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Stochastic Behavior Analysis of the Gaussian Kernel
L east-Mean-Sguare Algorithm

Wemerson D. Parreira, José Carlos M. Bermudez, Senior Member, |IEEE, Cédric Richard, Senior Member, |1EEE,
and Jean-Yves Tourneret, Senior Member, |EEE

Abstract—The kernel least-mean-square (KLMS) algorithm
is a popular algorithm in nonlinear adaptive filtering due to its
simplicity and robustness. In kernel adaptive filters, the statistics
of the input to the linear filter depends on the parameters of the
kernel employed. Moreover, practical implementations require a
finitenonlinearity model order. A Gaussian KLM Shastwo design
parameters, the step size and the Gaussian kernel bandwidth.
Thus, its design requires analytical models for the algorithm
behavior as a function of these two parameters. This paper
studiesthe steady-state behavior and the transient behavior of the
Gaussian KLM S algorithm for Gaussian inputs and a finite order
nonlinearity model. In particular, we derive recur sive expressions
for the mean-weight-error vector and the mean-square-error. The
model predictions show excellent agreement with Monte Carlo
simulations in transient and steady state. This allows the explicit
analytical determination of stability limits, and gives opportunity
to choose the algorithm parameters a priori in order to achieve
prescribed convergence speed and quality of the estimate. Design
examplesare presented which validate thetheoretical analysisand
illustratesits application.

Index Terms—Adaptive filtering, kernel least-mean-square
(KLMYS), convergence analysis, nonlinear system, reproducing
kernel.

I. INTRODUCTION

ANY practical applications (e.g., in communications

and bioengineering) require nonlinear signal pro-
cessing. Nonlinear systems can be characterized by represen-
tations ranging from higher-order statistics to series expansion
methods [1]. Nonlinear system identification methods based
on reproducing kernel Hilbert spaces (RKHS) have gained
popularity over the last decades [2], [3]. More recently, kernel
adaptive filtering has been recognized as an appealing solution
to the nonlinear adaptivefiltering problem, asworkingin RKHS
allows the use of linear structures to solve nonlinear estimation
problems. See [4] for an overview. The block diagram of a
kernel-based adaptive system identification problem is shown

W. D. Parreira J. C. M. Bermudezis with the Federal University of
Santa Catarina, Floriandpolis, SC, Brazil (e-mail: wemerson@lpds.ufsc.br;
j.bermudez@ieee.org).

C. Richard is the Université de Nice Sophia-Antipolis, Institut Universitaire
de France, France (e-mail: cedric.richard@unice.fr).

J.-Y. Tourneret is with the Université de Toulouse, CNRS, France (e-mail:
jean-yves.tourneret@enseei ht.fr).

Digital Object Identifier 10.1109/TSP.2012.2186132

in Fig. 1. Here, &/ isacompact subspaceof R4, x: U x U4 — R
is a reproducing kernel, (M, {-,-)») is the induced RKHS
with its inner product and z(n) is a zero-mean additive noise
uncorrelated with any other signal. The representer theorem
[2] states that the function «( - ) which minimizes the squared
estimation error Zle(d(n) — (u(n)))?, given N input
vectors u({n) and desired outputs d(n), can be written as the
kernel expansion ¢(-) = ., x(-,u(n)). This reduces
the problem to determining & = [ov1. ..., ax]' that minimizes
|d — Ke||?, where K is the Gram matrix with (n, £)th entry
w(u(n),u(f)), andd = [d(1),...,d(N)]". Since the order of
the model is equa to the number N of available data u(n),
this approach cannot be considered for online applications. To
overcome this barrier, one can focus on finite-order models

M

$(o) =3 e nlu(wy) (1)

wherew,, j = 1,..., M form asubset of {1,2,..., N} cor-
responding to the time indexes of the M < N input vectors
chosen to build the A th-order model (1). The M kernel func-
tions (-, u{w,)) formthedictionary. In [4], the authors present
an overview of the existing techniques to select the kernel func-
tionsin (1), an example of which is the approximate linear de-
pendence (ALD) criterion [5]. It consists of including a kernel
function (-, u(#)) in the dictionary if it satisfies

min () = 3w uw )i > e @)

2

where ¢, is a parameter determining model sparsity level. To
control themodel order with reduced computational complexity,
the coherence-based sparsification rule has al so been considered
[6], [7]. According to thisrule, kernel (-, u(¢)) isinserted into
the dictionary if

m]z_xx [£(u(f), u(w;))| < &0 (©)]

with ¢ a parameter determining the dictionary coherence. It
was shown in [7] that the dictionary dimension determined
under rule (3) isfinite. For therest of the paper, we shall assume
that the dictionary size M is known, fixed and finite.

It is well known that a nonlinear adaptive filtering problem
withinput signal inZ{ can be solved using alinear adaptivefilter
[4]. The linear adaptive filter input is a nonlinear mapping of
U to an Hilbert space H possessing a reproducing kernel. The
theory outlined above shows that the order of the linear adap-
tivefilter can befiniteif a proper input sparsification ruleisem-
ployed, even if the dimensionality of the transformed input in
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Fig. 1. Kernel-based adaptive system identification.

H isinfinite asin the case of Gaussian kernel. Algorithms de-
veloped using these ideas include the kernel |east-mean-square
(KLMS) algorithm [8], [9], the kernel recursive-least-square
(KRLS) algorithm [5], the kernel-based normalized | east-mean-
sguare (KNLMS) algorithm and the affine projection (KAPA)
algorithm [6], [10], [7]. See a so the monograph [4]. In addition
to the choice of the usual linear adaptive filter parameters, de-
signing kernel adaptive filters requires the choice of the kernel
and its parameters. Moreover, using the finite order model in (1)
implies that the adaptive algorithm behavior cannot be studied
as the behavior of the algorithm presented in [4, (2.17)], which
isaregular LMS agorithm operating in the RKHS. Choosing
the algorithm and nonlinearity model parameters to achieve a
prescribed performanceisstill an openissue, and requiresan ex-
tensive analysis of the algorithm stochastic behavior. Our work
brings a new contribution to the discussion about kernel-based
adaptive filtering by providing the first convergence analysis of
the KLMS agorithm with Gaussian kernel.

The paper is structured as follows. In Section |1, we derive
recursive expressions for the mean weight error vector and the
mean-square error (MSE) for Gaussian inputs. In Section |1,
we define analytical models for the transient behavior of
the first and second-order moments of the adaptive weights.
Section IV studies the algorithm convergence properties. Sta-
bility conditions and a steady-state behavior model are derived
which allow the algorithm design for prescribed convergence
speed and quality of estimate. In Section V, we usethe analysis
results to establish design guidelines. Section VI presents
design examples which validate the theoretical analysis and
illustrate its application. The model predictions show excellent
agreement with Monte Carlo simulations both in transient and

steady state.

