24,761 research outputs found

    Algorithmic Identification of Probabilities

    Full text link
    TThe problem is to identify a probability associated with a set of natural numbers, given an infinite data sequence of elements from the set. If the given sequence is drawn i.i.d. and the probability mass function involved (the target) belongs to a computably enumerable (c.e.) or co-computably enumerable (co-c.e.) set of computable probability mass functions, then there is an algorithm to almost surely identify the target in the limit. The technical tool is the strong law of large numbers. If the set is finite and the elements of the sequence are dependent while the sequence is typical in the sense of Martin-L\"of for at least one measure belonging to a c.e. or co-c.e. set of computable measures, then there is an algorithm to identify in the limit a computable measure for which the sequence is typical (there may be more than one such measure). The technical tool is the theory of Kolmogorov complexity. We give the algorithms and consider the associated predictions.Comment: 19 pages LaTeX.Corrected errors and rewrote the entire paper. arXiv admin note: text overlap with arXiv:1208.500

    Algorithmic Identification of Probabilities

    Get PDF

    Algorithmic and Statistical Perspectives on Large-Scale Data Analysis

    Full text link
    In recent years, ideas from statistics and scientific computing have begun to interact in increasingly sophisticated and fruitful ways with ideas from computer science and the theory of algorithms to aid in the development of improved worst-case algorithms that are useful for large-scale scientific and Internet data analysis problems. In this chapter, I will describe two recent examples---one having to do with selecting good columns or features from a (DNA Single Nucleotide Polymorphism) data matrix, and the other having to do with selecting good clusters or communities from a data graph (representing a social or information network)---that drew on ideas from both areas and that may serve as a model for exploiting complementary algorithmic and statistical perspectives in order to solve applied large-scale data analysis problems.Comment: 33 pages. To appear in Uwe Naumann and Olaf Schenk, editors, "Combinatorial Scientific Computing," Chapman and Hall/CRC Press, 201

    Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR model

    Full text link
    This paper develops a matrix-variate adaptive Markov chain Monte Carlo (MCMC) methodology for Bayesian Cointegrated Vector Auto Regressions (CVAR). We replace the popular approach to sampling Bayesian CVAR models, involving griddy Gibbs, with an automated efficient alternative, based on the Adaptive Metropolis algorithm of Roberts and Rosenthal, (2009). Developing the adaptive MCMC framework for Bayesian CVAR models allows for efficient estimation of posterior parameters in significantly higher dimensional CVAR series than previously possible with existing griddy Gibbs samplers. For a n-dimensional CVAR series, the matrix-variate posterior is in dimension 3n2+n3n^2 + n, with significant correlation present between the blocks of matrix random variables. We also treat the rank of the CVAR model as a random variable and perform joint inference on the rank and model parameters. This is achieved with a Bayesian posterior distribution defined over both the rank and the CVAR model parameters, and inference is made via Bayes Factor analysis of rank. Practically the adaptive sampler also aids in the development of automated Bayesian cointegration models for algorithmic trading systems considering instruments made up of several assets, such as currency baskets. Previously the literature on financial applications of CVAR trading models typically only considers pairs trading (n=2) due to the computational cost of the griddy Gibbs. We are able to extend under our adaptive framework to n>>2n >> 2 and demonstrate an example with n = 10, resulting in a posterior distribution with parameters up to dimension 310. By also considering the rank as a random quantity we can ensure our resulting trading models are able to adjust to potentially time varying market conditions in a coherent statistical framework.Comment: to appear journal Bayesian Analysi

    Stationary Algorithmic Probability

    Full text link
    Kolmogorov complexity and algorithmic probability are defined only up to an additive resp. multiplicative constant, since their actual values depend on the choice of the universal reference computer. In this paper, we analyze a natural approach to eliminate this machine-dependence. Our method is to assign algorithmic probabilities to the different computers themselves, based on the idea that "unnatural" computers should be hard to emulate. Therefore, we study the Markov process of universal computers randomly emulating each other. The corresponding stationary distribution, if it existed, would give a natural and machine-independent probability measure on the computers, and also on the binary strings. Unfortunately, we show that no stationary distribution exists on the set of all computers; thus, this method cannot eliminate machine-dependence. Moreover, we show that the reason for failure has a clear and interesting physical interpretation, suggesting that every other conceivable attempt to get rid of those additive constants must fail in principle, too. However, we show that restricting to some subclass of computers might help to get rid of some amount of machine-dependence in some situations, and the resulting stationary computer and string probabilities have beautiful properties.Comment: 13 pages, 5 figures. Added an example of a positive recurrent computer se

    Misplaced Trust: Measuring the Interference of Machine Learning in Human Decision-Making

    Full text link
    ML decision-aid systems are increasingly common on the web, but their successful integration relies on people trusting them appropriately: they should use the system to fill in gaps in their ability, but recognize signals that the system might be incorrect. We measured how people's trust in ML recommendations differs by expertise and with more system information through a task-based study of 175 adults. We used two tasks that are difficult for humans: comparing large crowd sizes and identifying similar-looking animals. Our results provide three key insights: (1) People trust incorrect ML recommendations for tasks that they perform correctly the majority of the time, even if they have high prior knowledge about ML or are given information indicating the system is not confident in its prediction; (2) Four different types of system information all increased people's trust in recommendations; and (3) Math and logic skills may be as important as ML for decision-makers working with ML recommendations.Comment: 10 page

    Causal inference using the algorithmic Markov condition

    Full text link
    Inferring the causal structure that links n observables is usually based upon detecting statistical dependences and choosing simple graphs that make the joint measure Markovian. Here we argue why causal inference is also possible when only single observations are present. We develop a theory how to generate causal graphs explaining similarities between single objects. To this end, we replace the notion of conditional stochastic independence in the causal Markov condition with the vanishing of conditional algorithmic mutual information and describe the corresponding causal inference rules. We explain why a consistent reformulation of causal inference in terms of algorithmic complexity implies a new inference principle that takes into account also the complexity of conditional probability densities, making it possible to select among Markov equivalent causal graphs. This insight provides a theoretical foundation of a heuristic principle proposed in earlier work. We also discuss how to replace Kolmogorov complexity with decidable complexity criteria. This can be seen as an algorithmic analog of replacing the empirically undecidable question of statistical independence with practical independence tests that are based on implicit or explicit assumptions on the underlying distribution.Comment: 16 figure
    • …
    corecore