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Stochastic Behavior Analysis of the Gaussian Kernel
Least-Mean-Square Algorithm

Wemerson D. Parreira, José Carlos M. Bermudez, Senior Member, IEEE, Cédric Richard, Senior Member, IEEE,
and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—The kernel least-mean-square (KLMS) algorithm
is a popular algorithm in nonlinear adaptive filtering due to its
simplicity and robustness. In kernel adaptive filters, the statistics
of the input to the linear filter depends on the parameters of the
kernel employed. Moreover, practical implementations require a
finite nonlinearity model order. A Gaussian KLMS has two design
parameters, the step size and the Gaussian kernel bandwidth.
Thus, its design requires analytical models for the algorithm
behavior as a function of these two parameters. This paper
studies the steady-state behavior and the transient behavior of the
Gaussian KLMS algorithm for Gaussian inputs and a finite order
nonlinearity model. In particular, we derive recursive expressions
for the mean-weight-error vector and the mean-square-error. The
model predictions show excellent agreement with Monte Carlo
simulations in transient and steady state. This allows the explicit
analytical determination of stability limits, and gives opportunity
to choose the algorithm parameters a priori in order to achieve
prescribed convergence speed and quality of the estimate. Design
examples are presented which validate the theoretical analysis and
illustrates its application.

Index Terms—Adaptive filtering, kernel least-mean-square
(KLMS), convergence analysis, nonlinear system, reproducing
kernel.

I. INTRODUCTION

M ANY practical applications (e.g., in communications
and bioengineering) require nonlinear signal pro-

cessing. Nonlinear systems can be characterized by represen-
tations ranging from higher-order statistics to series expansion
methods [1]. Nonlinear system identification methods based
on reproducing kernel Hilbert spaces (RKHS) have gained
popularity over the last decades [2], [3]. More recently, kernel
adaptive filtering has been recognized as an appealing solution
to the nonlinear adaptive filtering problem, as working in RKHS
allows the use of linear structures to solve nonlinear estimation
problems. See [4] for an overview. The block diagram of a
kernel-based adaptive system identification problem is shown
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in Fig. 1. Here, is a compact subspace of
is a reproducing kernel, is the induced RKHS
with its inner product and is a zero-mean additive noise
uncorrelated with any other signal. The representer theorem
[2] states that the function which minimizes the squared
estimation error , given input
vectors and desired outputs , can be written as the
kernel expansion . This reduces
the problem to determining that minimizes

, where is the Gram matrix with th entry
, and . Since the order of

the model is equal to the number of available data ,
this approach cannot be considered for online applications. To
overcome this barrier, one can focus on finite-order models

(1)

where form a subset of cor-
responding to the time indexes of the input vectors
chosen to build the th-order model (1). The kernel func-
tions form the dictionary. In [4], the authors present
an overview of the existing techniques to select the kernel func-
tions in (1), an example of which is the approximate linear de-
pendence (ALD) criterion [5]. It consists of including a kernel
function in the dictionary if it satisfies

(2)

where is a parameter determining model sparsity level. To
control the model order with reduced computational complexity,
the coherence-based sparsification rule has also been considered
[6], [7]. According to this rule, kernel is inserted into
the dictionary if

(3)

with a parameter determining the dictionary coherence. It
was shown in [7] that the dictionary dimension determined
under rule (3) is finite. For the rest of the paper, we shall assume
that the dictionary size is known, fixed and finite.

It is well known that a nonlinear adaptive filtering problem
with input signal in can be solved using a linear adaptive filter
[4]. The linear adaptive filter input is a nonlinear mapping of

to an Hilbert space possessing a reproducing kernel. The
theory outlined above shows that the order of the linear adap-
tive filter can be finite if a proper input sparsification rule is em-
ployed, even if the dimensionality of the transformed input in



Fig. 1. Kernel-based adaptive system identification.

is infinite as in the case of Gaussian kernel. Algorithms de-
veloped using these ideas include the kernel least-mean-square
(KLMS) algorithm [8], [9], the kernel recursive-least-square
(KRLS) algorithm [5], the kernel-based normalized least-mean-
square (KNLMS) algorithm and the affine projection (KAPA)
algorithm [6], [10], [7]. See also the monograph [4]. In addition
to the choice of the usual linear adaptive filter parameters, de-
signing kernel adaptive filters requires the choice of the kernel
and its parameters. Moreover, using the finite order model in (1)
implies that the adaptive algorithm behavior cannot be studied
as the behavior of the algorithm presented in [4, (2.17)], which
is a regular LMS algorithm operating in the RKHS. Choosing
the algorithm and nonlinearity model parameters to achieve a
prescribed performance is still an open issue, and requires an ex-
tensive analysis of the algorithm stochastic behavior. Our work
brings a new contribution to the discussion about kernel-based
adaptive filtering by providing the first convergence analysis of
the KLMS algorithm with Gaussian kernel.

