, their norms are independent of this choice.

To express 1-normal hyperbolicity, let v{(r),--- ,vi(r) span the tangent space
T,(Hp). (Note that in general v§ is not globally continuous, since this would
amount to parallellizability of Hy.) Since Hy is fo—invariant, there are locally
defined a;;(r) € R, 1 <14,j < ¢, such that

D fo(po(r) ZO‘U 0(r));

for i =1,---,c. Let Ag(r) be the ¢ x c-matrix with entries a;;(r). Then p° :=
sup,. o |G (r) 1] Ao (r) M| < 1, and p := sup,.c y, |G (r) " [|[[ Ao (r)]| < 1, since
Hp is a 1-normally hyperbolic invariant manifold for fg.
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Perturbation context

We study diffeomorphisms on R that are C¥ -near fy (K > 3). More specifically,
we restrict to a perturbation context in which these diffeomorphisms occur in a
CX family f:R% x R — R?, such that fo(p) = f(p,0), for p € R%.

In this setting families of embeddings, sections of bundles, etc., are maps g :
X xR — Y, depending on (z,¢) € X. Here € € R is considered as a parameter,
ranging over some neighborhood of 0 € R. Individual members of a family like
g are denoted by subscripting the family name with the parameter name, e.g.
g=(z) = g(x,€). This convention applies throughout the paper.

3. Special case I: absence of normal expansion

In this section we develop an algorithm for the computation of the invariant man-
ifold in the special case of absence of normal expansion, viz N*(Hy) = 0. If no
confusion is possible we drop the superscript s from our notation, by writing e.g.
Ko(r), kij(r), A, ¢ instead of K{(r), £3;(r), A%, ¢7, etc.

» Uro

3.1. The graph transform

Our goal is to obtain the normally hyperbolic invariant manifold H, for f. by
constructing an embedding . : Hy — R? with H. = . (Hp). We follow [10], by
considering special embeddings associated with sections 7. : Hy — R® according
to pe(r) = ®(r,n:(r)).

The graph of a section 7 : Hy — R* is the subset graph(n) of R%, defined by
graph(n) = {®(r,n(r)) | r € Ho}. The graph transform T'y_ is uniquely determined
by the condition that it maps a section h. : Hy — R?® onto a section 7. : Hy — R?,
such that fec(graph(h.)) = graph(n:). In other words, there is a unique point
0 € Hy such that the point ®(r,n(r,€)) is of the form f(®(p, h(p,€)),e). It is
convenient to express the dependence of p on r and & by writing o = o(r, €). Note
that we suppress the dependence of ¢ on h in our notation. We define the graph
transform I'y on families of sections, i.e. we take I'y(h)(r,e) = Ty (n:)(r). Let
Y(g0) be the space of continuous families of sections h : Hg x [—¢gq,£0] — R®, with
h(r,0) = 0 for r € Hg. Since Hy is fo—invariant, the O—section is a fixed point of
I'4,, and hence ¥(eq) is invariant under I'y, provided eg is sufficiently small.

For h € ¥(gg) the family n = I'y(h) is the second component of the solution
(o(r,e),m(r,€)) of the equation

F(o,n,1,¢) =0, (4)
where F': Hy x R® x Hy x R — R? is defined by

F(o,m,m¢) = f(®(0, h(0,€)),€) — O(r, 7). (5)
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Figure 2.
The graph transform Ffa maps he onto n.. Its fixed point EE defines an embedding . : Hy — R4
by @e(r) = ®(r, he(r)), whose image Hl; is the normally hyperbolic invariant manifold of f.

See also figure 2.
Note that F'is defined on a neighborhood of the subset

{(QO(T)707T7 0) | e HO}

Since 7. ®(r,n) = r, the solution of equation (4) can be obtained by first solving
0 = o(r,€) from the equation

o(o,e) =, (6)
where o : Hy X R — Hj is defined by

o(o,€) = mef(®(0, h(0,€)),€). (7)

In other words: o. : Hy — Hy is the inverse of 0. : Hy — Hy. Then 7 is defined
by
77(7"7 6) = st(q)(g(rv 6)7 h(g(r, 5)7 5))7 5)'

Using the fact that h(p,0) = 0 for h € X(eg), we see that

0(0,0) = . f(®(0,0),0) = 7 folvo(0)) = ao(0)-

Consequently o(r,0) = po(r).

Equation (6) can be solved by introducing local coordinates on Hy near go(r)
and 7, and by numerically constructing a solution, viz a local inverse to o, in terms
of these local coordinates. However, we prefer to obtain n globally, exploiting the
fact that we have identified the bundle N*(Hp) with a neighborhood of Hy in R?
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under the mapping ®. To this end we transform equation (4) into an equation of
the form
G(y,r,e) =0, (8)

where G : R? x Hy x R — R% is a C¥ function, K > 3, defined on a neighborhood
of ogHg x Hg x {0}, that satisfies, for r € Hy:

G(po(r),r,0) =0.

We construct G in section 3.3, but first we develop a global version of Newton’s
method for solving equations of the form (8).

3.2. A global version of Newton’s method

In this section we develop a rather general method for solving equations of the
form (8). This method, which may be considered as a global version of Newton’s
method for determining implicitly defined functions, may be of some independent
significance. In this paper it provides a key subroutine for the algorithms that
compute the normally hyperbolic submanifold and its stable and unstable mani-
folds.
First we consider in more detail the spaces of functions we are working with.
In this general setting we consider a C¥ function, K > 3, G : R? x Hy x R — R?,
and a C¥ function 7 : Hy — R? satisfying, for r € Hy,
G(yg(r),r,0) =0, DyG(gy(r),r0) is invertible. (9)
(In our case Jy = @o.) Here DyG(7y(r),r,0) is the restriction of the derivative
DG(Yo(r),r,0) to the space T () (R%) x {0} x {0}; We denote this map by L(r).
Note that the solution of equation (8) is a function Hy x R — R?, defined
on a neighborhood of Hy x {0}, and near 7y. The Newton operator A starts
with such a function, and computes a better approximation to the solution of (8).