[1. MEAN SQUARE ERROR ANALYSIS

Consider the nonlinear system identification problem shown
in Fig. 1, and the finite-order model (1) based on the Gaussian

kernel
_ a2
(s, 0) = exp (M)

e @

where ¢ is the kernel bandwidth. The environment is assumed
stationary, meaning that v»(u(n)) is stationary for u(n) sta-
tionary. This assumption is satisfied by several nonlinear
systems used to model practical situations, such as memo-
ryless, Wiener and Hammerstein systems. System inputs are
zero-mean, independent, and identically distributed Gaussian
(¢ x 1) vectors u(n) so that E{u(n — i)u'(n — j)} = 0
for ¢ # 4. The components of the input vector u(n) can,
however, be correlated. Let R,, = E{u(n)u'(n)} denote
their autocorrelation matrix.

For adictionary of size M, let k,,(n) be the vector of kernels
attimen > M thatis

Kul(n) = [s(u(n), u(w))), ... s(u(n),ulws))]T ()
where u(w; ) is the ith element of the dictionary, with u(w;) #
u(n)fori=1,..., M.Hereweconsider that thevectorsu(w; ),
i+ =1,..., M may change at each iteration following somedic-
tionary updating schedule. The only limitation imposed in the
following analysis is that u{w;(n)) # w{w;(n)) fori # j so
that the dictionary vectors which are arguments of different en-
triesof ,,(n) are statistically independent. To keep the notation
simple, however, we will not show explicitly the dependence of
w; onn and represent w(w;(n)) asu(w;) for al <.
From Fig. 1 and model (1), the estimated system output is

d(n) = a" (n) kw(n) (6)
withe(n) = [a1(n), ..., ax(n)] 7. Thecorresponding estima-
tion error is defined as

e(n) = d(n) — d(n). (7)

Squaring both sides of (7) and taking the expected value leads
to the MSE

Tms(n) = E{62 (n)} = E{dz(n)} — ZpZ,, a(n)
+a’ (n) Ry a(n) (8)

where R, = E{s.(n)s/(n)} is the correlation matrix
of the kernelized input, and p,;, = E{d(n)s.(n)} is the
cross-correlation vector between k() and d(n). It is shown
in Appendix A that R, is positive definite. Thus, the optimum
weight vector is given by

Popr = Ry P ©
and the corresponding minimum MSE is
Jmin = E{d2(n)} - p;crd R;Ii- Drad- (10)

These are the well-known expressions of the Wiener solution
and minimum MSE, where the input signal vector has been
replaced by the kernelized input vector. Determining the op-
timum o, requires the determination of the covariance matrix

1if the dictionary size M is adapted online, assumethat » issufficiently large
so that the size A does not increase anymore.



R...., giventhe statistical properties of u(n) and thereproducing
kernel.
Before closing this section, let us evaluate the correlation ma-
trix R,.,.. Its entries are given by
[Ryrij
_ {E{mz(u(n)u(wl))} =7 (11)
E{r(u(n). w(w:)) £(w(n), u(w;))}, i#j
with1 <, § < M. Notethat R, remainstime-invariant even
if thedictionary isupdated at eachiiteration, asu(n) isstationary
and u(w;) and u(w;) are statistically independent for i # ;.
Let us introduce the following notations

lu(n) — u(w)|® = 35 Qs

lu(n) — w(w)|* + llu(n) — w(w)l® = y5 Quys, i#J
(12)
where || - || isthe ¢ norm and
yo = (u'(n)u (wi))"
ys=(u' (n)u' (w)u'(w;)" (13)

I o7 2 -1 -1

-I O I
where I isthe (¢ x ¢) identity matrix and O isthe (¢ x ¢) null
matrix. From [11, p. 100], we know that the moment generating

function of aquadraticformz = y ' Q y, wherey isazero-mean
Gaussian vector with covariance matrix 12, is given by

Po(s) = E{e**} = det{I —2sQ R,} /2. (15)

Making s = —1/(2£2) in (15), we find that the (i, j )th element
of R, isgiven by

(Rouli; = {rmd = det{Is +2Q, Ry /€Y V2, =3
K ]ig Tod :dCt{I3+Q3R3/€2}—1/2, 275]
(16)

with1 < ¢, j < M. The main diagonal entries [R,.,];; are all
equal to 4 and the off-diagonal entries[R....];; areall equal to
7od becauseu(w;) andu(w; ) arei.i.d. In(16), R, isthe(£g x £q)
correlation matrix of vector y,, I, isthe (£g x £g) identity ma-
trix, and det{-} denotes the determinant of a matrix. Finaly,
note that matrix R, is block-diagonal with R,,,, aong its diag-
onal.

1. GAUSSIAN KLMS ALGORITHM: TRANSIENT BEHAVIOR
ANALYSIS

The KLMS weight-update equation for the system presented
inFig. 1is[4]

al(n+ 1) = a(n) + ne(n) ku(n). a7

Defining the weight-error vector v(n) = a(n) — aypt leadsto

the weight-error vector update equation

v(n+ 1) =v(n) +neln)ke(n). (18)

From (6) and (7), and the definition of »(»), the error equation
is given by

e(n) = d(n) — £, (n)v(n) — £, (1) Ao (19)
and the optimal estimation error is
eo(n) = d(n) — K (1) @ope.- (20)

Substituting (19) into (18) yields

v(n+ 1) = v(n) + nd(n) ku(n)

—n g (n)v(n) Ku(n) — 1K1 (1) @opt Kw(n).  (21)

A. Smplifying Statistical Assumptions

Simplifying assumptions are required in order to make the
study of the stochastic behavior of v(n) mathematically fea-
sible. The statistical assumptions required in different parts of
the analysis are the following:

Al ky(n)k/) (n) isstatistically independent of »(n).
This assumption is justified in detail in [12] and has
been successfully employed in several adaptive filter
analyses. It iscalled herefor further reference “modi-
fied independence assumption” (MIA). This assump-
tion has been shown in [12] to be less restrictive than
the classical independence assumption [13].

A2: The finite-order model provides a close enough
approximation to the infinite-order model with min-
imum MSE, so that E[eg(n)] = 0.

A3: eg(n) and ku(n) &, (n) are uncorrelated. This
assumption is also supported by the arguments sup-
porting the MIA (A1) [12].

B. Mean Weight Behavior

Taking the expected value of both sides of (21) and using the
MIA (A1) yields

Elv(n+ 1)} =T — nR,.) E{v(n)} (22)

which is the LMS mean weight behavior for an input vector
Ko (n).

C. Mean-Sguare Error

Using (19) and the MIA (A1), the second-order moments of
the weights are related to the M SE through [13]

Jms(n) = Jin + trace{ Ry, C,(n)} (23)

where C,(n) = E{v(n)v' (n)} isthe autocorrelation matrix
of v(n) and Jpin = E{e3(n)} theminimum MSE. The study of
the M SE behavior (23) requiresamodel for C,(n). This model
is highly affected by the transformation imposed on the input
signal u(n) by the kernel. An analytical model for the behavior
of C,(n) isderived in the next subsection.