The paper is structured as follows. In Section II, we derive
recursive expressions for the mean weight error vector and the
mean-square error (MSE) for Gaussian inputs. In Section III,
we define analytical models for the transient behavior of
the first and second-order moments of the adaptive weights.
Section IV studies the algorithm convergence properties. Sta-
bility conditions and a steady-state behavior model are derived
which allow the algorithm design for prescribed convergence
speed and quality of estimate. In Section V, we use the analysis
results to establish design guidelines. Section VI presents
design examples which validate the theoretical analysis and
illustrate its application. The model predictions show excellent
agreement with Monte Carlo simulations both in transient and
steady state.

II. MEAN SQUARE ERROR ANALYSIS

Consider the nonlinear system identification problem shown
in Fig. 1, and the finite-order model (1) based on the Gaussian
kernel

(4)

where is the kernel bandwidth. The environment is assumed
stationary, meaning that is stationary for sta-
tionary. This assumption is satisfied by several nonlinear
systems used to model practical situations, such as memo-
ryless, Wiener and Hammerstein systems. System inputs are
zero-mean, independent, and identically distributed Gaussian

vectors so that
for . The components of the input vector can,
however, be correlated. Let denote
their autocorrelation matrix.

For a dictionary of size , let be the vector of kernels
at time ,1 that is

(5)

where is the th element of the dictionary, with
for . Here we consider that the vectors

may change at each iteration following some dic-
tionary updating schedule. The only limitation imposed in the
following analysis is that for so
that the dictionary vectors which are arguments of different en-
tries of are statistically independent. To keep the notation
simple, however, we will not show explicitly the dependence of

on and represent as for all .
From Fig. 1 and model (1), the estimated system output is

(6)

with . The corresponding estima-
tion error is defined as

(7)

Squaring both sides of (7) and taking the expected value leads
to the MSE

(8)

where is the correlation matrix
of the kernelized input, and is the
cross-correlation vector between and . It is shown
in Appendix A that is positive definite. Thus, the optimum
weight vector is given by

(9)

and the corresponding minimum MSE is

(10)

These are the well-known expressions of the Wiener solution
and minimum MSE, where the input signal vector has been
replaced by the kernelized input vector. Determining the op-
timum requires the determination of the covariance matrix

1If the dictionary size is adapted online, assume that is sufficiently large
so that the size does not increase anymore.



, given the statistical properties of and the reproducing
kernel.

Before closing this section, let us evaluate the correlation ma-
trix . Its entries are given by

(11)

with . Note that remains time-invariant even
if the dictionary is updated at each iteration, as is stationary
and and are statistically independent for .

Let us introduce the following notations

(12)

where is the norm and

(13)

and

(14)

where is the identity matrix and is the null
matrix. From [11, p. 100], we know that the moment generating
function of a quadratic form , where is a zero-mean
Gaussian vector with covariance matrix , is given by

(15)

Making in (15), we find that the th element
of is given by

(16)

with . The main diagonal entries are all
equal to and the off-diagonal entries are all equal to

because and are i.i.d. In (16), is the
correlation matrix of vector is the identity ma-
trix, and denotes the determinant of a matrix. Finally,
note that matrix is block-diagonal with along its diag-
onal.

III. GAUSSIAN KLMS ALGORITHM: TRANSIENT BEHAVIOR

ANALYSIS

The KLMS weight-update equation for the system presented
in Fig. 1 is [4]

(17)

Defining the weight-error vector leads to
the weight-error vector update equation

(18)

From (6) and (7), and the definition of , the error equation
is given by

(19)

and the optimal estimation error is

(20)

Substituting (19) into (18) yields

(21)

A. Simplifying Statistical Assumptions

Simplifying assumptions are required in order to make the
study of the stochastic behavior of mathematically fea-
sible. The statistical assumptions required in different parts of
the analysis are the following:

A1: is statistically independent of .
This assumption is justified in detail in [12] and has
been successfully employed in several adaptive filter
analyses. It is called here for further reference “modi-
fied independence assumption” (MIA). This assump-
tion has been shown in [12] to be less restrictive than
the classical independence assumption [13].
A2: The finite-order model provides a close enough
approximation to the infinite-order model with min-
imum MSE, so that .
A3: and are uncorrelated. This
assumption is also supported by the arguments sup-
porting the MIA (A1) [12].