More specifically, consider the Banach space B(gg) of continuous functions y :
Hy x [~€0,&0] — R?, endowed with the sup-norm, viz

Iyl = sup  [y(re)l.
r€Ho,|e|<eg

Here |y(r,¢)| is the length of y(r,e) € RY with respect to the standard inner
product on R%. We consider Yo as an element of this space by identifying it with
the map (r,€) — yo(r). The Newton operator A is defined on B(gg) by

Ny(r,e) =y(r,e) = L(r)™" - G(y(r,e),r,2).

We first derive a precise expression for Ny, that is useful in the proof of later
results.

Lemma 2. Let G(y,r,¢) = Go(y,7) + eG1(y,r) + O(£2), uniformly for (y,r) in
some compact neighborhood of {(go(r),r) | r € Ho}. Then for y € B(ep):

Ny(r,e) =To(r) = eL(r) ™" - G1(Go(r), 7) + O + [ly = FolI)-
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Proof. Considering the Taylor series of G(y,r,¢) at (go(r),r,0) we see that
G(y,r¢) = Go(o(r),r) + DyGo(Fo(r),7) - (y —To(r))
+eG1(To(r), 7)) + OE? + ly — Toll)-

Since Go(To(r),r) = 0 and DyGo(Fo(r),r) = L(r), it follows from the definition
of N that

Ny(r,e) = y(rye) = L)™' - L(r) - (y(r,e) = Fo(r))
—eL(r)~" - Gi(@o(r),r) + O(e® + |y — Holl?)
=7o(r) —eL(r)™! - G1(Ho(r), 7)) + O(e® + ly — Foll*)-

This completes the proof of the lemma. |

The preceding lemma shows that Ny(r, €) is of the form 7y (r) + O(g), provided
y(r,e) = go(r) + O(e). To make this observation more precise we introduce the
space

B(eo, B) = {y : Hy x [~e0,e0] — R | Sup ly(r,e) —Yo(r)| < Be},

where €9 and 3 are positive constants; £¢ is small, 3 is specified later. The space
B(eg, 3) is a closed subspace of B(ep), so in particular it is a complete metric space.

The following properties of the Newton operator are crucial in the derivation of
our algorithm.

Theorem 3. Let 3 be a constant such that

B> sup |L(r)~' - G1(@o(r), 7).
rEHg

(i) For small values of g9 the space B(eg, 3) is N ~invariant, i.e.:
N(B(eo, B)) C Bleo, B).

(i1) For small values of eg the Newton operator N is a contraction on B(eg, 3)
with contraction factor O(eg). Its fized point § satisfies

G(y(r,e),re) =0,
and is of the form G(r,e) = To(r) + Gy (r) + O(e?), uniformly in r € Hy,

where
i(r) = —L(r)~" - G1(Fo(r), 7). (10)
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(i1i) Let {yn} C B(eo,B) be a sequence with yo € Bley, 3), and yp+r1 = Nyn.
Then, for all v with 0 <~ < 1, there is an €y > 0 such that:

Yn(r,e) =g(r,e) + O(eM™),
uniformly for |e| <eg and r € Hy, as n — oo.

Proof. (i) This is a straightforward consequence of lemma 2.
(ii) Let y1,y2 € B(gg, 3). To prove that N is a contraction, we Taylor—expand
G(y,r,e) at (y1(r,e), 7€) to obtain:
G(y2 (’I“, 6)7 T, 6) = G(yl (’I“, 6)7 r, 6) + DyG(yl (Tv 5)7 T, 5) : (y2 (’I“, 6) -y (Tv 5))
2
+ O(|y2 (7", 5) — U (7”, €)| )

Since D,G(y1(r,e),r,€) = L(r) + O(e + |y1(r,€) — Yo(r)|), we derive that

Nya(r,e) = Nyi(r,e) = O(e + |y1(r,e) — To(r)]) - (y2(r,€) — y1(r,€))+
O(|ly2(r,€) — y1(r,€)?).

Since |y1(r,e) — go(r)| < ce, and |ya(r,e) — y1(r, &)| < 2ce, we see that
Nya(r,e) = Nyi(r;e)| = O(e)lya(r,e) —wi(r,e)l,

so |[NMy2 — Ny1|| < O(eo)|ly2 — y1||- Hence N is a contraction, with contraction
factor O(eg).

Obviously N5 = ¥ is equivalent to G(y(r,¢),r,€) = 0. Furthermore lemma 2
yields §(r, €) = Fo(r) + 7 (r) + O(e?).

(iii) We use induction with respect to n. Our inductive hypothesis for n > 1
is: |yn(r,e) —7(r,e)] < e, for r € Hy and |e] < gg. (We determine the constant
gg > 0 in the inductive step.) Observe that lemma 2 and part (ii) imply

sup |y(7", 5) - yn(rv €)| = 0(62)7
rEHg

for all n > 1, we see that the inductive hypothesis holds for n = 1,2. So assume
it holds true for n > 2.

Using G(g(r,e),r,€) = 0, we see that the Taylor expansion of G at (g(r,e),r,¢€)
is of the form

G(?J)'r) €)= DyG(y(Tv 5)7T7 5) : (y - @(’I‘, €)) + R(ya T, €),

where the higher order term R satisfies

— 2
|R(y, 7€) < coly —(r,e)[",
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for some positive constant cg, uniformly for (y,r,¢) ranging over some compact
neighborhood of {7 (r),r,0) | r € Hp} in RY x Hy x [0, &)

Furthermore, D, G(§(r, ), r,¢) is of the form L(r)+ A(r, ), where ||A(r,e)|| <
c1€ for some positive constant c¢;. Then

Yn+1 (7", 6) - y(rv 5) = _L(T)71 (A(T‘, 5) ’ (yn (7", 5) - y(rv 5)) + R(yn (7", 5)7 Ty 5))
Therefore

[War1(r,e) =5 2)| < L)l (ere™™ ! 4 o)
=D LE) (16! + e D).

