43,226 research outputs found

    Algorithmic Information Theory and Foundations of Probability

    Full text link
    The use of algorithmic information theory (Kolmogorov complexity theory) to explain the relation between mathematical probability theory and `real world' is discussed

    Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    Full text link
    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.Comment: 9 LaTeX page

    A Primer on the Tools and Concepts of Computable Economics

    Get PDF
    Computability theory came into being as a result of Hilbert's attempts to meet Brouwer's challenges, from an intuitionistc and constructive standpoint, to formalism as a foundation for mathematical practice. Viewed this way, constructive mathematics should be one vision of computability theory. However, there are fundamental differences between computability theory and constructive mathematics: the Church-Turing thesis is a disciplining criterion in the former and not in the latter; and classical logic - particularly, the law of the excluded middle - is not accepted in the latter but freely invoked in the former, especially in proving universal negative propositions. In Computable Economic an eclectic approach is adopted where the main criterion is numerical content for economic entities. In this sense both the computable and the constructive traditions are freely and indiscriminately invoked and utilised in the formalization of economic entities. Some of the mathematical methods and concepts of computable economics are surveyed in a pedagogical mode. The context is that of a digital economy embedded in an information society

    An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation

    Full text link
    This paper employs a powerful argument, called an algorithmic argument, to prove lower bounds of the quantum query complexity of a multiple-block ordered search problem in which, given a block number i, we are to find a location of a target keyword in an ordered list of the i-th block. Apart from much studied polynomial and adversary methods for quantum query complexity lower bounds, our argument shows that the multiple-block ordered search needs a large number of nonadaptive oracle queries on a black-box model of quantum computation that is also supplemented with advice. Our argument is also applied to the notions of computational complexity theory: quantum truth-table reducibility and quantum truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27, 200

    From Heisenberg to Goedel via Chaitin

    Full text link
    In 1927 Heisenberg discovered that the ``more precisely the position is determined, the less precisely the momentum is known in this instant, and vice versa''. Four years later G\"odel showed that a finitely specified, consistent formal system which is large enough to include arithmetic is incomplete. As both results express some kind of impossibility it is natural to ask whether there is any relation between them, and, indeed, this question has been repeatedly asked for a long time. The main interest seems to have been in possible implications of incompleteness to physics. In this note we will take interest in the {\it converse} implication and will offer a positive answer to the question: Does uncertainty imply incompleteness? We will show that algorithmic randomness is equivalent to a ``formal uncertainty principle'' which implies Chaitin's information-theoretic incompleteness. We also show that the derived uncertainty relation, for many computers, is physical. In fact, the formal uncertainty principle applies to {\it all} systems governed by the wave equation, not just quantum waves. This fact supports the conjecture that uncertainty implies randomness not only in mathematics, but also in physics.Comment: Small change
    • …
    corecore