B. Mean Weight Behavior

Taking the expected value of both sides of (21) and using the
MIA (A1) yields

(22)

which is the LMS mean weight behavior for an input vector
.

C. Mean-Square Error

Using (19) and the MIA (A1), the second-order moments of
the weights are related to the MSE through [13]

(23)

where is the autocorrelation matrix
of and the minimum MSE. The study of
the MSE behavior (23) requires a model for . This model
is highly affected by the transformation imposed on the input
signal by the kernel. An analytical model for the behavior
of is derived in the next subsection.

D. Second-Order Moment Behavior

Using (20) and (21), the weight-error vector update becomes

(24)



Post-multiplying (24) by its transpose, and taking the expected
value, leads to

(25)

Using the MIA (A1), the first two expected values are given by

(26)

Using assumptions A2 and A3 the third expected value is given
by

(27)

The fourth and the sixth expected values can be approximated
using the MIA (A1), that is,

(28)

since by the orthogonality principle [13].
Evaluation of the fifth and seventh expected values requires

further simplifications for mathematical tractability. A reason-
able approximation that preserves the effect of up to
its second-order moments is to assume that and

are uncorrelated2. Under both this approximation
and MIA (A1),

(29)

where the equality to zero is due to the orthogonality principle.
Using (26)–(29) in (25) yields

(30a)

with

(30b)

2Using this approximation we are basically neglecting the fluctuations of
about its mean .

Evaluation of expectation (30b) is an important step in the
analysis. In the classical LMS analysis [14], the input signal
is assumed zero-mean Gaussian. Then the expectation in (30b)
can be approximated using the moment factoring theorem for
Gaussian variates. In the present analysis, as is a non-
linear transformation of a quadratic function of the Gaussian
input vector , it is neither zero-mean nor Gaussian.

Using the MIA (A1) to determine the th element of
in (30b) yields

(31)

where . Each of the moments in (31)
can be determined using (15). Depending on and , we
have five different moments to evaluate.

with
.

Denoting , yields

(32)

with
.

Denoting , yields

(33)

where

(34)

with
.

Denoting , yields

(35)

with
.

Denoting , yields

(36)

where

(37)

with
.

Denoting

(38)



where

(39)

Using these moments, the elements of are finally given
by

(40)

and, for

(41)

which completes the evaluation of in (30b). Substituting
this result into (30a) yields the following recursive expressions
for the entries of the autocorrelation matrix :

(42)

and, for

(43)

where and with , as defined
in (16).

E. Some Useful Inequalities

Before concluding this section, let us derive inequalities re-
lating the fourth-order moments and the entries of the covari-
ance matrix . For real random variables and , remember
that Hölder’s inequality says [15]

(44)

where and are in with . As shown
hereafter, this inequality yields

(45)

Inequality is obtained by using (44) with
, and . In order to prove inequality

, we first need to observe that Hölder’s inequality yields3

(46)

The result directly follows from (46) for and
. The inequality can be proved using (44) with

and

where the equality is due to stationarity of . Now,
for and

, (44) yields

where the equality is again due to stationarity of . This last
relation proves inequality and completes the proof of (45).

Finally, let us state an inequality involving the main diagonal
entry of the covariance matrix . By virtue of Cheby-
shev’s sum inequality, we have

(47)

3Replace with and with in (44) with .



In the next section, we shall use the recursive expressions
(42) and (43) of the autocorrelation matrix , and (45) and
(47) to study the steady-state behavior of the Gaussian KLMS
algorithm.

IV. GAUSSIAN KLMS ALGORITHM: CONVERGENCE ANALYSIS

We now determine convergence conditions for the Gaussian
KLMS algorithm using the analytical model derived in
Section III. Let be the lexicographic representation of

, i.e., the matrix is stacked column-wise into
a single vector . Consider the family of
matrices , whose elements are given by
(48)–(49), shown at the bottom of the page. Finally, we define
the matrix as follows:

(50)

with the lexicographic representation of .
Using these definitions, it can be shown that the lexicographic
representation of the recursion (30a) can be written as

(51)

where is the lexicographic representation of . We
shall use this expression to derive stability conditions for the
Gaussian KLMS algorithm. But before closing this subsection,
let us remark that matrix is symmetric. This can be shown
from (48)–(49), using , and
observing that . This implies that can be
diagonalized by a unitary transformation, and all its eigenvalues
are real-valued.