Therefore the inductive hypothesis holds for n + 1, provided we started out with
a value of gq satisfying

— 1—
sup || L(r)"Hl(c1gg 7 + cogg) < 1.
rcHy

O

Theorem 3(ii) reveals that yi(r,e) = Yo(r) + €y1(r) is a good initial guess
for the solution of (8), and theorem 3(iii) guarantees that each application of the
Newton operator N brings us closer to the fixed point roughly by a factor of O(e7).
In the next section we apply these observations to the computation of the graph
transform.

3.3. Computing the invariant manifold

In this section we apply the results of section 3.2 to compute the graph transform.
To this end we first derive, in section 3.3.1, a more precise expression for equa-
tion (8), and apply our extension of Newton’s method to solve it. It turns out that
we can determine the image of the graph transform analytically up to terms of
order €2, see section 3.3.2. This analysis enables us to iterate the graph transform
starting from a good initial guess of the fixed point. A priori, the fixed point of
the graph transform defines a C? invariant manifold H. of f., for small values of
e. According to [10] it is even C'!. Although we can extend the analysis of this
section to prove this stronger result as well, we abstain from doing so, since we are
merely heading for an algorithm to compute the invariant manifold. In section 3.4
we present a method to compute the continuous D f.—invariant splitting of the
tangent bundle of H..

We assume that (a representation of) the invariant splitting T, (Hg) & N2 (Hp),
the restrictions gp and og of fj I and fo to Hy, and the derivative D fy(r) =
Ap(r) @ Ko(r) are given for all r € Hy.
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3.3.1. The Newton operator

First we transform equation (4) into an equation of the form (8). Ideally we like
to find a function G : R? x Hy x R — R? such that G.(y,r) = 0 iff y is the
point on graph(n.) above r € Hy, where 7. is the image of h. under the graph
transform T’y , see figure 2. In other words, n.(r) is the second component of
the solution (g (r),n(r)) of equation ((4)). This could be achieved by designing
a diffeomorphism . : Hp x R® — R? such that 1. (0-(r),1:(r)) = ®(r,n=(r)),
and by taking G such that Gc(¢¥<(§,n),7) = F-(§,7n,7). An obvious definition is
Ye(&,m) = ®(0:(£),n), with 0-(§) = (&, €) defined by ((7)). However, o, is rather
awkward to compute for € # 0. In view of our assumption that (a representation
of) og is given, we use v instead of 1. even for € # 0, i.e. we consider the map
U : Hy x R® — R?, defined by

V(& n) = ®(a0(£),m), (11)

which is a diffefomorphism from a neighborhood of Hy x {0} in Hy x R® to a
neighborhood of Hy in RY. Then define G by:

G(\II(§777)7T7 5) = F(fﬂ?ﬂ% 6)' (12)

Since po(r) = ®(r,0) = ¥(po(r),0), for r € Hpy, we see that G(pg(r),r,0) =
F(o0(r),0,7,0) = 0, so the first part of condition (9) is satisfied for o = ¢g.
To check that the second part holds as well, we first derive an expression for
L(r) = D,G(po(r),r,0) : R? — R9. It turns out that L(r) has a very simple
expression with respect to the splitting T, (Hp) @ N2(Hg) on both its domain and
its range. More precisely:

Lemma 4. For r € Hy, the splitting R = T,(Hp) & N2(Hy) is L(r)-invariant,
and for v, € T,.(Hp), vs € N2(Hp)

L(r)(ve ® vs) = ve @ (—vs).
In particular L(r) is invertible, and L(r)~" = L(r).
Proof. Recall that for (€,7,r) € Hy x R® x Hy:
Fo(&m,m) = fo(®(8,0)) — ®(r,n) = ¥(&,0) — ¥(eo(r),n), (13)

since fo(®(£,0)) = folwo(£)) = wo(o0(§)) = ¥(E,0), and ®(r,n) = ®(o0(00(r)), n)
= U(go(r),n). From (13) we derive

DEFO(QO(T)707T) = DE\II(QO(T)v 0)
)

DnFO(QO(T)707T) = _DU\II(QO(T 70)
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Since

Dy Foloo(r),0,7) = D,Gol¢o(r),7) - D¥(0(r), 0) = L(r) - D¥(go(r),0),
the proof is complete. O

Lemma 4 yields the following straightforward method of computing Ny for
y € B(eo, B).-
Algorithm NEWTON

Input: y: Hy x [—eg,e0] — R™
Output: Ny : Hy x [—¢g,&0] — R%
forall r € Hy,e € [—ep,¢0] do
1 x — me(y(r,€))

Comment: z € Hy and y(r,e) — ¢o(z) € N2 (Hp)
2 1 ta(y(r€) — o))

Comment: y(r,e) = ®(x,n)
3 YHF(QO(‘I)J%’“‘?)

Comment: Y = G(y(r,e),r,¢€)
4 Ve T5(Y)

Yoo IR(Y)

5 Ny(r,e) — y(r,e) =Y +Y*®

Comment: L(r)~!-G(y(r,e),r,e) =Y° - Y*
A few further comments are in order. Execution of line 1 amounts to finding
the point ¢g(x) € Hp such that y(r,e) € ¢o(z) + N5 (Hp). The maps ¢y, IIS,
I3 and F have straightforward implementations; see their definitions (3), (2) and
(5), respectively. In section 6, where we discuss the discretization problem, we
indicate how to find implementations that have a predescribed accuracy. Since
also (a representation of) the map gg : Hy — Hy is given, lines 2, 3 and 4 can be

implemented in a straightforward way. To justify the comment at line 3, observe
that

G(y(r,e),re) = G(®(x,n),r,e)

= G(\P(QO(:E)J])J'? 5)
- F(QO(”«")WW@)
=Y.

Finally the correctness of line 5 follows from lemma 4.
3.3.2. Using the graph transform to compute H.

