6,235 research outputs found

    Submodular Welfare Maximization

    Full text link
    An overview of different variants of the submodular welfare maximization problem in combinatorial auctions. In particular, I studied the existing algorithmic and game theoretic results for submodular welfare maximization problem and its applications in other areas such as social networks

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives

    Full text link
    We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a 2ee−1\frac{2e}{e-1}-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.Comment: A conference version appears in WINE 201

    Approximately Optimal Mechanism Design: Motivation, Examples, and Lessons Learned

    Full text link
    Optimal mechanism design enjoys a beautiful and well-developed theory, and also a number of killer applications. Rules of thumb produced by the field influence everything from how governments sell wireless spectrum licenses to how the major search engines auction off online advertising. There are, however, some basic problems for which the traditional optimal mechanism design approach is ill-suited --- either because it makes overly strong assumptions, or because it advocates overly complex designs. The thesis of this paper is that approximately optimal mechanisms allow us to reason about fundamental questions that seem out of reach of the traditional theory. This survey has three main parts. The first part describes the approximately optimal mechanism design paradigm --- how it works, and what we aim to learn by applying it. The second and third parts of the survey cover two case studies, where we instantiate the general design paradigm to investigate two basic questions. In the first example, we consider revenue maximization in a single-item auction with heterogeneous bidders. Our goal is to understand if complexity --- in the sense of detailed distributional knowledge --- is an essential feature of good auctions for this problem, or alternatively if there are simpler auctions that are near-optimal. The second example considers welfare maximization with multiple items. Our goal here is similar in spirit: when is complexity --- in the form of high-dimensional bid spaces --- an essential feature of every auction that guarantees reasonable welfare? Are there interesting cases where low-dimensional bid spaces suffice?Comment: Based on a talk given by the author at the 15th ACM Conference on Economics and Computation (EC), June 201

    Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design

    Full text link
    We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results

    Computable Rationality, NUTS, and the Nuclear Leviathan

    Get PDF
    This paper explores how the Leviathan that projects power through nuclear arms exercises a unique nuclearized sovereignty. In the case of nuclear superpowers, this sovereignty extends to wielding the power to destroy human civilization as we know it across the globe. Nuclearized sovereignty depends on a hybrid form of power encompassing human decision-makers in a hierarchical chain of command, and all of the technical and computerized functions necessary to maintain command and control at every moment of the sovereign's existence: this sovereign power cannot sleep. This article analyzes how the form of rationality that informs this hybrid exercise of power historically developed to be computable. By definition, computable rationality must be able to function without any intelligible grasp of the context or the comprehensive significance of decision-making outcomes. Thus, maintaining nuclearized sovereignty necessarily must be able to execute momentous life and death decisions without the type of sentience we usually associate with ethical individual and collective decisions
    • …
    corecore