6 research outputs found

    Power Saving Experiments for Large Scale Global Optimization

    Get PDF
    Green computing, an emerging ïŹeld of research that seeks to reduce excess power consumption in high performance computing (HPC), is gaining popularity among researchers. Research in this ïŹeld often relies on simulation or only uses a small cluster, typically 8 or 16 nodes, because of the lack of hardware support. In contrast, System G at Virginia Tech is a 2592 processor supercomputer equipped with power aware components suitable for large scale green computing research. DIRECT is a deterministic global optimization algorithm, implemented in the mathematical software package VTDIRECT95. This paper explores the potential energy savings for the parallel implementation of DIRECT, called pVTdirect, when used with a large scale computational biology application, parameter estimation for a budding yeast cell cycle model, on System G. Two power aware approaches for pVTdirect are developed and compared against the CPUSPEED power saving system tool. The results show that knowledge of the parallel workload of the underlying application is beneficial for power management

    Adjusting process count on demand for petascale global optimization⋆

    Get PDF
    There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, the modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed

    Parallel Deterministic and Stochastic Global Minimization of Functions with Very Many Minima

    Get PDF
    The optimization of three problems with high dimensionality and many local minima are investigated under five different optimization algorithms: DIRECT, simulated annealing, Spall’s SPSA algorithm, the KNITRO package, and QNSTOP, a new algorithm developed at Indiana University

    Filter-based DIRECT method for constrained global optimization

    Get PDF
    This paper presents a DIRECT-type method that uses a filter methodology to assure convergence to a feasible and optimal solution of nonsmooth and nonconvex constrained global optimization problems. The filter methodology aims to give priority to the selection of hyperrectangles with feasible center points, followed by those with infeasible and non-dominated center points and finally by those that have infeasible and dominated center points. The convergence properties of the algorithm are analyzed. Preliminary numerical experiments show that the proposed filter-based DIRECT algorithm gives competitive results when compared with other DIRECT-type methods.The authors would like to thank two anonymous referees and the Associate Editor for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacžao para a CiĂȘncia e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio
    corecore