D. Second-Order Moment Behavior
Using (20) and (21), the weight-error vector update becomes

v(n+ 1) =v(n) + neg(n) kw(n)

—1 K(n) &) (n)v(n).

(24)



Post-multiplying (24) by its transpose, and taking the expected
value, leads to

C,(n+1)
=C,(n) —7}E{nw(n ko (nm)v(n)v' (n)}
— 1 E{u(n) o7 () ku(m) 5] (1)}
+ 07 E{ej(n) ku(n) K, (n)}
1 E{eo(n) mu(n) v (m))
—* E{eo(n) ku(n) v’ (n) mu(n) 5 (n)}
—I—r/E'{e()(rL) [kw(n)v ()"}

— 2 E{eo(n) [ku(n)v' (n) nw(n) O
+ 0 E{ru(n) 5] (n) v(n) o7 (n) Ku(n) 6] (1)}
(25)
Using the MIA (A1), thefirst two expected values are given by

k) (n)v(n)v' (n)} = R Cu(n)
(n) ku(n) £ (n)} = Cu(n) R

Using assumptions A2 and A3 the third expected value is given
by

E{r,(n)

E{v(n)v" (26)

E{ej(n) kw(n) r(n)}
~ E{c2(n)} E{ru(n)
= R Jmin-

Ky (n)}
(27)

The fourth and the sixth expected values can be approximated
using the MIA (A1), that is,

v’ (n)} =~ E{eg(n)

=0

Ko(n)} E{v" (n)}
(28)

E{eg(n) ky(n)

since E{eg(n) ky,(n)} = 0 by the orthogonality principle [13].

Evaluation of the fifth and seventh expected values requires
further simplifications for mathematical tractability. A reason-
able approximation that preserves the effect of &,(n) up to
its second-order moments is to assume that ey(n) k,,(n) and
ku(n) &) (n) are uncorrelated?. Under both this approximation
and MIA (A1),

E{eg(n) nw(n)'vT(n)nw(n)nI(w)}
= B{v" (n) eg(n) ku(n) Ku(n) 55 (n)}
zE{UT(n)}E{PO(W)nw( )}E{n (n)ku(n)} =0 (29)

where the equality to zero is due to the orthogonality principle.
Using (26)—(29) in (25) yields

Coin+1)=Cy(n) —n(Re; Cy(n) + Cy(n)R,,)

—|—7]2 T(TL) + 7]2 RK,K, Jlnin (306.)

with

T(n) = E{ku,(n) k. (n)v(n)v' (n)ku(n) k. (n)}.
2Using this approximation we are basically neglecting the fluctuations of
Ko(n) k[ (n) aboutitsmean E{k.(n) k] (n)}.

(30b)

Evaluation of expectation (30b) is an important step in the
analysis. In the classical LMS analysis [14], the input signal
is assumed zero-mean Gaussian. Then the expectation in (30b)
can be approximated using the moment factoring theorem for
Gaussian variates. In the present analysis, as &.,(n) is a non-
linear transformation of a quadratic function of the Gaussian
input vector u(n), it is neither zero-mean nor Gaussian.

Usingthe MIA (A1) todeterminethe (4, j)th element of T'(n)
in (30b) yields

ZZE{H (n) ki, (n

=1 p=1

n) ki, (1) Fiu, (n) }

X [cv(”)]!@p (31)

where x,,, (n) = r(w(n), u(w,)). Each of the momentsin (31)
can be determined using (15). Depending on ¢, 7, £ and p, we
have five different moments i, £ = 1, ..., 5 to evaluate.
p1 = E{kw,(n) bw,(n) ke, (1) ij(n)} withi = j =
p =41
Denotingy, = (u' (n)u' (w;)) ', yields
i = [det{l> +4Q, Ry /€7}] '/ (32)
pro 1= E{kw,(n) 5w, (n) ku, (n) kw, (n)} withi = j =
p# L
Denotingys = (u' (n)u' (w;)u' (w,)) ", yields
p2 = [det{I5 + Qy Ry /)] 1/7 (33)
where
41 =3I -1
Q,=|-3I 3 O |. (39
—I 0] 1
p3 = E{ku, () bw,(n) ke, (n) ke, (n)} withd = 5 #
p =4
Denotingy; = (u' (n)u' (w;)u' (w,)) ", yields
p3 = [det{Is +2Q, Ry /€*}] /2 (35)
s = Bl (1) s, (1) s, (1) i, ()} With i = j #
p# L
Denotingy, = (' (n)u' (w;)u' (we)u' (w,))T, yieds
pos = [det{I, + Q Ry/€%}] /2 (36)
where
ar 21 -1 -1
-2 2 O O
Q= (37)

-I O I O
-I O O I

ps 1= Elkw, (1) ke, (n) ke, (n) ke, (n)} with i # § #
p# L

Denoting

ys = (u' (n) ' (wi) wl (w)) u’ (we)

5

u (wp))T

ps = [det{l5 + Qs Rs /& }]/? (39



where
a1 -1 -1 -1 -1
-I I O O O
Q,=|-T o I O O (39
-I O O I O
-I O O O 1

Using these moments, the elements of T'(n) arefinally given
by

[T(n)]i = Ml[Cv(n)]izﬁ

+ Z {2,@

E#z

M
sy [Cv(n)}ﬁp}

p=1
pA{i,}

VNie + 13[Cu(n)]ee
(40)

and, for j # 14,

[T(n)]is = 12([Co(m)]ii + [Cu(n)]j5) + 2p3[Co(n)]i

M
+ Z
#{L J}
M
+ 114[Co(n)]ee + ps Z [Cv(n)]ip} (41)

p=1
p#{i,4,¢}

{zm (W)lye + 205C ()]

which completes the evaluation of T'(n) in (30b). Substituting
this result into (30a) yields the following recursive expressions
for the entries of the autocorrelation matrix C.,(n):

[CU (1? + 1)]i’i = (1 — 2NTma + 7]2M1) [Cb (n)]u

+ 772/13 Z[C n)|ee

=1
i£i
M
+ (20712 — 2n70a) D _[Cu(n)]ie
=
+ 77 f4 Z Z ’II,) lp 77 Tmd Jmin
i?i? P#U A}
(42)

and, for j # i

[CL (n + 1)]ij
= (1 = 207w + 207 p3) [Co(n)];;
M
+nne Y [Co(n)lu
=1
A10,3)

‘|'(772N2_777"od)([ o(M)]ii +[Co(n)]5)

M
+ (20 us —nrea) Y ([Culn)]ie + [Col(n)lze)

=1
e#£{i,5}
M M

+ 17 s Z Z

/75{L J} P#{? 7, 4}

(1)]ep + r/ Tod Jmin (43)

whererma = [Rixli androq = [Ry.]i; with j # ¢, as defined
in (16).