The map ¥ : Hy x R® — R?, transforming F into G, also establishes a 1:1-
correspondence between sections 1 € X(g0) and maps y : Hy x R — R?, defined
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by y(r,e) = ®(r,n(r,e)). To apply the Newton operator, we should restrict the
domain of the graph transform to sections, corresponding to maps in the domain
B(gg, 8) of the Newton operator. Therefore we consider the subset (g9, ) of
Y (g0), defined by

Y(eg, ) = {h € X(eg) | sup |h(r,e)| < ac}.
r€Hg

Since Hy is compact, for 5 > 0 there is an a > 0 such that a section in X(gq, @)
corresponds to a map in B(eg, 5). Hence, the image of a section h € ¥(eg, ag)
under the graph transform I'y can be determined using algorithm NEWTON, de-
signed in section 3.3.1. To obtain a good starting point for repeated application of

= g@ﬁo(?“)ﬂ“,o),
see theorem 3(ii), equation (10). To express G1 in terms of the linear part of f
and h, let

the Newton operator, we first have to determine G1(¢o(r),r)

f(p,€) = folp) +efi(p) + O(e?),

and

hir,e) = e(ha(r), -+ hs(r)) + O(?).

Lemma 5. Forr € Hy

S

Gi(po(r),r) = D hileo(r))ras(00(r))vi(r) + f1(po(eo(r)))-

i,j=1

oG
Proof. Let (y,r) € R x Hy, then Gi(y,r) = g(y,r, 0). Furthermore, let
y = U (&, n0), for (£o,m0) € Ho x R?), with ¥ as in (11), i.e.

y = ®(a0(%0):m0),
then G(y,r,¢) = F(€,m0,7,¢). Therefore,
Gy, re) = f(p(e),€) — ®(r,m0),
where p(c) = (&, eh(&, £)). In particular py := p(0) = wo(&). Hence,
Gi(y,r) = D fo(po) - p(0) + f1(po),

with

p0) =D hio)v; (%)
i=1
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Therefore,

C1(w7) = Dfolpo) - (3 hal6o)v (€0)) + Fipo)
i=1

> hiléo)riz(€0)v; (o0(60)) + f1(po).

i,j=1

We obtain the desired expression by substituting y = ¢ (r), in which case o¢(&y) =
r and hence &y = op(7). O

For p = ¢o(r), with r € Hy, the curve ¢ — f(po(r),e) passes through
folpo(r)) = @o(op(r)). Therefore its tangent vector at this point, viz f1(eo(r)),
belongs to T, (5, (r)) (R), which we identify with T, () (Ho) SNY o (Hp). There-
fore there are unique C° functions V¢,V — R% with V¢(r) € T,.(Hp) and
Ve(r) € N2(Hp), such that fi(po(r)) = V(oo(r)) + V*(o(r)). Since g is the
inverse of o, we see that f1(0(00(r))) = V°(r) + V*(r), in other words:

Ve(r) = I (f1(po(eo(r))) and V*(r) = TI(f1(¢o(eo(r))))-

Corollary 6. The fized point of N is of the formT(r,e) = po(r)+e7, (r)+O0(e2),

where
S

y1(r) = D hiloo(r))is(oo(r))vi (r) = VE(r) + V*(r) (14)

i,j=1

Algorithm GRAPH TRANSFORM

Input: h € X(gp, @), 6 > 0 (maximal error)
Output: T't(h) € X(eg, @)
forall r € Hy,e € [—ep,¢0] do
| y(r.) — golr) + <7 ()
Comment: cf corollary 6
2 repeat
3 Ynew — Ny

Comment: Use algorithm NEWTON
error < ||y — Ynew||

Y < Ynew

until error < ¢

Ly(h)(r,e) — ms(y)
Comment: 74(y) = 7s(¥1(y))

~N O O~

Remark 7. To compute F;(r) in line 1 we use expression (14). In view of lemma 2
the variable y in algorithm GRAPH TRANSFORM satisfies the invariant y = po(r)+
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71 (r) + O(e?). In particular the output T'f(h) is of the form
Ff(h)(?‘, 5) = E(El (7"), T 7E5(7n)) + 0(62)7
where (hi(r), - hs(r)) = 75(71(r)), Le.

S

D hi(r)oi(r) =Y hileo(r)mij(o0(r))v; (r) + V(7). (15)
=1

i,j=1

This enables us to initialize y(r, €) properly upon repeated application of the graph
transform I'¢. In fact, we can even compute the fixed point of I'y up to terms of
order £2 by repeated application of (15).

The crucial properties of the graph transform I'y are reflected by the following
theorem.

Theorem 8. For any constant X\, such that A\ < X\ < 1, there are values of a and
gg such that:
(i) T'y leaves X(ep, o) invariant, i.e.

I'(3(e0, ) € X(eo, @)

(ii) Ty is a contraction on %(gg, ), whose contraction factor does not exceed \.

(iii) The fized point h of I'y defines a continuous family of C' embeddings - :
Hy x [—¢€0,e0] — R? by p.(r) = ®(r, h-(r)), such that H. := p.(Hy) is the
1-normally hyperbolic invariant manifold of f.

Proof. (i) The first property is in fact equivalent to theorem 3 (i). Let C be a
constant such that sup,cy, [|[V(r)|| < C. In view of the expression for T'z(h),
derived in remark 7, we see that

Ty (h)(r;e)| < e(A[h(r,e)| + C) + O(e).

Taking « such that Aa + C' < «, and taking eg sufficiently small, we see that
Y(eo, ) is I'y-invariant.
(ii) Note that (15) implies that for h1, ho € E(ep, a):

T (h2) =Ty (h1)ll < Allha — ha,

provided ¢ is sufficiently small. This proves that I'f is a contraction.

(iii) Note that (i) and (ii) only guarantee that the fixed point & is a continuous
section. Therefore, the map ¢ is a CY embedding, and the set H, = we(Hp) is a
CY invariant manifold for f.. We can even prove, with the machinery of the next
subsection, that H, is a C! manifold. We postpone completion of this part of the
proof to the next subsection, viz to the proof of theorem 10. g
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3.4. Computing the invariant splitting of the tangent bundle

In the previous subsection we derived an algorithm that computes the invariant
manifold H. € R? of f. as the image of an embedding . : Hy — R?. This
algorithm computes a pair (g, h), with 3: Hy x R — Hg and h : Hy x R — R,
such that ¢.(r) = ®(r, he(r)), and

fe(pe(2(r))) = ¢e(r).