A. Convergence Conditions

A necessary and sufficient condition for convergence of
in (51) is that all the eigenvalues of lie inside the open interval

([16], Section 5.9). Thus, the stability limit for can
be numerically determined for given values of and . In the
following we derive a set of analytical sufficient conditions that
can also be used for design purposes.

It is well known that all the eigenvalues of lie inside the
union of Gerschgorin disks [17]. Each of these disks is centered
at a diagonal element of and has a radius given by the sum of

the absolute values of the remaining elements of the same row.
A sufficient condition for stability of (51) is thus given by

(52)

Equations (48)–(50) show that the rows of have only two
distinct forms, in the sense that each row of has the same
entries as one of these two distinct rows, up to a permutation.
This implies that only two distinct Gerschgorin disks can be
defined. Also, all the entries of are positive except possibly
for and . See
Appendix B for proof. Expression (52) thus leads to only two
inequalities, defined as follows for

(53a)

(53b)

The study of the limiting values of that satisfy both (53a) and
(53b) yields bounds on the maximum step size. The intersection
of these bounds yields the sufficient stability limits. In what fol-
lows, we present the analysis for . The results for
and are presented in Appendix C.

To determine the bounds imposed by (53a), we write it for
as

(54)

Thus, the following two conditions must be satisfied

(55a)

(55b)

otherwise,

(48)

(49)



TABLE I
CONDITIONS ON DERIVED FROM (55B)

Condition (55a) yields (56), shown at the bottom of the page,
because the numerator and denominator of are positive. On
the other hand, (55b) leads us to a condition of the form

with

(57)

(58)

Hereafter, we shall denote by the resulting bound on
. Then, solving (55b) yields the four possible cases shown in

Table I, depending on the signs of and . In case (ii), note
that there exists no that satisfies (55b) when and

. This situation arises because condition (53a) is a suffi-
cient condition imposing that the Gerschgorin disks defined by
(52) are completely inside the unit circle in the z-plane. This
condition is obviously not necessary for having all the eigen-
values of inside the unit circle. The lower bound in case (iv)
of Table I is also due to this excessive restriction, as the algo-
rithm is certainly stable for . It is kept here for complete-
ness, but it should be disregarded in practice.

Combining the possible solutions of (55a) and (55b) and dis-
regarding lower bounds yields the following stability bounds
for

for case (i) in Table I
for cases (ii) and in Table I

(59)

If case (iii) happens, which should be tested right away, the sta-
bility conditions should be determined numerically through the
eigenvalues of .

Having determined limits for (53a) such that , and as-
suming that case (iii) in Table I did not happen, we proceed to
determine the extra restrictions imposed on by (53b). First, we
multiply (53b) by and divide by , rewriting it as

(60)

TABLE II
CONDITIONS ON DERIVED FROM (62B)

Now, given that (54) has already been satisfied, we replace the
left-hand side (LHS) of (60) with the right-hand side (RHS) of
(54). After rearranging the terms, we have the new condition

(61)

which leads to the following two conditions:

(62a)

(62b)

On the one hand, (62a) yields two different conditions defined
by

if

if
(63)

where

(64)

On the other hand, (62b) leads us to a condition of the form
, where has already been defined in (57)

and

(65)

Solving (62b) thus leaves four possible cases to consider, shown
in Table II, where .

(56)



Combing the possible solutions of (62a) and (62b), and again
disregarding lower bounds, yields the following stability bounds
on [see (66) at the bottom of the page].

Finally, except for cases (iii) in Table I and (vii) in Table II,
which should be tested right away, the sufficient stability con-
ditions will be given by the intersection of (59) and (66). These
conditions can be slightly simplified by observing that ,
as can be easily proved using (45).

In the next section, we shall derive the expression of the
weight-error correlation matrix in steady state. This will
allow us to calculate the MSE and the excess MSE.

