17,485 research outputs found

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory

    Algorithmic aspects of branched coverings

    Get PDF
    This is the announcement, and the long summary, of a series of articles on the algorithmic study of Thurston maps. We describe branched coverings of the sphere in terms of group-theoretical objects called bisets, and develop a theory of decompositions of bisets. We introduce a canonical "Levy" decomposition of an arbitrary Thurston map into homeomorphisms, metrically-expanding maps and maps doubly covered by torus endomorphisms. The homeomorphisms decompose themselves into finite-order and pseudo-Anosov maps, and the expanding maps decompose themselves into rational maps. As an outcome, we prove that it is decidable when two Thurston maps are equivalent. We also show that the decompositions above are computable, both in theory and in practice.Comment: 60-page announcement of 5-part text, to apper in Ann. Fac. Sci. Toulouse. Minor typos corrected, and major rewrite of section 7.8, which was studying a different map than claime

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur
    corecore