13,237 research outputs found

    Approximation Algorithms for Semi-random Graph Partitioning Problems

    Full text link
    In this paper, we propose and study a new semi-random model for graph partitioning problems. We believe that it captures many properties of real--world instances. The model is more flexible than the semi-random model of Feige and Kilian and planted random model of Bui, Chaudhuri, Leighton and Sipser. We develop a general framework for solving semi-random instances and apply it to several problems of interest. We present constant factor bi-criteria approximation algorithms for semi-random instances of the Balanced Cut, Multicut, Min Uncut, Sparsest Cut and Small Set Expansion problems. We also show how to almost recover the optimal solution if the instance satisfies an additional expanding condition. Our algorithms work in a wider range of parameters than most algorithms for previously studied random and semi-random models. Additionally, we study a new planted algebraic expander model and develop constant factor bi-criteria approximation algorithms for graph partitioning problems in this model.Comment: To appear at the 44th ACM Symposium on Theory of Computing (STOC 2012

    Incorporating Road Networks into Territory Design

    Full text link
    Given a set of basic areas, the territory design problem asks to create a predefined number of territories, each containing at least one basic area, such that an objective function is optimized. Desired properties of territories often include a reasonable balance, compact form, contiguity and small average journey times which are usually encoded in the objective function or formulated as constraints. We address the territory design problem by developing graph theoretic models that also consider the underlying road network. The derived graph models enable us to tackle the territory design problem by modifying graph partitioning algorithms and mixed integer programming formulations so that the objective of the planning problem is taken into account. We test and compare the algorithms on several real world instances

    Improved Cheeger's Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral Gap

    Get PDF
    Let \phi(G) be the minimum conductance of an undirected graph G, and let 0=\lambda_1 <= \lambda_2 <=... <= \lambda_n <= 2 be the eigenvalues of the normalized Laplacian matrix of G. We prove that for any graph G and any k >= 2, \phi(G) = O(k) \lambda_2 / \sqrt{\lambda_k}, and this performance guarantee is achieved by the spectral partitioning algorithm. This improves Cheeger's inequality, and the bound is optimal up to a constant factor for any k. Our result shows that the spectral partitioning algorithm is a constant factor approximation algorithm for finding a sparse cut if \lambda_k$ is a constant for some constant k. This provides some theoretical justification to its empirical performance in image segmentation and clustering problems. We extend the analysis to other graph partitioning problems, including multi-way partition, balanced separator, and maximum cut

    Towards an SDP-based Approach to Spectral Methods: A Nearly-Linear-Time Algorithm for Graph Partitioning and Decomposition

    Full text link
    In this paper, we consider the following graph partitioning problem: The input is an undirected graph G=(V,E),G=(V,E), a balance parameter b(0,1/2]b \in (0,1/2] and a target conductance value γ(0,1).\gamma \in (0,1). The output is a cut which, if non-empty, is of conductance at most O(f),O(f), for some function f(G,γ),f(G, \gamma), and which is either balanced or well correlated with all cuts of conductance at most γ.\gamma. Spielman and Teng gave an O~(E/γ2)\tilde{O}(|E|/\gamma^{2})-time algorithm for f=γlog3Vf= \sqrt{\gamma \log^{3}|V|} and used it to decompose graphs into a collection of near-expanders. We present a new spectral algorithm for this problem which runs in time O~(E/γ)\tilde{O}(|E|/\gamma) for f=γ.f=\sqrt{\gamma}. Our result yields the first nearly-linear time algorithm for the classic Balanced Separator problem that achieves the asymptotically optimal approximation guarantee for spectral methods. Our method has the advantage of being conceptually simple and relies on a primal-dual semidefinite-programming SDP approach. We first consider a natural SDP relaxation for the Balanced Separator problem. While it is easy to obtain from this SDP a certificate of the fact that the graph has no balanced cut of conductance less than γ,\gamma, somewhat surprisingly, we can obtain a certificate for the stronger correlation condition. This is achieved via a novel separation oracle for our SDP and by appealing to Arora and Kale's framework to bound the running time. Our result contains technical ingredients that may be of independent interest.Comment: To appear in SODA 201

    On the Distributed Complexity of Large-Scale Graph Computations

    Full text link
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k2k \geq 2 machines jointly perform computations on graphs with nn nodes (typically, nkn \gg k). The input graph is assumed to be initially randomly partitioned among the kk machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication {\em rounds} of the computation. Our main contribution is the {\em General Lower Bound Theorem}, a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. The General Lower Bound Theorem is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic and this theorem can be used in a "cookbook" fashion to show distributed lower bounds in the context of several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds for the round complexity of two fundamental graph problems, namely {\em PageRank computation} and {\em triangle enumeration}. Our approach, as demonstrated in the case of PageRank, can yield tight lower bounds for problems (including, and especially, under a stochastic partition of the input) where communication complexity techniques are not obvious. Our approach, as demonstrated in the case of triangle enumeration, can yield stronger round lower bounds as well as message-round tradeoffs compared to approaches that use communication complexity techniques
    corecore