E. Some Useful Inequalities

Before concluding this section, let us derive inequalities re-
|ating the fourth-order moments 1«; and the entries of the covari-
ancematrix R,.,.. For real randomvariables X andY’, remember
that Holder’s inequality says [15]

E{XY|} < E{|X|"}>» B{|[Y|"}= (44)
where p and ¢ are in (1, +o0) with 1 + 2 = 1. As shown
hereafter, this inequality yields

(d) () (&) (a)
ps < pha < opg < po < opn (45)
Inequality (a) is obtained by using (44) with X = &3 (n),

Y = k,,(n), p= 3,and g = 4. In order to provemequallty
(b), wefirst need to observe that Holder'sinequality yields?

E{X*Y?) < VE{ XY E(X V3. (46)

The result (b) directly follows from (46) for X = x,,(n) and
Y = Ky, (n). Theinequality (¢) can be proved using (44) with
p=q=2,X=n, (n)ky,(n) andY = k,, (n)k,, (1),

E{x2 (n)kw,(n)kw, (n)}
< B {2 2, ()} B {x2 2 (m)}
=E{r2,(n)r2,(n)}

where the equality is due to stationarity of s, (n). Now,
forp = ¢ = 2, X = ko (n)[ke,(n)se,(n)Y? and
Y = i, (n)[Ke, (0K, (n)]'/2, (44) yields

E {kw,(n)Eu, (n)ky, (n)ky, (n) }

< E{K2, (n)ky, (n)ke, (n)} 12
< B {12, (e ()i, ()}
= {2, () (), ()}

wheretheequality isagain dueto stationarity of x,,(n). Thislast
relation proves inequality (d) and completes the proof of (45).

Finally, let us state an inequality involving the main diagonal
entry r,q Of the covariance matrix R, .. By virtue of Cheby-
shev’s sum inequality, we have

ria < - (47)

SReplace X with X3/2Y1/2 and Y with X1/2Y3/2 in (44) withp = g = 2.



In the next section, we shall use the recursive expressions
(42) and (43) of the autocorrelation matrix C',(n), and (45) and
(47) to study the steady-state behavior of the Gaussian KLMS
agorithm.

IV. GAUSSIAN KLMS ALGORITHM: CONVERGENCE ANALYSIS

We now determine convergence conditions for the Gaussian
KLMS agorithm using the analytical model derived in
Section IlI. Let ¢,(n) be the lexicographic representation of
C,(n), i.e, the matrix C,(n) is stacked column-wise into
a single vector c,(n). Consider the family of (M x M)
matrices H*, 1 < 4,57 < M, whose elements are given by
(48)—(49), shown at the bottom of the page. Finally, we define
the (M2 x M?) matrix G asfollows:

G =[r" B2 A MM (50)
with 27 the (M? x 1) lexicographic representation of H*.
Using these definitions, it can be shown that the lexicographic
representation of the recursion (30a) can be written as

c(n+1)=Ge,(n)+ 172 Jmin Tro (51)
where r,,. is the lexicographic representation of R,.. We
shall use this expression to derive stability conditions for the
Gaussian KLM S algorithm. But before closing this subsection,
let us remark that matrix G is symmetric. This can be shown
from (48)—«49), using [H"]e, = [Gli—1)ar4j,(e—1)a1p, AN
observing that [H"],, = [H];;. Thisimplies that G can be
diagonalized by aunitary transformation, and all itseigenvalues
are real-valued.

A. Convergence Conditions

A necessary and sufficient condition for convergenceof ¢, (1)
in (51) isthat all the eigenvaluesof G lieinsidethe openinterval
(=1, 1) ([16], Section 5.9). Thus, the stability limit for 7 can
be numerically determined for given values of M and £. In the
following we derive a set of analytical sufficient conditions that
can aso be used for design purposes.

It iswell known that al the eigenvalues of G lie inside the
union of Gerschgorin disks[17]. Each of these disksis centered

the absolute values of the remaining elements of the same row.
A sufficient condition for stability of (51) isthus given by

€+ S 1€ < 1.

=1
I£4

fori=1,..., M>. (52

Equations (48)—50) show that the rows of G have only two
distinct forms, in the sense that each row of G has the same
entries as one of these two distinct rows, up to a permutation.
This implies that only two distinct Gerschgorin disks can be
defined. Also, all the entries of G are positive except possibly
for [Glie = 12 ttos — 17roq aNd [G]ie = %(27[2 [ — N Tod). See
Appendix B for proof. Expression (52) thus leads to only two
inequalities, defined as follows for M > 3,

(1 —2nrma + 02 p1) + (M — 1)1 s
+2(M — 1)|n? p2 — 170d|

+ (M - 1D)(M - 2)nuy < 1 (53a)
(1 —2nrma+2 n’ 143)

+ 2007 pp — nrea| + (M — 2)1? py

+2(M —2)2 s — 1 Tod|

+ (M —2)(M —3)1° ps < 1. (53b)

The study of the limiting values of » that satisfy both (53a) and
(53b) yields bounds on the maximum step size. Theintersection
of these bounds yields the sufficient stability limits. In what fol-
lows, we present theanalysisfor A > 3. Theresultsfor M =1
and M = 2 are presented in Appendix C.

To determine the bounds imposed by (53a), we write it for
n > 0as

2(M — 1) |np2 — Tod| < 27ma

—npr— (M = 1)nps— (M = 1)(M = 2)nps. (54)

Thus, the following two conditions must be satisfied

2(M —1)y(npo —rod) < 2rma —np1 — (M — 1) 5 us
— (M —-1)(M —2)nps  (559)
2(M —1)y(nps —rea) > —2rma+npm+ (M —1)nus

at adiagonal element of G and has aradius given by the sum of + (M - 1)(M —2)nus. (55b)
( [H")ii = 1= 2rma + n°p1,
(=i H"]yp =1’ p#i
if (5= ) : [ R ; . : 48
(i=9) [H"];p = N pe = Nrod = [H i, p#i (48)
L [H" |0 = n*pa, otherwise,
( [H“]IJ = [Hij]jl = %(1 - 27"311(1 + 27]2M3)
[H ] = 0’ pia, , pF L
ooy ) HY L = [HY 5 =07 e — grod,
if (e #£7): i . o 49
@ #5) [Hf"]w =[H ‘ in = %(QWZM — NTod), pFE i, (49)
[H”]pj = [H”]jp — %(27]2‘u4 _ ,,77)0(1), A,
C[HY e = 7 s, otherwise.




