26,588 research outputs found

    Instance complexity of Boolean functions

    Full text link
    In the area of query complexity of Boolean functions, the most widely studied cost measure of an algorithm is the worst-case number of queries made by it on an input. Motivated by the most natural cost measure studied in online algorithms, the competitive ratio, we consider a different cost measure for query algorithms for Boolean functions that captures the ratio of the cost of the algorithm and the cost of an optimal algorithm that knows the input in advance. The cost of an algorithm is its largest cost over all inputs. Grossman, Komargodski and Naor [ITCS'20] introduced this measure for Boolean functions, and dubbed it instance complexity. Grossman et al. showed, among other results, that monotone Boolean functions with instance complexity 1 are precisely those that depend on one or two variables. We complement the above-mentioned result of Grossman et al. by completely characterizing the instance complexity of symmetric Boolean functions. As a corollary we conclude that the only symmetric Boolean functions with instance complexity 1 are the Parity function and its complement. We also study the instance complexity of some graph properties like Connectivity and k-clique containment. In all the Boolean functions we study above, and those studied by Grossman et al., the instance complexity turns out to be the ratio of query complexity to minimum certificate complexity. It is a natural question to ask if this is the correct bound for all Boolean functions. We show a negative answer in a very strong sense, by analyzing the instance complexity of the Greater-Than and Odd-Max-Bit functions. We show that the above-mentioned ratio is linear in the input size for both of these functions, while we exhibit algorithms for which the instance complexity is a constant

    Weak Parity

    Get PDF
    We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2+eps fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that n randomized queries and n/2 quantum queries are needed to compute parity on all inputs. But surprisingly, we give a randomized algorithm for Weak Parity that makes only O(n/log^0.246(1/eps)) queries, as well as a quantum algorithm that makes only O(n/sqrt(log(1/eps))) queries. We also prove a lower bound of Omega(n/log(1/eps)) in both cases; and using extremal combinatorics, prove lower bounds of Omega(log n) in the randomized case and Omega(sqrt(log n)) in the quantum case for any eps>0. We show that improving our lower bounds is intimately related to two longstanding open problems about Boolean functions: the Sensitivity Conjecture, and the relationships between query complexity and polynomial degree.Comment: 18 page

    Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

    Full text link
    In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is O(n^mlogn^)O(\sqrt{\hat{n}m}\log \hat{n}), and the running time of the best known deterministic algorithm is O(n+m)O(n+m), where nn is the number of vertices, n^\hat{n} is the number of vertices with at least one outgoing edge; mm is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.Comment: UCNC2019 Conference pape

    Quantum algorithms for highly non-linear Boolean functions

    Full text link
    Attempts to separate the power of classical and quantum models of computation have a long history. The ultimate goal is to find exponential separations for computational problems. However, such separations do not come a dime a dozen: while there were some early successes in the form of hidden subgroup problems for abelian groups--which generalize Shor's factoring algorithm perhaps most faithfully--only for a handful of non-abelian groups efficient quantum algorithms were found. Recently, problems have gotten increased attention that seek to identify hidden sub-structures of other combinatorial and algebraic objects besides groups. In this paper we provide new examples for exponential separations by considering hidden shift problems that are defined for several classes of highly non-linear Boolean functions. These so-called bent functions arise in cryptography, where their property of having perfectly flat Fourier spectra on the Boolean hypercube gives them resilience against certain types of attack. We present new quantum algorithms that solve the hidden shift problems for several well-known classes of bent functions in polynomial time and with a constant number of queries, while the classical query complexity is shown to be exponential. Our approach uses a technique that exploits the duality between bent functions and their Fourier transforms.Comment: 15 pages, 1 figure, to appear in Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'10). This updated version of the paper contains a new exponential separation between classical and quantum query complexit
    corecore