9,351 research outputs found

    Algorithmic complexity of quantum capacity

    Full text link
    Recently the theory of communication developed by Shannon has been extended to the quantum realm by exploiting the rules of quantum theory. This latter stems on complex vector spaces. However complex (as well as real) numbers are just idealizations and they are not available in practice where we can only deal with rational numbers. This fact naturally leads to the question of whether the developed notions of capacities for quantum channels truly catch their ability to transmit information. Here we answer this question for the quantum capacity. To this end we resort to the notion of semi-computability in order to approximately (by rational numbers) describe quantum states and quantum channel maps. Then we introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Finally we define algorithmic quantum capacity and prove that it equals the standard one

    Sequential Predictions based on Algorithmic Complexity

    Get PDF
    This paper studies sequence prediction based on the monotone Kolmogorov complexity Km=-log m, i.e. based on universal deterministic/one-part MDL. m is extremely close to Solomonoff's universal prior M, the latter being an excellent predictor in deterministic as well as probabilistic environments, where performance is measured in terms of convergence of posteriors or losses. Despite this closeness to M, it is difficult to assess the prediction quality of m, since little is known about the closeness of their posteriors, which are the important quantities for prediction. We show that for deterministic computable environments, the "posterior" and losses of m converge, but rapid convergence could only be shown on-sequence; the off-sequence convergence can be slow. In probabilistic environments, neither the posterior nor the losses converge, in general.Comment: 26 pages, LaTe

    Algorithmic Complexity of Real Financial Markets

    Full text link
    A new approach to the understanding of the complex behavior of financial markets index using tools from thermodynamics and statistical physics is developed. Physical complexity, a magnitude rooted in the Kolmogorov-Chaitin theory is applied to binary sequences built up from real time series of financial markets indices. The study is based on NASDAQ and Mexican IPC data. Different behaviors of this magnitude are shown when applied to the intervals of series placed before crashes and in intervals when no financial turbulence is observed. The connection between our results and The Efficient Market Hypothesis is discussed.Comment: 13 pages, 4 figures, submitted to European Physical Journal

    Algorithmic Complexity of Power Law Networks

    Full text link
    It was experimentally observed that the majority of real-world networks follow power law degree distribution. The aim of this paper is to study the algorithmic complexity of such "typical" networks. The contribution of this work is twofold. First, we define a deterministic condition for checking whether a graph has a power law degree distribution and experimentally validate it on real-world networks. This definition allows us to derive interesting properties of power law networks. We observe that for exponents of the degree distribution in the range [1,2][1,2] such networks exhibit double power law phenomenon that was observed for several real-world networks. Our observation indicates that this phenomenon could be explained by just pure graph theoretical properties. The second aim of our work is to give a novel theoretical explanation why many algorithms run faster on real-world data than what is predicted by algorithmic worst-case analysis. We show how to exploit the power law degree distribution to design faster algorithms for a number of classical P-time problems including transitive closure, maximum matching, determinant, PageRank and matrix inverse. Moreover, we deal with the problems of counting triangles and finding maximum clique. Previously, it has been only shown that these problems can be solved very efficiently on power law graphs when these graphs are random, e.g., drawn at random from some distribution. However, it is unclear how to relate such a theoretical analysis to real-world graphs, which are fixed. Instead of that, we show that the randomness assumption can be replaced with a simple condition on the degrees of adjacent vertices, which can be used to obtain similar results. As a result, in some range of power law exponents, we are able to solve the maximum clique problem in polynomial time, although in general power law networks the problem is NP-complete

    Algorithmic Complexity of Financial Motions

    Get PDF
    We survey the main applications of algorithmic (Kolmogorov) complexity to the problem of price dynamics in financial markets. We stress the differences between these works and put forward a general algorithmic framework in order to highlight its potential for financial data analysis. This framework is “general" in the sense that it is not constructed on the common assumption that price variations are predominantly stochastic in nature.algorithmic information theory; Kolmogorov complexity; financial returns; market efficiency; compression algorithms; information theory; randomness; price movements; algorithmic probability

    Algorithmic complexity

    No full text
    The information content or complexity of an object can be measured by the length of its shortest description. For instance the string "01010101010101010101010101010101" has the short description "16 repetitions of 01", while "11001000011000011101111011101100" presumably has no simpler description other than writing down the string itself. More formally, the Algorithmic "Kolmogorov" Complexity (AC) of a string x is defined as the length of the shortest program that computes or outputs x , where the program is run on some fixed reference universal computer
    corecore