TABLE |
CONDITIONS ON 73 DERIVED FROM (55B)

Case | Sign of ¢ | Sign of #2 | Condition Observation
(1) - + 0<n<n
(1) + - 0<n No additional
restriction
(tii) - + n<mnz <0 | Non > 0 satisfies
the condition
(iv) - - 0<m2 <n

Condition (55a) yields (56), shown at the bottom of the page,
because the numerator and denominator of »; are positive. On
the other hand, (55b) leads usto a condition of the form 63 ) <
61 with

91 = 2'r‘md -2 (M - 1) Tod (57)
B2 = p1 —2(M — 1) po
+ M =1 ps+M—-1)(M—2)ps. (58)

Hereafter, we shall denote by 7, := 3+ the resulting bound on
1. Then, solving (55b) yields the four possible cases shown in
Table |, depending on the signs of ¢, and #. In case (ii), note
that there exists no n > 0 that satisfies (55b) when §; < 0 and
# > 0. This situation arises because condition (53a) is a suffi-
cient condition imposing that the Gerschgorin disks defined by
(52) are completely inside the unit circle in the z-plane. This
condition is obviously not necessary for having al the eigen-
values of G inside the unit circle. The lower bound in case (iv)
of Table | is also due to this excessive restriction, as the algo-
rithm is certainly stable for = 0. It is kept here for complete-
ness, but it should be disregarded in practice.

Combining the possible solutions of (55a) and (55b) and dis-
regarding lower bounds yields the following stability bounds
for n

7 < min{ry, 12}, forcase(i)inTablel
for cases (ii) and (¢v) in Table .

(59)

n <,

If case (iii) happens, which should be tested right away, the sta-
bility conditions should be determined numerically through the
eigenvalues of G.

Having determined limits for (53a) such that > 0, and as-
suming that case (iii) in Table | did not happen, we proceed to
determinethe extrarestrictionsimposed on by (53b). First, we
multiply (53b) by (M — 1) and divide by 7, rewriting it as

2(M — 1) |2 — Tod]
<2(M —1V)rypa — 2(M — 1) pusn
— (M = 1)(M —2) pam
—2(M — 1)(M — 2) |2 pp4m — 7od]

— (M = 1)(M = 2)(M — 3)nps5. (60)

TABLE I
CONDITIONS ON 7; DERIVED FROM (62B)

Case Sign of 6 Sign of 64 Condition Observation
(v) + + 0D<n<mn
(vi) + - 0D<n No additional
restriction
(vii) - + n <14 <0 | Non >0 satisfies
the condition
(viii) - - D<mny <7

Now, given that (54) has already been satisfied, we replace the
left-hand side (LHS) of (60) with the right-hand side (RHS) of
(54). After rearranging the terms, we have the new condition

2M — )M = 2)|2pam — roa] <2(M — 2)rma + 111

—(M—-Dpsn—(M—-1)(M-2)(M—-3)usn (61

which leads to the following two conditions:

A~ 1)(M — 2) i — 20— 1)(M — 2) g
<2AM —2)rpa+pan
—(M =1 pzn— (M= 1)(M =2)(M - 3)usn
(62a)
= 2(M = 2)rpa —pun+ (M — 1) pan
+ (M -1D)(M —2)(M —=3)usn
<AM —1DY(M = 2)puan —2(M — 1)(M — 2) roq.
(62b)

On the one hand, (62a) yields two different conditions defined
by

{ y < 2(M — 2)(7'md0+ (M — 1) roa) =13, iff3>0
3
>0, if 3 <0
(63)

where

O = —p1 + (M — 1) g +4(M — 1){(M — 2) pia
+(M — 1M — 2)(M — 3) pug.  (64)

On the other hand, (62b) leads us to a condition of the form
8sm < (M — 2)60,, where #; has aready been defined in (57)
and

Oy=—p1+ (M —1)ps —4(M - 1)(M —2) j1a
+(M — 1) (M — 2)(M —3) u5. (65)

Solving (62b) thus leavesfour possible casesto consider, shown

in Table 1, where ny := %

2 Tmd + 2 (M - 1) Tod

N <

p1+2(M =V po+ (M = Dpg+ (M —1)(M —2) g

= (56)



Combing the possible solutions of (62a) and (62b), and again
disregarding lower bounds, yieldsthefollowing stability bounds
on 77 [see (66) at the bottom of the page].

Finally, except for cases (iii) in Table | and (vii) in Table I,
which should be tested right away, the sufficient stability con-
ditionswill be given by the intersection of (59) and (66). These
conditions can be slightly simplified by observing that 7, < 71,
as can be easily proved using (45).

In the next section, we shall derive the expression of the
weight-error correlation matrix C(n) in steady state. This will
allow usto calculate the M SE and the excess M SE.

B. Seady-Sate Behavior
The closed-form solution of (51) can be written as [16]

co(n) = G" [, (0) — ¢, (00)] + ey(00) (67)

where ¢, (oc) denotes the vector ¢,(n) in steady state, and is
given by

e(o0) = 7% Jinin - G)71 Ton (68)

Assuming convergence, we define the time for convergence as
the number . of iterations required for (67) to reach

where ¢ is adesign parameter to be chosen by the user.

At thispoint, it isimportant to notethat ¢, (oc ) isuniqueif the
system under consideration is stable. Indeed, the matrix (G —
I) has only nonzero eigenval ues because it satisfies conditions
(53a)—(53b), and can thusbeinverted. Let C,,(>) be the matrix
whose lexicographic representation is ¢, (oc). It is aso unique
and satisfies the following expression derived from (30a) for
n — o0

co(n) —ep(ne)] < e (69)

RFLI‘L C’L(OO) + CU(OO) me' - UT(OO) = 77Rm€ ']min~ (70)

In (70), T'(oc) denotes the matrix T'(n) in steady state. It is
interesting to note that (68) is the lexicographic counterpart of
(70), as (51) is the lexicographic representation of (30a).

From (23), the steady-state MSE is given by
Jins(00) = Jmin + trace{ Ry, C,(oc)} (71

where trace{ R, C, (o)} is the steady-state excess MSE, de-
noted by J..(c0). To evaluate these quantities, we shall now
compute the entries of C,(oc). In order to achieve this, wefirst
justify that C,(oc) isamatrix with the same structural proper-
ties as R,;,., namely, al its main diagonal entries are equal to
each other, having a value denoted by ¢4, and al its off-diag-
onal entries are also equal to each other, having a value denoted
by ¢oa. Then, we determine ¢,,q and ¢.,q S0 that C,, (o) isthe
solution to (70), which we know isunique. It is straightforward
to see that the LHS of (70) is also a matrix with the same struc-
tural propertiesas R, asitisequal ton R, Jumin-

One way for C,(o0) to have the proposed structure would
be that R, C,(x), C,(x)R,, and T(c) al have the
same structure. It is straightforward to show that matrices
R,.C,(o) and C,(cc) R, have this structure if, and only
if, C,(00) has that structure. If this is the case, a direct con-
sequence, through (70), would be that T'(oc) also has this
structure. Using ¢q and ¢,q, respectively, for the main-di-
agonal and off-diagonal entries of C,(oc) in (40) and (41)
yields, for M > 1 [see (72) at the bottom of the page]. For
M = 1, T(occ) = p1cema. Writing, for ease of notation,
[T(oc)]ii = t1Cma + t2 Coa 8N [T(00)]i; = t3¢ma + 4 Coa
for al i # 4, and solving (70) for ¢;,q and coq yields (73)-(74),
shown at the bottom of the page, with r,q and r.q defined
in (16).