The inverse of g, is denoted by @.(r). Therefore

fe(pe(r)) = p=(T:(r))-

Hence
G(r) = mefe (@ (1)),

S0 T can easily be computed from (..

Our goal in this section is to compute the D f.—invariant splitting T'(H.) &
N*(H.) of the tangent bundle Ti_ (R). To this end we write the map D f.(¢.(r))
with respect to the splittings T, (Ho) @ N (Ho) and Tz_, (Ho) & Nz (r)(HO) as

(&0 B0y,

where A (r) : T.(Hy) — Ts. (1) (Hg), Be(r) : Ni(Hp) — Ts. () (Hop), Ce(r) :
T, (Hp) — N2 ) (Ho) and K.(r) : Ni(Hp) — N2 ) (Hp) are linear maps, de-
pending continously on (r,¢). Note in particular that By(r) = 0 and Cy(r) = 0,
and || Ac(r)|| = [|Ao(r)[| 4+ O(e), ete.

The algorithm that computes the D f.-invariant splitting of Ti_ (R?) is again
based on a graph transform. Consider, for (r,e) € Hp x R, linear maps we(r) :
N?(Hp) — T, (Hp), depending continuously on (r,e). The space of all such maps,
defined for (r,e) € Hy x [—€0, 0], is denoted by Q,(¢g). It is a Banach space with
norm defined by [lw|| = sup,. <., remn, lwe(r)[l. Let ©s(do,€0) be the subspace
consisting of those w € Q4(gg) for which ||w|| < 9. Note that this is a closed
subspace of Q,(eg), and therefore it is a complete metric space.

The graph of w,(r) is the subspace graph(w.(r)) of R?, defined by

graph(we(r)) = {we(r) -u®u | u € N (Hp)}.
We define the operator 75 on Q4(dg,eg) by the requirement that, for @ = 7, (w),
graph(@. () = D f(p=(r)) ™" graph(we (7. (r))). (16)

Then (16) boils down to: for all v € N2 ) (Hp) there is a v € N (Hp) such that

Cr)=( %) ()
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where A = A.(r) (etc.), w = w.(r) and w = w.(F(r)). Eliminating v and T we
see that

T=A-w-O)"' (-B+w-K),
in other words

(Tw)e(r) = (Ac(r) = we(@e(r)) - Ce(r)) - (=Be(r) + we(@=(r) - Ke(r). (17)

Theorem 9. Let \ and Ti be constants such that A < X\ <1 and u < < 1. Then,
for 69 and g sufficiently small:
(i) The space Q4(dg,0) is Ts—invariant, i.e.

7(825(60,€0)) C $2s(d0,0)-
(i) The operator Ty is a contraction, whose contraction factor does not exceed

fi. Its fized point @ determines a D f.—invariant family {N3(H.)}rcn, of
subspaces of R, defined by

NJ (He) = graph(w.(r)).
(1ii) Forr € Hy and v € N(H,):

1D fe (e (r)) - vl < Xoll-

Proof. (i) For r € Hy and |¢] < ¢¢:
I(A(r) —we(r) - Ce(r)7H < [ A(r) | + Oeo lwe (7)),
and
| = Be(r) +we(r) - Ke(r)| = O(eo) + [lwe(r) [ K= ()]
Therefore
1 Tswe ()| < | Ae(r) " lllwe ()1 K ()| + Ofeo + [lw]1?)

< pudo + O(eo + |lw|/?)
§ 507

for §g and eq sufficiently small.
(ii) Let wy,wq € Q5(00,£0). Writing again A instead of A.(r), etc., we see that
7T, is a contraction:

|Town — Tewn]| < [(A—wp - ) - (B 4wz - K) — (~B+wy - K))|+
I(A-wp-O) ' = (A=wy-C)) - (B twr - K)
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<(A-wp-C) ' (wp —w1) - K|+

[(A=wy-C) " (w1 —wa) - (A—wy - C) (=B +wr - K)|
< (JATHIEN 1+ O +0)) + [AH2O(d0 + 20)) [|wr — wa
< (14 O(d0 + €0))|lwr — wal|
< fllwr — w2,

for 69 and ¢ sufficiently small. (To derive the second inequality we use the identity
52_1 — 51_1 = 52_1 - (S1— S2) ~Sl_1.) Hence 7, is a contraction, whose contraction
factor does not exceed Ti.

(iii) Let v € N2(H,), then v = W.(r) - u @ u, for some u € N2(Hp). Since @ is a
fixed point of 7; it follows from (17) that D f-(pe(r)) - v =w(T(r)) - w ® w, where
w = (Ce(r) - we(r) + Ke(r)) - u. Hence

[Dfe(pe(r)) - vl < (1K:(r)Il + O(lfee (r)I])[ul
< (A+0(do +0)) |||
< Alwll,
for 69 and e¢ sufficiently small. This completes the proof of the theorem. O

To determine the tangent space of the invariant manifold H, of f., we similarly
introduce the space Q.(gp), consisting of families of linear maps w.(r) : T, (Hg) —
N?(Hp), depending continuously on (r,¢) € HgxR. Its subspace .(dp, €0) consists
of those w € Q.(gg) with ||w|| < §g. The operator 7, : Q.(eg) — Qc(g0) is defined
by the condition that D f.(pe(2.(r))) maps the graph of w.(g.(r) onto the graph

of we(r). More precisely,
v\ (A B v
w-v) \C K w-v)’

where A = A.(9.(r) (etc.), w = we(0.(r)) and W = W.(r). Elimination of v and T
yields the following expression for 7.:

(Tew)e(r) = (Ce(2:(r) + Ke(0:(r)) - we (2:(r))-
(AE (Es

The following result is similar to theorem 9.

Theorem 10. Let \ and i be constants such that X < X\ < 1 and p < 71 < 1.
Then, for &g and €y sufficiently small:
(i) The space Q.(d0,¢€0) is T.—invariant, i.e.

