1,545,972 research outputs found
Algorithms for output feedback, multiple-model, and decentralized control problems
The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
Design automation with the characteristics properties model and the property driven design for redesign
This paper presents a framework consisting of a mathematical model and an algorithm for representation, analysis and exploration of the design space in redesign problems. The framework develops and extends the existing formalism of the Characteristics Properties Model (CPM) and Property Driven Design (PDD). A platform independent quantitative model based on formal log-ic is presented to map the characteristics and properties, as well as the relations and dependencies between them, along with solution conditions. The model is based on generalization of existing mathematical design models and is support-ed by the development of an algorithm enabling property driven design. The re-sulting framework offers a rich and flexible syntax and vocabulary along with a mathematical and computational tool applicable to mechanical product design
Design and Analysis of SD_DWCA - A Mobility based clustering of Homogeneous MANETs
This paper deals with the design and analysis of the distributed weighted
clustering algorithm SD_DWCA proposed for homogeneous mobile ad hoc networks.
It is a connectivity, mobility and energy based clustering algorithm which is
suitable for scalable ad hoc networks. The algorithm uses a new graph parameter
called strong degree defined based on the quality of neighbours of a node. The
parameters are so chosen to ensure high connectivity, cluster stability and
energy efficient communication among nodes of high dynamic nature. This paper
also includes the experimental results of the algorithm implemented using the
network simulator NS2. The experimental results show that the algorithm is
suitable for high speed networks and generate stable clusters with less
maintenance overhead
Stochastic Behavior Analysis of the Gaussian Kernel Least-Mean-Square Algorithm
The kernel least-mean-square (KLMS) algorithm is a popular algorithm in nonlinear adaptive filtering due to its
simplicity and robustness. In kernel adaptive filters, the statistics of the input to the linear filter depends on the parameters of the kernel employed. Moreover, practical implementations require a finite nonlinearity model order. A Gaussian KLMS has two design parameters, the step size and the Gaussian kernel bandwidth. Thus, its design requires analytical models for the algorithm behavior as a function of these two parameters. This paper studies the steady-state behavior and the transient behavior of the
Gaussian KLMS algorithm for Gaussian inputs and a finite order nonlinearity model. In particular, we derive recursive expressions for the mean-weight-error vector and the mean-square-error. The model predictions show excellent agreement with Monte Carlo simulations in transient and steady state. This allows the explicit analytical determination of stability limits, and gives opportunity
to choose the algorithm parameters a priori in order to achieve prescribed convergence speed and quality of the estimate. Design examples are presented which validate the theoretical analysis and illustrates its application
DiBELLA: Distributed long read to long read alignment
We present a parallel algorithm and scalable implementation for genome analysis, specifically the problem of finding overlaps and alignments for data from "third generation" long read sequencers [29]. While long sequences of DNA offer enormous advantages for biological analysis and insight, current long read sequencing instruments have high error rates and therefore require different approaches to analysis than their short read counterparts. Our work focuses on an efficient distributed-memory parallelization of an accurate single-node algorithm for overlapping and aligning long reads. We achieve scalability of this irregular algorithm by addressing the competing issues of increasing parallelism, minimizing communication, constraining the memory footprint, and ensuring good load balance. The resulting application, diBELLA, is the first distributed memory overlapper and aligner specifically designed for long reads and parallel scalability. We describe and present analyses for high level design trade-offs and conduct an extensive empirical analysis that compares performance characteristics across state-of-the-art HPC systems as well as a commercial cloud architectures, highlighting the advantages of state-of-the-art network technologies
- …
