8,016 research outputs found

    Algorithms for Computing the QR Decomposition of a Set of Matrices with Common Columns

    Get PDF
    The QR decomposition of a set of matrices which have common columns is investigated. The triangular factors of the QR decompositions are represented as nodes of a weighted directed graph. An edge between two nodes exists if and only if the columns of one of the matrices is a subset of the columns of the other. The weight of an edge denotes the computational complexity of deriving the triangular factor of the destination node from that of the source node. The problem is equivalent to constructing the graph and finding the minimum cost for visiting all the nodes. An algorithm which computes the QR decompositions by deriving the minimum spanning tree of the graph is proposed. Theoretical measures of complexity are derived and numerical results from the implementation of this and alternative heuristic algorithms are give

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data

    Efficient Algorithms for CUR and Interpolative Matrix Decompositions

    Full text link
    The manuscript describes efficient algorithms for the computation of the CUR and ID decompositions. The methods used are based on simple modifications to the classical truncated pivoted QR decomposition, which means that highly optimized library codes can be utilized for implementation. For certain applications, further acceleration can be attained by incorporating techniques based on randomized projections. Numerical experiments demonstrate advantageous performance compared to existing techniques for computing CUR factorizations

    Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis

    Randomized methods for matrix computations

    Full text link
    The purpose of this text is to provide an accessible introduction to a set of recently developed algorithms for factorizing matrices. These new algorithms attain high practical speed by reducing the dimensionality of intermediate computations using randomized projections. The algorithms are particularly powerful for computing low-rank approximations to very large matrices, but they can also be used to accelerate algorithms for computing full factorizations of matrices. A key competitive advantage of the algorithms described is that they require less communication than traditional deterministic methods
    corecore