TC(QC(50, 50)) C QC(50, 60).
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(i) The operator T is a contraction, whose contraction factor does not exceed
. Its fixed point @ defines the tangent bundle of He, i.e.

T,(H.) ={udw(r) u|uweT.(Hy)}.

(i) Forr € Hy, let A.(r) @ K(r) be the expression for Df.(p(r)) with respect
to the D f.~invariant splitting T, (H.) ®N}(H.) and Tz _,(H:) &N ) (H,)
on domain and range. Then

[(A<(r) MK ()] < 7.
In other words: H. is a 1-normally hyperbolic invariant manifold of f-.

Proof. Arguing as in the proof of theorem 9 we can prove that 7. (i) leaves
Q.(00,€0) invariant, and (ii) is a contraction on this space, for sufficiently small
0o and gg. The proof of part (iii) is again similar to the proof of theorem 9. [

Theorem 10 enables us to complete the proof of theorem 8. We have already
seen that the fixed point . of the graph transform is continuous. However, with
a little more work we can even establish a similar result if we restrict the domain
of the graph transform to Lipschitz—sections; see [10] or [17] for details. This fact,
viz that . is Lipschitz, together with the observation that the family of spaces
graph(w.(r)), r € Hp, is D f.—invariant, implies that graph(w.(r)) is tangent to
H. at ¢.(r), for all r € Hy. Therefore ¢, is a C' embedding, whose image H, is
therefore C1 as well.

3.5. Continuation

In many examples one may want to compute a continuous family of invariant
manifolds for a family f. of diffeomorphisms, where £ ranges over a parameter
interval that is not necessarily small. To apply the algorithm to such continuation
problems we increase the parameter in small steps (possibly adapting the step size
near parameter values for which the normal hyperbolicity is weak), and adjust
the invariant splitting after each increase of the parameter . In this setting the
algorithm has to deliver output, that serves as input to the next step in the con-
tinuation process, viz the increase of the parameter €. The input to the algorithm,
that computes the invariant manifold, has been described at the beginning of sec-
tion 3.3. In view of the condition that the output of the algorithm has to be of
the same type as the input, we therefore require that for a certain value of € the
algorithm computes:

e An embedding ¢. : Hy — R?, whose image is the invariant manifold H. of

fe- This embedding is computed by repeated application of algorithm GRAPH
TRANSFORM; see section 3.3.2.



Vol. 48 (1997) Algorithms for computing invariant manifolds 501

e A diffeomorphism o, : Hy — Hp, together with its inverse &., such that
fe(pe(0.(r))) = we(r) (as we have seen, g, may be considered as the restriction
of fE_1 to H.). In fact, repeated application of algorithm GRAPH TRANSFORM
not only yields the embedding ¢., but also the map p,; see again section 3.3.2.

e The Df.-invariant splitting T(H.) ®N*(H.) of the tangent bundle T_(R%). In
particular, we assume that N2(H.) is represented by the vectors v$(r,e) € R9,
1 <4 < s, which define an orthonormal system with respect to the Riemannian
metric on R?. The computation of this splitting is described in section 3.4.

Hence the algorithm can be applied without further adaptations to the compu-

tation of invariant manifolds in a continuation setting. We illustrate our method
with several examples in section 7.

4. Special case II: absence of normal contraction

In this section we develop an algorithm for the computation of the invariant man-
ifold in the special case of absence of normal contraction, viz N*(Hp) = 0. Here
we drop the superscript v from our notation, by writing e.g. Ko(r), i;(r), instead
of K{y(r), ri;(r), etc.

Again we define the graph transform h — 7 by requiring that f- ! maps a point
of the form ®(o, h(o,¢€)) onto a point of the form ®(r,n). In other words: 7 is the
second component of the solution (o(r,e),n(r,€)) of the equation

fH®(0, h(0,€))) = @(r, 7). (18)

This leads to a version of the algorithm that is completely similar to that of
section 3.3, with the understanding that f. is replaced with f=1.

From an algorithmic point of view the computation of f~ 1 may degrade the
performance dramatically. So we briefly describe an alternative approach, in which
the graph transform is obtained by solving the equation

F(Ua n,r, 5) = 07 (19)
where F': Hy x R* x Hy x R — R? is defined by
F(0'7777T7 5) = f((I)(’I“, 77)75) - (I)(U7 h(”(ﬂ 6)76))' (20)

This equation is equivalent to (18), but releaves us from the burden of computing
f= 1 in the evaluation of F'. Note that F(ao(r),0,7,0) = fo(po(r))—¢o(oo(r)) = 0.

€

Therefore, in this case we define G : R x Hy x R — R? by
G(¥(&,m),me) = F(&n,1,8), (21)
with W : Hy x R® — R? defined by
V(& n) = 2(00(&);n)- (22)
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Note that, since g (r) = ¥(op(r),0), we have G(pg(r),r,0) = 0.

As in lemma 4 the linear map L(r) = D,G(¢o(r),r,0) has a simple expression,
that is convenient for the implementation of our algorithm if there is no normal
contraction.

Lemma 11. The linear map
L(r) : N;:(Ho) ® T, (Ho) — N7 ) (Ho) @ T, (- (Ho)
leaves the direct sum composition invariant, and for v, € T,(Hp), v, € N¥(Hp)
L(r)(vy ® ve) = Ko(r)vy & (—Ao(r)ve).
In particular, L(r) is invertible, and L(r)~! = Ko(r)~' @ (=Ag(r)~1).