B. Steady-State Behavior

The closed-form solution of (51) can be written as [16]

(67)

where denotes the vector in steady state, and is
given by

(68)

Assuming convergence, we define the time for convergence as
the number of iterations required for (67) to reach

(69)

where is a design parameter to be chosen by the user.
At this point, it is important to note that is unique if the

system under consideration is stable. Indeed, the matrix
has only nonzero eigenvalues because it satisfies conditions

(53a)–(53b), and can thus be inverted. Let be the matrix
whose lexicographic representation is . It is also unique
and satisfies the following expression derived from (30a) for

:

(70)

In (70), denotes the matrix in steady state. It is
interesting to note that (68) is the lexicographic counterpart of
(70), as (51) is the lexicographic representation of (30a).

From (23), the steady-state MSE is given by

(71)

where is the steady-state excess MSE, de-
noted by . To evaluate these quantities, we shall now
compute the entries of . In order to achieve this, we first
justify that is a matrix with the same structural proper-
ties as , namely, all its main diagonal entries are equal to
each other, having a value denoted by , and all its off-diag-
onal entries are also equal to each other, having a value denoted
by . Then, we determine and so that is the
solution to (70), which we know is unique. It is straightforward
to see that the LHS of (70) is also a matrix with the same struc-
tural properties as , as it is equal to .

One way for to have the proposed structure would
be that and all have the
same structure. It is straightforward to show that matrices

and have this structure if, and only
if, has that structure. If this is the case, a direct con-
sequence, through (70), would be that also has this
structure. Using and , respectively, for the main-di-
agonal and off-diagonal entries of in (40) and (41)
yields, for [see (72) at the bottom of the page]. For

. Writing, for ease of notation,
and

for all , and solving (70) for and yields (73)-(74),
shown at the bottom of the page, with and defined
in (16).

It can be verified that using (72)–(74) in the LHS of (70)
yields the correct RHS. Also, we know that this solution is
unique since can be inverted. Then, going back to (71),
we obtain the following desired result

(75)

Based on the results presented in the previous sections, we
shall now propose design guidelines to set the parameters of

If
for case in Table II
for cases and in Table II

If
for case in Table II
for cases and in Table II

(66)

(72)

(73)

(74)



the Gaussian KLMS algorithm in order to achieve a prescribed
performance.

V. DESIGN GUIDELINES

The analysis results are now used to establish design guide-
lines. Without limiting generality, the coherence-based sparsifi-
cation rule (3) is considered hereafter to design the dictionaries.
It is however implicit that any other existing technique to se-
lect the kernel functions could be used. These de-
sign guidelines assume the availability of multiple realizations
of the sequences and .

Suppose a design goal is to obtain an MSE which is less than a
specified value . The following procedure could be applied.

1) Set a coherence threshold and define a set of kernel
bandwidths to be tested. For the following design exam-
ples, a set of values for was chosen as equally spaced
points in (0, 1). Then, was chosen to yield reasonable
values of for the chosen set of values. The value of

is determined for each pair by training the dic-
tionary with the input signal until its size stabilizes.
The training is repeated several times. A value is de-
termined for the th realization. The value of associated
with the pair is the average of the dictionary sizes
for all realizations, rounded to the nearest integer. This is
the value of to be used in the theoretical model.

2) Using the system input , determine the desired output
and estimate and over several runs. In

a practical setting should be measured at the unknown
system output.

3) From (10), determine the minimum MSE for each
set of parameters . If none of the pairs leads
to , return to step 1 to choose a new set of
parameters and .

4) Determine using rules (59) and (66) for each value
of and choose the largest possible value of so that

and (note that is computed
using (75)).

5) Given and determine using (50)
and then from (51).

6) Determine from (73)–(74), and then from
(75).

7) Choose in criterion (69) and find from simulations
using the parameters determined in steps 1 to 8.

Repeat steps 1 to 9 for all kernel parameters in the chosen set
and use the one that leads to the smallest .

VI. SIMULATION RESULTS

This section presents examples to illustrate the proposed de-
sign procedure and to verify the theoretical results. The sim-
ulation conditions which are common to all examples are de-
scribed in Example 1. Only the changes to these conditions are
described in the remaining examples.

A. Example 1

Consider the problem studied in [18] and [19], for which

(76)

TABLE III
STABILITY RESULTS FOR EXAMPLE 1

TABLE IV
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 1

where the output signal was corrupted by a zero-mean
white Gaussian noise with variance . The input
sequence is zero-mean i.i.d. Gaussian with standard devi-
ation .