It can be verified that using (72)—(74) in the LHS of (70)
yields the correct RHS. Also, we know that this solution is
unique since (I — G') can beinverted. Then, going back to (71),
we obtain the following desired result

Jms(oo) = Jmin + ]tx(OO)
= Jmin T M(decnld + (]\/f - 1)7)odcod)~
(79)

Based on the results presented in the previous sections, we
shall now propose design guidelines to set the parameters of

If 65 > 0, { 7 < min{ns, mal,

for case (v) in Tablell

1 < 73, for cases (vi) and (viii) in Table |l
. n < ng, forcase(wv)inTablell
I s <0, { 7> 0, forcases(vi) and (viii) in Tablell. (66)
[T(OO)] — (/"l + (M - 1) MS)Cmd + (2(M - 1) 2 + (]W - 1)(‘M - 2) /1'4)(:0(17 =7 (72)
+ (2 H2 + (‘M - 2) /1‘4)(5111(1 + (4(]\/{ - 2) L2 +2 13 + (M - '3)(M - 2) MS)CO(L, i 7é 7
Cond = 7/]']Inin ( ((2T1r1d - 77t1)7"od - (27’od - 77t3)7“md)(77t2 - 2(]\/[ - 1)Tod) +r d) (73)
" 2rma — b1 \ (nta — 2(M — D)rea)(2roa — nts) — (nta — 2(rma + (M — 2)r0a))(2rma — 1t1) "
and
Cod = 7}']1nin((27‘nld - ntl)rod - (2T0d - nt3)rlrld) (74)

(nte — 2(M — D)roa)(Zroa — nts) — (nta — 2(rma + (M — 2)r0a))(2rma — nt1)



the Gaussian KLM S algorithm in order to achieve a prescribed
performance.

V. DESIGN GUIDELINES

The analysis results are now used to establish design guide-
lines. Without limiting generality, the coherence-based sparsifi-
cation rule (3) is considered hereafter to design the dictionaries.
It is however implicit that any other existing technique to se-
lect the kernel functions (-, #(w,;)) could be used. These de-
sign guidelines assume the availability of multiple realizations
of the sequences u(n) and d(n).

Supposeadesign goal isto obtainan MSE whichislessthana
specified value J .., . Thefollowing procedure could be applied.

1) Set a coherence threshold ¢, and define a set of kernel
bandwidths £ to be tested. For the following design exam-
ples, a set of values for £ was chosen as equally spaced
pointsin (0, 1). Then, e; was chosen to yield reasonable
values of M for the chosen set of £ values. The value of
M is determined for each pair (£, ) by training the dic-
tionary with the input signal «(n) until its size stabilizes.
The training is repeated severa times. A value M; is de-
termined for the ith realization. Thevalue of M associated
with the pair (£, ¢g) is the average of the dictionary sizes
for all realizations, rounded to the nearest integer. Thisis
the value of M to be used in the theoretical model.

2) Using the system input «(n ), determine the desired output
d(n) and estimate E{d*(n)} and p,,, over severa runs. In
apractical setting d(r) should be measured at the unknown
system output.

3) From (10), determine the minimum MSE .J,,,;, for each
set of parameters (M, &). If none of the pairs (M, &) leads
to Jiax > Juiw, return to step 1 to choose a new set of
parameters ey and &.

4) Determine n,,.x using rules (59) and (66) for each value
of ¢ and choose the largest possible value of 7 so that i <
Tmax @Nd Jp, (00) < Jiax (notethat J,,,. (oc) iscomputed
using (75)).

5) Given M, R...., p..q: Jmin @d 1 determine G using (50)
and then ¢,.(n) from (51).

6) DetermineC,(oco) from (73)—(74), and then .J,,,,(o0) from
(75).

7) Choose ¢ in criterion (69) and find n, from simulations
using the parameters determined in steps 1 to 8.

Repeat steps 1 to 9 for all kernel parametersin the chosen set
and use the one that leads to the smallest ..

VI. SIMULATION RESULTS

This section presents examples to illustrate the proposed de-
sign procedure and to verify the theoretical results. The sim-
ulation conditions which are common to all examples are de-
scribed in Example 1. Only the changes to these conditions are
described in the remaining examples.

A. Example 1
Consider the problem studied in [18] and [19], for which

y(n—1)
1+ y*(n—1)

{ y(n) = +ud(n —1)
d(n) = y(n) + z(n)

(76)

TABLE Il
STABILITY RESULTS FOR EXAMPLE 1
L€ [ M [ of8 [ nik
0.0075 | 17 1.70 0.29
0.01 13 1.70 0.30
0.025 6 1.66 0.22
0.05 3 1.80 1.47
TABLE IV
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1
£ M n Jmin Jms(o0) -L::(OC'} Te
[dB] [dB] [dB]
0.0075 | 17 | 0.143 | -22.19 -22.04 -36.85 1271
0.01 13 | 0.152 | -21.84 -21.69 -36.27 914
0.025 6 0.007 | -21.53 -21.52 -49.15 7746
0.05 3 0.011 | -21.52 -21.51 -47.00 2648

where the output signal y(n) was corrupted by a zero-mean
white Gaussian noise z(n) with variance o2 = 10~*. Theinput
sequence u{n) is zero-mean i.i.d. Gaussian with standard devi-
aion o, = 0.15.

The proposed method was tested with a maximum MSE
Jpax = —21.5 dB, a coherence level ¢ = 10~° and a set of
kernel bandwidths £ € {0.0075,0.01,0.025,0.05}4. For each
value of £, 500 dictionary dimensions M;, i = 1,...,500, were
determined using 500 redlizations of the input process. The
length of each realization was 500 samples. Each M; was de-
termined as the minimum dictionary length required to achieve
the coherence level . The value M (£) was determined as the
average of all M;, rounded to the nearest integer. The values of
Jmin(€) Were calcul ated from (10) for each pair (£, M). To this
end, second-order momentsp,.;, and E{d*(n)} were estimated
by averaging over 500 runs.

