47,664 research outputs found

    Paradoxical Compression with Verifiable Delay Functions

    Get PDF
    Lossless compression algorithms such as DEFLATE strive to reliably process arbitrary inputs, while achieving compressed sizes as low as possible for commonly encountered data inputs. It is well-known that it is mathematically impossible for a compression algorithm to simultaneously achieve non-trivial compression on some inputs (i.e. compress these inputs into strictly shorter outputs) and to never expand any other input (i.e. guaranteeing that all inputs will be compressed into an output which is no longer than the input); this is a direct application of the pigeonhole principle . Despite their mathematical impossibility, we show in this paper how to build such paradoxical compression and decompression algorithms, with the aid of some tools from cryptography, notably verifiable delay functions, and, of course, by slightly cheating

    Optimal construction of compressed indexes for highly repetitive texts

    Get PDF
    We propose algorithms that, given the input string of length n over integer alphabet of size σ, construct the Burrows–Wheeler transform (BWT), the permuted longest-common-prefix (PLCP) array, and the LZ77 parsing in O(n/ logσ n + r polylog n) time and working space, where r is the number of runs in the BWT of the input. These are the essential components of many compressed indexes such as compressed suffix tree, FM-index, and grammar and LZ77-based indexes, but also find numerous applications in sequence analysis and data compression. The value of r is a common measure of repetitiveness that is significantly smaller than n if the string is highly repetitive. Since just accessing every symbol of the string requires Ω(n/ logσ n) time, the presented algorithms are time and space optimal for inputs satisfying the assumption n/r ∈ Ω(polylog n) on the repetitiveness. For such inputs our result improves upon the currently fastest general algorithms of Belazzougui (STOC 2014) and Munro et al. (SODA 2017) which run in O(n) time and use O(n/ logσ n) working space. We also show how to use our techniques to obtain optimal solutions on highly repetitive data for other fundamental string processing problems such as: Lyndon factorization, construction of run-length compressed suffix arrays, and some classical “textbook” problems such as computing the longest substring occurring at least some fixed number of times. Copyright © 2019 by SIAMPeer reviewe
    corecore