The proposed method was tested with a maximum MSE
dB, a coherence level and a set of

kernel bandwidths 4. For each
value of , 500 dictionary dimensions , were
determined using 500 realizations of the input process. The
length of each realization was 500 samples. Each was de-
termined as the minimum dictionary length required to achieve
the coherence level . The value was determined as the
average of all , rounded to the nearest integer. The values of

were calculated from (10) for each pair . To this
end, second-order moments and were estimated
by averaging over 500 runs.

Before searching for a value of , such that ,
we have to define . There are two possibilities for defining

: 1) use the Gerschgorin disk analysis yielding a value of
denoted as , 2) compute and test the eigenvalues of

yielding a value of denoted as . Table III shows that,
as expected, the condition imposed by the Gerschgorin disks
is more restrictive than that imposed by the eigenvalues of .
However, note that choosing from is simpler
and usually yields good design results.

Table IV presents the obtained results for the chosen values of
. For each pair , the step-size was chosen so that the al-

gorithm was stable ( less than ) and dB.
The values of and were determined from
(75) and was obtained from (69) for . Note that

dB in all cases. It clearly appears that
is a good design choice, as it

satisfies all design conditions after only iterations.
Note that the value of chosen is about 1/10 of . This is due
to the small valueof imposed by thedesign. This is the same
phenomenon that happenswhendesigning the regularLMS algo-
rithm for practical specifications in linear estimation problems.

For each simulation, the order of the dictionary remained
fixed. It was initialized for each realization by generating input

4These values of are samples within a range of values experimentally ver-
ified to be adequate for the application.



Fig. 2. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and .
(b) and . (c) and . (d) and

.

vectors in and filling the positions with vectors that sat-
isfy the desired coherence level. Thus, the initial dictionary is
different for each realization. During each realization, the dic-
tionary elements were updated at each iteration so that the
least recently added element is replaced with .

Figs. 2 and 3 illustrate the accuracy of the analytical model
for the four cases presented in Table IV. Fig. 2 shows an ex-
cellent agreement between Monte Carlo simulations, averaged

Fig. 3. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and Excess MSE (black). (a) and . (b) and

. (c) and . (d) and .

over 500 runs, and the theoretical predictions made by using
(23) and (67). Fig. 3 compares simulated steady-state results
(dashed horizontal lines) with theoretical predictions using
(68). There is again an excellent agreement between theory and
simulations.



TABLE V
STABILITY RESULTS FOR EXAMPLE 2

TABLE VI
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 2

B. Example 2

As a second design example, consider the nonlinear dynamic
system identification problem studied in [20] where the input
signal was a sequence of statistically independent vectors

(77)

with correlated samples satisfying .
The second component of in (77) is an i.i.d. Gaussian noise
sequence with variance and is a white
Gaussian noise with variance . Consider a linear
system with memory defined by

(78)

where and a nonlinear Wiener function

(79)

(80)

where is the output signal, corrupted by a zero-mean white
Gaussian noise with variance . The initial con-
dition was considered in this example.

The proposed method was tested with a maximum MSE
dB, a coherence level and a set of

kernel bandwidths . The other
simulation conditions were similar to the first example.

Table V shows the estimated values of obtained with the
Gerschgorin disk analysis and from the eigenvalues of . The
expression without solution (w.s.) indicates that the intersection
of solutions provided by (59) and (66) is empty. In this case, we
need to use the limit obtained from the eigenvalues of , i.e.,

.
Table VI presents the obtained results for the chosen values

of . For each pair , the step-size was chosen in order
to ensure algorithm stability ( less than ) and

dB. The values of and were deter-
mined from (75) and was obtained from (69) for .
Note that dB in all cases. It clearly appears

Fig. 4. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and .
(b) and . (c) and . (d) and

.

that is a good design choice as it
satisfies all design conditions after iterations.



Fig. 5. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and Excess MSE (black). (a) and . (b) and .
(c) and . (d) and .

Figs. 4 and 5 illustrate the accuracy of the analytical model
for the four cases presented in Table VI. The agreement between
theory and simulations is excellent as in the first example.

TABLE VII
STABILITY RESULTS FOR EXAMPLE 3

TABLE VIII
SUMMARY OF SIMULATION RESULTS FOR EXAMPLE 3

C. Example 3

As a third design example, consider the fluid-flow control
problem studied in [21] and [22] whose input signal was a se-
quence of statistically independent vectors

(81)

with correlated samples satisfying ,
where is a white Gaussian noise sequence with variance

and is a white Gaussian so that has
variance . Consider a linear system with memory
defined by

(82)

with and a nonlinear Wiener function

(83)

where the output signal was corrupted by a zero-mean
white Gaussian noise with variance .

