10,935 research outputs found

    Effective criteria for specific identifiability of tensors and forms

    Get PDF
    In applications where the tensor rank decomposition arises, one often relies on its identifiability properties for interpreting the individual rank-11 terms appearing in the decomposition. Several criteria for identifiability have been proposed in the literature, however few results exist on how frequently they are satisfied. We propose to call a criterion effective if it is satisfied on a dense, open subset of the smallest semi-algebraic set enclosing the set of rank-rr tensors. We analyze the effectiveness of Kruskal's criterion when it is combined with reshaping. It is proved that this criterion is effective for both real and complex tensors in its entire range of applicability, which is usually much smaller than the smallest typical rank. Our proof explains when reshaping-based algorithms for computing tensor rank decompositions may be expected to recover the decomposition. Specializing the analysis to symmetric tensors or forms reveals that the reshaped Kruskal criterion may even be effective up to the smallest typical rank for some third, fourth and sixth order symmetric tensors of small dimension as well as for binary forms of degree at least three. We extended this result to 4×4×4×44 \times 4 \times 4 \times 4 symmetric tensors by analyzing the Hilbert function, resulting in a criterion for symmetric identifiability that is effective up to symmetric rank 88, which is optimal.Comment: 31 pages, 2 Macaulay2 code

    Onion Curve: A Space Filling Curve with Near-Optimal Clustering

    Get PDF
    Space filling curves (SFCs) are widely used in the design of indexes for spatial and temporal data. Clustering is a key metric for an SFC, that measures how well the curve preserves locality in moving from higher dimensions to a single dimension. We present the {\em onion curve}, an SFC whose clustering performance is provably close to optimal for the cube and near-cube shaped query sets, irrespective of the side length of the query. We show that in contrast, the clustering performance of the widely used Hilbert curve can be far from optimal, even for cube-shaped queries. Since the clustering performance of an SFC is critical to the efficiency of multi-dimensional indexes based on the SFC, the onion curve can deliver improved performance for data structures involving multi-dimensional data.Comment: The short version is published in ICDE 1

    Double Time Window Targeting Technique: Real time DMRG dynamics in the PPP model

    Get PDF
    We present a generalized adaptive time-dependent density matrix renormalization group (DMRG) scheme, called the {\it double time window targeting} (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo {\it et. al}, [Phys.Rev. Lett. {\bf 91}, 049701 (2003)], and the time-step targeting (TST) algorithm by Feiguin and White [Phys. Rev. B {\bf 72}, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics and spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity and, (iii) the simplistic interpretation of long-range correlations by merely renormalizing the {\it U} value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.Comment: Final (published) version; 39 pages, 13 figures, 1 table; 2 new references adde

    Sparse Coding on Symmetric Positive Definite Manifolds using Bregman Divergences

    Full text link
    This paper introduces sparse coding and dictionary learning for Symmetric Positive Definite (SPD) matrices, which are often used in machine learning, computer vision and related areas. Unlike traditional sparse coding schemes that work in vector spaces, in this paper we discuss how SPD matrices can be described by sparse combination of dictionary atoms, where the atoms are also SPD matrices. We propose to seek sparse coding by embedding the space of SPD matrices into Hilbert spaces through two types of Bregman matrix divergences. This not only leads to an efficient way of performing sparse coding, but also an online and iterative scheme for dictionary learning. We apply the proposed methods to several computer vision tasks where images are represented by region covariance matrices. Our proposed algorithms outperform state-of-the-art methods on a wide range of classification tasks, including face recognition, action recognition, material classification and texture categorization

    Hybrid LSTM and Encoder-Decoder Architecture for Detection of Image Forgeries

    Full text link
    With advanced image journaling tools, one can easily alter the semantic meaning of an image by exploiting certain manipulation techniques such as copy-clone, object splicing, and removal, which mislead the viewers. In contrast, the identification of these manipulations becomes a very challenging task as manipulated regions are not visually apparent. This paper proposes a high-confidence manipulation localization architecture which utilizes resampling features, Long-Short Term Memory (LSTM) cells, and encoder-decoder network to segment out manipulated regions from non-manipulated ones. Resampling features are used to capture artifacts like JPEG quality loss, upsampling, downsampling, rotation, and shearing. The proposed network exploits larger receptive fields (spatial maps) and frequency domain correlation to analyze the discriminative characteristics between manipulated and non-manipulated regions by incorporating encoder and LSTM network. Finally, decoder network learns the mapping from low-resolution feature maps to pixel-wise predictions for image tamper localization. With predicted mask provided by final layer (softmax) of the proposed architecture, end-to-end training is performed to learn the network parameters through back-propagation using ground-truth masks. Furthermore, a large image splicing dataset is introduced to guide the training process. The proposed method is capable of localizing image manipulations at pixel level with high precision, which is demonstrated through rigorous experimentation on three diverse datasets
    • …
    corecore