Before searching for avalue of 7, suchthat J,,, . (c0) < Jiax,
we have to define 7.« . There are two possibilities for defining
Nmax. 1) Use the Gerschgorin disk analysis yielding a value of
max denoted asnG L | 2) compute and test the eigenvalues of G
yielding avalue of 7., denoted asZS . Table 111 shows that,
as expected, the condition imposed by the Gerschgorin disks
is more restrictive than that imposed by the eigenvalues of G.
However, note that choosing # from n,,.. = %2 is simpler
and usually yields good design results.

Table |V presentsthe obtai ned resultsfor the chosen val ues of
¢.Foreachpair (¢, M), the step-sizer; was chosen so that the al-
gorithmwasstable( lessthan 7, ) and J,,,s (oc) < —21.5dB.
The values of .J,,.(oc0) and J..(oc) were determined from
(75) and n. was obtained from (69) for e = 102, Note that
Jmin(§) < —21.5 dB in all cases. It clearly appears that
(M,¢n) = (13, 0.01, 0.152) isagood design choice, as it
satisfies al design conditions after only . = 914 iterations.
Notethat the value of 7 chosenisabout 1/10 of 7,,,.«. Thisisdue
tothesmall valueof J,,., imposed by thedesign. Thisisthesame
phenomenon that happenswhen designingtheregular LM Salgo-
rithm for practical specificationsin linear estimation problems.

For each simulation, the order M of the dictionary remained
fixed. It wasinitialized for each realization by generating input

4These values of ¢ are samples within arange of values experimentally ver-
ified to be adequate for the application.
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Fig. 2. Theoretical model and Monte Carlo simulation of KLM S for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) ¢ = 0.0075 and A = 17.
(b)¢ =0.01and M = 13.(c) ¢ = 0.025 and M = 6. (d) £ = 0.05 and
M = 3.

vectorsin U and filling the M positions with vectors that sat-
isfy the desired coherence level. Thus, the initial dictionary is
different for each realization. During each realization, the dic-
tionary elements were updated at each iteration n so that the
least recently added element is replaced with w(n — 1).

Figs. 2 and 3 illustrate the accuracy of the analytica model
for the four cases presented in Table IV. Fig. 2 shows an ex-
cellent agreement between Monte Carlo simulations, averaged
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Fig. 3. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 readlizations. Continuous horizontal lines (red): Minimum
M SE predicted by theory. Continuous decaying lines: Theoretical M SE (blue)
and Excess MSE (black). (@) ¢ = 0.0075 and M = 17.(b) ¢ = 0.01 and
M=13.(c)¢=0.025andM =6.(d) £ = 0.05 and M = 3.

over 500 runs, and the theoretical predictions made by using
(23) and (67). Fig. 3 compares simulated steady-state results
(dashed horizontal lines) with theoretical predictions using
(68). Thereisagain an excellent agreement between theory and
simulations.



TABLEV
STABILITY RESULTS FOR EXAMPLE 2
I Y A
0.05 7 2.33 W.§
0.065 | 4 2.50 0.68
0.075 3 2.60 1.92
0.125 2 2.34 2.32
TABLE VI
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2
3 M n Jmin Jms (00) Jez(00) Tle
[dB] [dB] [dB]
0.05 7 0.072 | -20.32 -20.27 -39.73 1544
0.065 | 4 0.239 | -20.41 -20.25 -34.63 314
0075 | 3 0.340 | -20.68 -20.45 -33.33 184
0.125 | 2 0.073 | -20.54 -20.46 -38.39 502
B. Example 2

Asasecond design example, consider the nonlinear dynamic
system identification problem studied in [20] where the input
signal was a sequence of statistically independent vectors

u(n) = [u1(n) uz(n)] "

with correlated samples satisfying u1(n) = 0.5u2(n) + n,(n).
The second component of () in (77) isani.i.d. Gaussian noise
sequence with variance o2, = 0.0156 and n,(n) is a white
Gaussian noise with variance 03 = 0.0156. Consider alinear
system with memory defined by

(77)

yn) =a' u(n) —02y(n—1)+0.35y(n —2) (78)

wherea = [1 0.5]T and anonlinear Wiener function
y(n)
3[0.1 + 0.9y2(n)]1/2

—y?(n)[1 — exp(0.7y(n))]
3

for y(n) > 0
py(n)) =

for y(n) < 0

(79)
d(n) = (y(n)) + 2(n) (80)
whered(n) isthe output signal, corrupted by azero-mean white
Gaussian noise z(n) with variance 2 = 106, Theinitial con-
dition y(1) = 0 was considered in this example.

The proposed method was tested with a maximum MSE
Jmax = —20.23 dB, a coherence level ¢p = 10~* and a set of
kernel bandwidths ¢ € {0.05, 0.065, 0.075, 0.125}. The other
simulation conditions were similar to the first example.

TableV showsthe estimated val ues of 7, Obtained withthe
Gerschgorin disk analysis and from the eigenvalues of G. The
expression without solution (w.s.) indicatesthat the intersection
of solutions provided by (59) and (66) isempty. In this case, we

need to use the limit obtained from the eigenvalues of G, i.e.,

_ nEG
77max - nxnax‘

Table VI presents the obtained results for the chosen values
of £. For each pair (£, M), the step-size » was chosen in order
to ensure algorithm stability (1 less than 7,,,.,) and J,,,s (o) <
—20.25 dB. The values of J,,,,(c0) and .J..(oc) were deter-
mined from (75) and n. was obtained from (69) for e = 1073,
Note that .J,,;, (&) < —20.25 dB in all cases. It clearly appears
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Fig. 4. Theoretica model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state M SE from simulations. (a) ¢ = 0.05 and Ml = 7.
(b)) =0.065and M =4.(c)¢ = 0.073and M = 3.(d) £ = 0.125 and
M = 2.

that (M, &, 1) = (3, 0.075, 0.340) isagood design choice asiit
satisfies all design conditions after n. = 184 iterations.
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Fig. 5. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
M SE predicted by theory. Continuous decaying lines: Theoretical M SE (blue)
and ExcessM SE (black). (@) £ = 0.05 and M = 7.(b) £ = 0.065 and M = 4.
(©¢é=0075andM =3.(d) £ =0.125 and M = 2.

Figs. 4 and 5 illustrate the accuracy of the analytical model
for thefour cases presented in Table V1. The agreement between
theory and simulations is excellent as in the first example.