The design paramenters were set to dB
(maximum MSE), (coherence level) and

(set of possible kernel band-
widths).

Table VII shows the values of obtained by testing the
eigenvalues of . Note that the Gerschgorin disk conditions
were too strict for all cases making the computation of
impossible.

Table VIII presents the obtained results for the chosen values
of . For each pair , the step-size was chosen to ensure
stability ( less than ) and dB. The
values of and were determined from (75) and

was obtained from (69) for . Note that
dB in all cases. It clearly appears that

is a good design choice, as it satisfies the de-
sign conditions after iterations.

Figs. 6 and 7 illustrate the accuracy of the analytical model
for the four cases presented in Table VIII. Again, the results are
very promising for this example.



Fig. 6. Theoretical model and Monte Carlo simulation of KLMS for different
kernel bandwidths. Ragged curves (blue): simulation results averaged over 500
runs. Continuous curves (red): Theory using (23) and (67). Continuous hori-
zontal lines (blue): Steady-state MSE predicted by theory. Dashed horizontal
lines (red): Steady-state MSE from simulations. (a) and . (b)

and . (c) and . (d) and .

VII. CONCLUSION

This paper studied the stochastic behavior of the Gaussian
KLMS adaptive algorithm for Gaussian inputs and nonlin-
earities which preserve the stationarity of their inputs. The
study resulted in analytical models that predict the behavior

Fig. 7. Steady-State results. Dashed horizontal lines: MSE and Excess MSE
averaged over 500 realizations. Continuous horizontal lines (red): Minimum
MSE predicted by theory. Continuous decaying lines: Theoretical MSE (blue)
and Excess MSE (black). (a) and . (b) and .
(c) and . (d) and .

of the algorithm as a function of the design parameters. In
particular, the new models clarify the joint contribution of
the kernel bandwidth and the step-size for the algorithm
performance, both during the transient adaptation phase and
in steady state. The algorithm convergence was studied and
analytical expressions were derived which provide sufficient



stability conditions. Design guidelines were proposed using the
theoretical model. These guidelines were applied to different
nonlinear system identification problems. Simulation results
have illustrated the accuracy of the theoretical models and their
usefulness for design purposes. The extension of this analysis
to the case of time-varying systems will be the subject of future
investigations.

APPENDIX A
POSITIVE-DEFINITENESS OF

To prove that is positive definite we prove that all its
eigenvalues are positive [17]. Let and
be, respectively, the th eigenvalue and the corresponding eigen-
vector of . Hence,

(84)

From (16), we can write as

(85)

where and is the identity
matrix. Using (85) in (84) yields

(86)

Noting that , with is an eigenvector of
we have

(87)

which yields

(88)

which is positive since ( is real and is the result of
a square root in (16)) and .

The remaining eigenvectors are orthogonal to . Thus,
for all and thus

(89)

which yields

(90)

which are also positive since . This concludes the
proof.

APPENDIX B
SIGN ANALYSIS OF MATRIX ENTRIES

We shall now analyze the sign of the entries of matrix de-
fined in (48)–(49). On the one hand, we know that
and are strictly positive. On the other hand,
and can be either positive or negative de-
pending on . The analysis of the diagonal entries of needs
more attention.

Consider first . This is a second-degree
polynomial with respect to the parameter whose minimum
value is . Using (45) and (47), we know that .

This implies that for all . Let us focus
now on , whose minimum is equal to

. Similarly as above, we know that , which
means that for all .

As a conclusion, all the diagonal entries of the matrix are
strictly positive, which greatly simplifies the analysis of (52) for
stability.

APPENDIX C
STABILITY ANALYSIS IN THE CASES AND

Let us first derive the condition for stability of the system
(51) in the case . The matrix reduces to the entry

. This directly implies that the system (51) is
stable if

(91)

Consider now the case . Expression (52) leads us to
the following two inequalities:

(92a)

(92b)

We observe that the LHS of (92a) is larger than the LHS of (92b)
for all because , as shown by (45). Proceeding the
same way as we did for in Section IV-A, we conclude
that (51) is stable if the following conditions are satisfied:

(93)
where

(94)
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