16,033 research outputs found

    Evolved Topology Generalized Multi-layer Perceptron (GMLP) for Anatomical Joint Constraint Modelling

    Get PDF
    The accurate simulation of anatomical joint models is becoming increasingly important for both medical diagnosis and realistic animation applications. Quaternion algebra has been increasingly applied to model rotations providing a compact representation while avoiding singularities. We propose the use of Artificial Neural Networks to accurately simulate joint constraints based on recorded data. This paper describes the application of Genetic Algorithm approaches to neural network training in order to model corrective piece-wise linear / discontinuous functions required to maintain valid joint configurations. The results show that artificial Neural Networks are capable of modeling constraints on the rotation of and around a virtual limb

    Transport-Based Neural Style Transfer for Smoke Simulations

    Full text link
    Artistically controlling fluids has always been a challenging task. Optimization techniques rely on approximating simulation states towards target velocity or density field configurations, which are often handcrafted by artists to indirectly control smoke dynamics. Patch synthesis techniques transfer image textures or simulation features to a target flow field. However, these are either limited to adding structural patterns or augmenting coarse flows with turbulent structures, and hence cannot capture the full spectrum of different styles and semantically complex structures. In this paper, we propose the first Transport-based Neural Style Transfer (TNST) algorithm for volumetric smoke data. Our method is able to transfer features from natural images to smoke simulations, enabling general content-aware manipulations ranging from simple patterns to intricate motifs. The proposed algorithm is physically inspired, since it computes the density transport from a source input smoke to a desired target configuration. Our transport-based approach allows direct control over the divergence of the stylization velocity field by optimizing incompressible and irrotational potentials that transport smoke towards stylization. Temporal consistency is ensured by transporting and aligning subsequent stylized velocities, and 3D reconstructions are computed by seamlessly merging stylizations from different camera viewpoints.Comment: ACM Transaction on Graphics (SIGGRAPH ASIA 2019), additional materials: http://www.byungsoo.me/project/neural-flow-styl

    Can Computers Create Art?

    Full text link
    This essay discusses whether computers, using Artificial Intelligence (AI), could create art. First, the history of technologies that automated aspects of art is surveyed, including photography and animation. In each case, there were initial fears and denial of the technology, followed by a blossoming of new creative and professional opportunities for artists. The current hype and reality of Artificial Intelligence (AI) tools for art making is then discussed, together with predictions about how AI tools will be used. It is then speculated about whether it could ever happen that AI systems could be credited with authorship of artwork. It is theorized that art is something created by social agents, and so computers cannot be credited with authorship of art in our current understanding. A few ways that this could change are also hypothesized.Comment: to appear in Arts, special issue on Machine as Artist (21st Century

    FEAFA: A Well-Annotated Dataset for Facial Expression Analysis and 3D Facial Animation

    Full text link
    Facial expression analysis based on machine learning requires large number of well-annotated data to reflect different changes in facial motion. Publicly available datasets truly help to accelerate research in this area by providing a benchmark resource, but all of these datasets, to the best of our knowledge, are limited to rough annotations for action units, including only their absence, presence, or a five-level intensity according to the Facial Action Coding System. To meet the need for videos labeled in great detail, we present a well-annotated dataset named FEAFA for Facial Expression Analysis and 3D Facial Animation. One hundred and twenty-two participants, including children, young adults and elderly people, were recorded in real-world conditions. In addition, 99,356 frames were manually labeled using Expression Quantitative Tool developed by us to quantify 9 symmetrical FACS action units, 10 asymmetrical (unilateral) FACS action units, 2 symmetrical FACS action descriptors and 2 asymmetrical FACS action descriptors, and each action unit or action descriptor is well-annotated with a floating point number between 0 and 1. To provide a baseline for use in future research, a benchmark for the regression of action unit values based on Convolutional Neural Networks are presented. We also demonstrate the potential of our FEAFA dataset for 3D facial animation. Almost all state-of-the-art algorithms for facial animation are achieved based on 3D face reconstruction. We hence propose a novel method that drives virtual characters only based on action unit value regression of the 2D video frames of source actors.Comment: 9 pages, 7 figure
    • …
    corecore