8,724 research outputs found

    A Termination Detection Protocol for Use in Mobile Ad Hoc Networks

    Get PDF
    As computing devices become smaller and wireless networking technologies improve, the popularity of mobile computing continues to rise. In today\u27s business world, many consider devices such as cell phones, PDAs, and laptops as essential tools. As these and other devices become increasingly independent of the wired infrastructure, new kinds of applications that assume an ad hoc network infrastructure will need to be deployed. Such a setting poses new challenges for the software developer, e.g., the lack of an established network topology, bandwidth limitations, and frequent disconnections. In this paper, we begin to explore design strategies for developing applications over ad hoc networks. The study of termination detection in diffusing computations, along with the formulation of an algorithmic solution amenable to usage in mobile ad joc networks, gives us the opportunity to bring to light several important software engineering concerns and design strategies one might employ in a mobile setting. We view this effort as a first step towards creating a repertoire of commonly used design solutions for frequently encountered problems in the development of applications over mobile ad hoc networks

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(lognloglogΔ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(loglogΔ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio

    Algorithmic Aspects of Energy-Delay Tradeoff in Multihop Cooperative Wireless Networks

    Full text link
    We consider the problem of energy-efficient transmission in delay constrained cooperative multihop wireless networks. The combinatorial nature of cooperative multihop schemes makes it difficult to design efficient polynomial-time algorithms for deciding which nodes should take part in cooperation, and when and with what power they should transmit. In this work, we tackle this problem in memoryless networks with or without delay constraints, i.e., quality of service guarantee. We analyze a wide class of setups, including unicast, multicast, and broadcast, and two main cooperative approaches, namely: energy accumulation (EA) and mutual information accumulation (MIA). We provide a generalized algorithmic formulation of the problem that encompasses all those cases. We investigate the similarities and differences of EA and MIA in our generalized formulation. We prove that the broadcast and multicast problems are, in general, not only NP hard but also o(log(n)) inapproximable. We break these problems into three parts: ordering, scheduling and power control, and propose a novel algorithm that, given an ordering, can optimally solve the joint power allocation and scheduling problems simultaneously in polynomial time. We further show empirically that this algorithm used in conjunction with an ordering derived heuristically using the Dijkstra's shortest path algorithm yields near-optimal performance in typical settings. For the unicast case, we prove that although the problem remains NP hard with MIA, it can be solved optimally and in polynomial time when EA is used. We further use our algorithm to study numerically the trade-off between delay and power-efficiency in cooperative broadcast and compare the performance of EA vs MIA as well as the performance of our cooperative algorithm with a smart noncooperative algorithm in a broadcast setting.Comment: 12 pages, 9 figure

    Deterministic Digital Clustering of Wireless Ad Hoc Networks

    Full text link
    We consider deterministic distributed communication in wireless ad hoc networks of identical weak devices under the SINR model without predefined infrastructure. Most algorithmic results in this model rely on various additional features or capabilities, e.g., randomization, access to geographic coordinates, power control, carrier sensing with various precision of measurements, and/or interference cancellation. We study a pure scenario, when no such properties are available. As a general tool, we develop a deterministic distributed clustering algorithm. Our solution relies on a new type of combinatorial structures (selectors), which might be of independent interest. Using the clustering, we develop a deterministic distributed local broadcast algorithm accomplishing this task in O(ΔlogNlogN)O(\Delta \log^*N \log N) rounds, where Δ\Delta is the density of the network. To the best of our knowledge, this is the first solution in pure scenario which is only polylog(n)(n) away from the universal lower bound Ω(Δ)\Omega(\Delta), valid also for scenarios with randomization and other features. Therefore, none of these features substantially helps in performing the local broadcast task. Using clustering, we also build a deterministic global broadcast algorithm that terminates within O(D(Δ+logN)logN)O(D(\Delta + \log^* N) \log N) rounds, where DD is the diameter of the network. This result is complemented by a lower bound Ω(DΔ11/α)\Omega(D \Delta^{1-1/\alpha}), where α>2\alpha > 2 is the path-loss parameter of the environment. This lower bound shows that randomization or knowledge of own location substantially help (by a factor polynomial in Δ\Delta) in the global broadcast. Therefore, unlike in the case of local broadcast, some additional model features may help in global broadcast

    Data Dissemination in Unified Dynamic Wireless Networks

    Full text link
    We give efficient algorithms for the fundamental problems of Broadcast and Local Broadcast in dynamic wireless networks. We propose a general model of communication which captures and includes both fading models (like SINR) and graph-based models (such as quasi unit disc graphs, bounded-independence graphs, and protocol model). The only requirement is that the nodes can be embedded in a bounded growth quasi-metric, which is the weakest condition known to ensure distributed operability. Both the nodes and the links of the network are dynamic: nodes can come and go, while the signal strength on links can go up or down. The results improve some of the known bounds even in the static setting, including an optimal algorithm for local broadcasting in the SINR model, which is additionally uniform (independent of network size). An essential component is a procedure for balancing contention, which has potentially wide applicability. The results illustrate the importance of carrier sensing, a stock feature of wireless nodes today, which we encapsulate in primitives to better explore its uses and usefulness.Comment: 28 pages, 2 figure
    corecore