Proof. Taking £ =0 in (20) we see that:

Fo(&,m, ) = fo(®(r,n)) — 2(£,0)
= fo(®(r,m)) — wo(§)

Therefore

DEFO(JO(T)707T) = _DSOO(UO(T))v (23)
DynFo(oo(r),0,7) = D fo(eo(r)) - Dy®(r,0). (24)

Since L(r) = DyGo(po(r),r), and Fo(&,n,7) = Go(¥(§,n),r), we see that

DgFo(O'()(?“),O,’I“) = L(T) : DE\II(UO(T)vo)
(r) - De®(r,0) - Doo(oo(r))
(1) - Do(r) - Doo(oo(r)). (25)

I
~

On the other hand we have po(r) = fo(vo(00(r))), so

Deo(ao(r)) = Dfo(po(r)) - Deo(r) - Deo(oo(r))- (26)

Since Do (r)-Doo(00(r)) is an isomorphism T, ) (Ho) — T, (Ho), we derive from
(23), (25) and (26) that

L(r) | T,(Ho) = =D fo(po(r)) | Tr(Ho).

Using (24) we conclude similarly

L(r) | N}(Hg) = D fo(wo(r)) | Ny (Ho).
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Since D fo(po(r)) | T(Hp) = Ap(r) and D fo(eo(r)) | N¥(Hy) = Ko(r), this
completes the proof. O

Suppose that h: Hy — R" is of the form:
h(r,e) = e(hi(r), -+ hu(r)) + O(e?). (27)

The expression for G in this case is (cf lemma 5):

Lemma 12. Forr € Hy:

u

G1(po(r)sr) = fi(po(r)) = D hi(oo(r))vf (o0(r)). (28)

=1

Proof. For y € R? we have G(y,r,¢) = F(&,n,7,¢€), where (£,1) = ¥~ 1(y), with
¥ as in (11), i.e.

y = ®(00(£),m)-
Therefore

G(:’J?r? 6) = f((I)(T, 77)75) - (I)(f, h(£76))7

Since G1(y,r) = %—f(y,r, 0), we see that

u

Gily,r) = fi(®(r,n) = Y hi(€)vi'(€).

i=1

Since ¢g(r) = ¥(op(r),0), we see that

u

G1(po(r),r) = filpo(r)) = D hiloo(r)wi' (o0(r)).

i=1
]

As in section 3, corollary 6, the fixed point ¥ of A is of the form y(r,e) =
po(r) + €71 (r) + O(e?), with

T1(r) = = L(r)~" - Gi(eo(r),7)

= Z hi(ao(r))(Ko(r));jlvj(oo(r)) — Ko(r) "'V (oo (r))+

ij=1
Ao(r) "tV e(oo(r)).

Therefore we have a good starting point for the Newton operator. Note that this
version of the algorithm does not need to compute f 1 which in practical cases
may turn out to be a very convenient feature.
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5. The general case

There are several ways to extend algorithm GRAPH TRANSFORM to compute the
invariant manifold H, of f. in the case where both normal expansion and normal
contraction are present. One straightforward method is presented in section 5.1.
To the best of our knowledge this is the first algorithm that computes invariant
manifolds for which the normal dynamics exhibits both contraction and expansion.

A second algorithm first computes W#(H,) and W*(H., ), the stable and unsta-
ble manifolds of Hy, see section 2.1, and determines H, as the intersection of these
manifolds. We describe this version in section 5.2. A drawback is the need for a
separate algorithm to compute the intersection of submanifolds.

5.1. Computing H.

Combining the algorithms of section 3 and section 4 yields a hybrid method for
the computation of H.. As before H. is of the form

H. = {®(r,h.(r), b (r) | 7 € Ho},

where ° : Hy xR — R* and k" : Hy x R — R* are C! functions. (Again we adopt
the notation introduced in section 2.2.) The pair (7, ") is the fixed point of the
graph transform I'y, defined on the space of pairs (hs, h,,) (as before endowed with
a suitable norm that turns it into a complete metric space). The graph transform
is of the form
Ly(h®, h") = (D3 (R°, hY), T%(h*, h")).

The operator I'}, called the forward graph transform, is similar to the operator
defined in section 3, whereas Iy, called the backward graph transform, is similar
to the operator defined in section 4.

More precisely, for a section h = (h®, h*) : Hg x R — R® x R¥, there is a
section n = (n®,n*) : Hyp x R — R® x R*, such that f.(graph(h.)) = graph(n.).
The forward graph transform is defined by

5(h) = n". (29)

Similarly, there is a section & = (£°,&%) : Hg x R — R x R*, such that
f-Y(graph(h.)) = graph(&.). The backward graph transform is then defined by

TY%(h) = €". (30)

Again I'y is a contraction, whose fixed point defines the invariant manifold H.

The geometric conditions (29) and (30) are both equivalent to equations of the
form F(r,y°,y% ) = 0, where F : Hy x R® x R* x R — R% is a C' map, defined
as in section 3, equation (4) and section 4, equation (19), respectively. Again
Newton’s method can be used to solve these equations. Although more involved,
the details of the implementation are similar to those of the ‘pure’ versions of
Newton’s method. We omit these details, but refer to section 7.2 for an illustration
of the performance of this approach.
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5.2. Computing W*(H,) and W*(H,)

We construct the stable manifold W#(H. ) as the graph of a function y. : Hy xR® —
R™ (Actually, the domain of y. is a neighborhood of Hy x {0} in Hy x R¥). This
graph is defined by

graph(ys) = {(I)(rvxvys(rv LC)) | (7", {E) € Hp x RS}

The graph transform I'y_ is defined by the following geometric condition:

= (graph(y.)) = graph(T'y, (ye))- (31)

Apart from technical details, we are now in the context of section 3.1. Therefore, it
is possible to translate condition (31) into an equation of the form (8). Solving this
equation using algorithm NEWTON yields again a straighforward implementation
of the graph transform, whose fixed point defines the invariant manifold W*(H.,).
Since the unstable manifold of H, is the stable manifold with respect to f= Lot
can be computed similarly.

This approach yields an other method for the computation of H.. Let us
assume that the stable manifold W*(H,) has been computed as the graph of a
map Y, : Hp x R® — R*. The manifold H, C W¥(H,) can then be determined as
the graph of a map h. : Hy — R, i.e. as a set of the form

graph(he) = {®(r, he (1), 7. (1, he(r))) | 7 € Ho}.