TABLE VII
STABILITY RESULTS FOR EXAMPLE 3

(€ IM [ ang [ ool
0.15 11 1.17 W.S.
0.20 7 1.19 W.S.
0.25 5 1.24 W.S.
0.30 3 1.60 W.S.
TABLE VIII
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 3
3 M n Jmin | Jms(00) | Jex(00) e
[dB] [dB] [dB]
015 | 11 | 0.147 | -20.58 -20.20 -31.23 517
0.20 7 0.149 | -20.41 -20.03 -30.81 382
0.25 5 0.039 | -20.07 -19.97 -36.67 1298
0.30 3 0.013 | -19.78 -19.75 -42.48 4052
C. Example 3

As a third design example, consider the fluid-flow control
problem studied in [21] and [22] whose input signal was a se-
quence of statistically independent vectors

u(n) = [ur(n) ua(n)] " (81)
with correlated samples satisfying uq (n) = 0.5 ua(n) + n,.(n),
where uz(n) isawhite Gaussian noise sequence with variance
o, = 0.0625 and 7, (n) is awhite Gaussian so that u; (n) has
variance 031 = 0.0625. Consider alinear system with memory
defined by

y(n) = a’ u(n) +1.4138y(n — 1) — 0.6065 y(n — 2) (82)

witha = [0.1044 0.0883] T and a nonlinear Wiener function

0.3163 y(n
dn) = y(n)

= + z{n
v/0.10 + 0.90 y2(n) ()

(83)

where the output signal d(n) was corrupted by a zero-mean
white Gaussian noise z(n) with variance o2 = 1074,

The design paramenters were set to J,.x = —19.75 dB
(maximum MSE), ¢ = 10~! (coherence level) and
¢ € {0.15,0.20,0.25,0.30} (set of possible kernel band-
widths).

Table VII shows the values of 7,,.x Obtained by testing the
eigenvalues of G. Note that the Gerschgorin disk conditions
were too strict for al cases making the computation of 752,
impossible.

Table VIl presents the obtained results for the chosen values
of £. For each pair (¢, M), the step-size r, was chosen to ensure
stability (n less than 1,.x) and J,,s(00) < —19.75 dB. The
values of J,,,;(c0) and J..,.(0co) were determined from (75) and
n. Was obtained from (69) for ¢ = 10~%. Note that J,,i,(€) <
—19.75 dB in al cases. It clearly appears that (M, ¢,n) =
(7, 0.2, 0.149) is a good design choaice, as it satisfies the de-
sign conditions after n. = 382 iterations.

Figs. 6 and 7 illustrate the accuracy of the analytical model
for the four cases presented in Table VII1. Again, the results are
very promising for this example.
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Fig. 6. Theoretica model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) ¢ = 0.15 and M = 11. (b)
E=020andM =7.(c) £ =025 and M = 5. (d)§ = 0.30 and M = 3.

VIl. CONCLUSION

This paper studied the stochastic behavior of the Gaussian
KLMS adaptive agorithm for Gaussian inputs and nonlin-
earities which preserve the stationarity of their inputs. The
study resulted in analytica models that predict the behavior
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Fig. 7. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
M SE predicted by theory. Continuous decaying lines: Theoretical M SE (blue)
and ExcessM SE (black). (@) § = 0.15 andM = 11.(b)§ = 0.20and M = 7.
(©&=025andM =5.(d) ¢ =030 and M = 3.

of the algorithm as a function of the design parameters. In
particular, the new models clarify the joint contribution of
the kernel bandwidth and the step-size for the algorithm
performance, both during the transient adaptation phase and
in steady state. The algorithm convergence was studied and
analytical expressions were derived which provide sufficient



stability conditions. Design guidelines were proposed using the
theoretical model. These guidelines were applied to different
nonlinear system identification problems. Simulation results
haveillustrated the accuracy of the theoretical models and their
usefulness for design purposes. The extension of this analysis
to the case of time-varying systems will be the subject of future
investigations.

APPENDIX A
PosITIVE-DEFINITENESS OF R,

To prove that R,,. is positive definite we prove that al its
eigenvalues are positive[17]. Let ; e Randw;, i =1,.... M
be, respectively, theith eigenvalue and the corresponding eigen-
vector of R,.,.. Hence,

R,‘,;I/7:)\,I/,/ 121/7M (84)
From (16), we can write R,,,; as
RK,K, = (de - Tod)I + TodllT (85)
wherel = [1, 1, ..., 1];;,; and I isthe (M x M) identity
matrix. Using (85) in (84) yields
[(rma — rea)T + 7‘0d11T} v; = A\ vy, i=1,...., M.
(86)

Noting that 1 = (1 1, with 51 € R is an eigenvector of R,
we have

B1(rma — roa)l + frroallT1 = A1 1 (87)

which yields

Al = Fmd + (M — 1) Tod (88)

which is positive since r,q > 0 (7,4 iSrea and isthe result of
asquareroot in (16)) and M > 1.
The remaining eigenvectors are orthogonal to v;. Thus,
1'v; = 0foral j # 1 and thus
(de - Tod) vy = )‘jyj7

which yields

)\j = Tmd — Tod:

ji=2....M (89)

i1=2,...,M. (90)

which are also positive since r,,a > 7.4. This concludes the
proof.

APPENDIX B
SIGN ANALYSIS OF MATRIX GG ENTRIES

We shall now analyze the sign of the entries of matrix G de-
fined in (48)—(49). On the one hand, we know that 72 u3, 1% 14
and n? s are strictly positive. On the other hand, 7?5 — roq
and %(27,%4 — 1req) Can be either positive or negative de-
pending on 7. The analysis of the diagonal entries of G needs
more attention.

Consider first 1 — 2#ryq + 1%py. Thisis a second-degree
polynomial V\()ith respect to the parameter v whose minimum
valueis1 — T Using (45) and (47), we know that 111 > 72 .

Thisimpliesthat 1 — 27,9 + n?py > 0 for al 5. Let usfocus
now on)%(l — 2nrma + 2% p3), whose minimum is equal to
3(1—52d). Similarly asabove, we know that 113 > r2,;, which
meansthat 3(1 — 2nrma + 2n?p3) > 0 for al 7.

As aconclusion, al the diagonal entries of the matrix G are
strictly positive, which greatly simplifiesthe analysis of (52) for
stability.

APPENDIX C
STABILITY ANALYSISIN THE CASESM = 1 AND M = 2

Let us first derive the condition for stability of the system
(51) in the case M = 1. The matrix G reduces to the entry
1 — 2nrma + 1% 1. Thisdirectly implies that the system (51) is
stable if
2 Tind

p

Consider now the case M = 2. Expression (52) leads us to
the following two inequalities:

n < (91)

(1 =20 7ma + 17 1) + 07 ps + 2|77 p2 — nroal <1,
(92a)

(1 =29 7ma + 297 p3) + 2 0% o — nrea| < 1.
(92b)
We observethat the LHS of (92a) islarger than the LHS of (92b)
for al n because j11 > 3, as shown by (45). Proceeding the

same way as we did for M > 3 in Section IV-A, we conclude
that (51) is stable if the following conditions are satisfied:

{ i < min{m, 2}, for case (¢) in Table 1

7 <, for cases (i) and (4v) in Table L.
(93)
where
2 Tmd + 2 Tod
m=—————
B1+ 22+ p
g 27md — 276
Mo = ot = o (94)

T 0y - 2ps+ps
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