In fact, restricting to the stable manifold W#(H,) brings us back to the special
case of absence of normal expansion. The map 7, establishes a diffeomorphism
between Hy x R® and W*(H,). Proceeding as in section 3, we introduce the graph
transform Iy, on the space of families of maps (sections) Hy — R®. More precisely,
for a section h. : Hy — R® the section h. = I's_(h.) is defined by the condition

graph(he) = fe(graph(he)).

The section h. is well-defined, since graph(7.) is f.—invariant. The D f.-invariant
splitting of 7. (R?) can be computed as in the case of absence of normal expansion.

5.3. Continuation: the computation of N*(H,) @ T(H.) ® N*(H,)

As explained in section 3.5, the algorithm can be applied in a continuation context,
provided there is a subroutine that computes the D f.—invariant splitting N*(H, ) ®
T(H.)®N*(H,) of the tangent bundle Ty_ (R?). Such a subroutine can be obtained
by applying some minor changes to the method of section 3.4.

To see this, consider the space Qs(eg), where an element w € Q,(gp) maps a
pair (r,e) € Hy x [—e0,€0] continuously onto a linear map w(r,e) : N:(Hpy) —
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N¥(Hg) @ T, (Hg). The stable normal bundle is obtained by iterating an operator
Ts : Qs(eg) — Qs(eg), defined by the requirement that, for @ = 7, (w),

graph(@: (r)) = Dfe(p(r) " graph(w: (7. (r))).

See also (16). As in section 3.4 one proves that 7, is a contraction, whose fixed
point W defines N*(H,) by

Ny (H.) = {@.(r) - u®u | u € Ni(Hp)}.

The unstable bundle N*(H.) is obtained from the fixed point of a similarly
defined contraction 7,,, defined on the space of linear maps

w(r,e) : Ni(Ho) — T (Ho) & N7 (Hp),

that depend continuously on (r,e) € Hp x R.

The tangent bundle T(H,.) is computed in two steps. First, we compute the
space N¥(H.) & T,(H.) from the fixed point of an operator 7o, : Qcu(g0) —
Qcu(20), that is similar to the operator 7, introduced in section 3.4. Here Q. (¢q)
consists of families of linear maps w(r, ) : N*(H,) @ T, (H,) — N2(H,), depending
continuously on (r,¢). Then W = 7, (w) is defined by

graph(we(r)) = D fe(pe(2(r)))graph(we(a(r)))-

The space T, (Hg) @& N2(Hg) is computed similarly. Finally, the tangent space
T, (H,) is determined by intersecting the spaces N¥(H,) @ T, (H.) and T,(Hp) &
N; (Ho).

6. The discretized graph transform

6.1. The discretization problem

In implementations of the graph transform infinite dimensional objects need to be
approximated by finite dimensional spaces, that have a finite representation. We
sketch a feasible approximation scheme for manifolds and function spaces, thereby
obtaining a discretized version of the graph transform. An important parameter
of any approximation scheme is the discretization error. We derive a bound for
the discretization error in terms of a geometric parameter of the approximation
scheme. Numerical experiments corroborate this bound. First, however, we sketch
the approximation scheme and state the main result concerning the discretization
error. Related papers dealing with computational issues are e.g. [5, 6]. For a more
complete survey, see [14].
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Figure 3. _
The discretized Graph Transform I'.

The manifold Hy is approximated by a finite simplicial complex K, embedded
in RY. E.g. if Hy is two-dimensional, such a complex is a polyhedral surface
with affine triangles, whose vertices are points on Hg. The discretization error is
expressed in terms of the mesh width m(K), viz the maximal diameter of any of
the simplices of K.

In our continuation scheme we increase the parameter € by small steps. At
this moment we fix the value of ¢, suppressing ¢ from the notation (e.g. by writing
I' instead of I'y,, by considering sections as maps Ho — R® instead of Hp X
[—£0,€0] — R?).

The domain of both the graph transform and the Newton operator are spaces
of functions Hy — RF, with k = s and k = d, respectively. These function spaces
are approximated by the space £(K,R*) of simplexwise linear functions. We shall
describe how to construct this finite dimensional function space, together with a
projection-like approximation map P : CO(Hy, R¥) — £(K,R¥), and an inclusion-
like map 7 : L(K,R¥F) — CO(Hy,R¥), a right inverse of P. The discretized graph
transform is the operator T’ on the space L(K,R*), with T ~ P - T -Z. See also
Figure 3. The definition of the graph transform implies that I" can be extended as
an operator on C¥ (Hp,R®). The implementation establishes a discretized graph
transform T, such that the diagram in Figure 3 commutes up to O(m(K)?); see
section 6.4. More precisely, we construct an operator I' on the space £(K, R®) such
that

|ITPh — PTh||co = O(m(K)?). (32)

For (32) to hold we need to assume that fy and Hy are C3. In particular we
assume that Hg is a 3-normally hyperbolic invariant manifold of fy. In particular
we shall use that under these conditions the subspace C,? (Hp,R?) of C2-sections
with bounded second derivatives is invariant under I'.

The operator I is not guaranteed to be a contraction, so a priori it seems hard
to speak of convergence of iteration under this operator. Fortunately, condition
(32) turns out to be sufficient for obtaining a good estimate for the accuracy of
this iteration process.
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To see this, consider the ideal sequence h,, defined by h, := I'hg, with hg
some well chosen initial value, cf section 3, remark 7. This sequence converges to
the fixed point hs of the graph transform, which defines the invariant manifold
we set out to compute. The computed sequence hy, is defined by

— [ Phy, ifn=0,
"\ Thp1, ifn>0.

The next result gives information on when to stop iterating under T.

Theorem 13 (Discretization Error). Let fo be_C?’, and let Hy be a 3-normally
hyperbolic invariant manifold of fo. Let h,, and h,, be as above. Then
Termination: There is an N > 0 such that, for n > N:

[Fing1 = Finllco = O(m(K0)?). (33)
Approximation: If (33) holds, then

|77 — hoclico = O(m(K)?). (34)

As usual in numerical contexts, the constants implicit in (33) and (34) are not
known in general. However, numerical experiments may give a clue on the size of
the constants.

The termination clause of the theo