
Adjusting process count on demand for petascale global optimization⋆

Nicholas R. Radcliffea,∗, Layne T. Watsona,b, Masha Sosonkinac,
Rafael T. Haftkad, Michael W. Trossete

aDepartment of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
bDepartment of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
cDepartments of Computer Science and Electrical and Computer Engineering, Iowa State University, Ames, Iowa, USA
dDepartment of Mechanical and Aerospace Engineering, University of Florida, Gaineville, FL, USA
eDepartment of Statistics, Indiana University, Bloomington, IN, USA

A R T I C L E I N F O

Article history:

This is the history of the article...

Keywords:

petascale

Message passing interface (MPI)

dynamic process count

global optimization

A B S T R A C T

There are many challenges that need to be met before efficientand reliable computation at the
petascale is possible. Many scientific and engineering codes running at the petascale are likely to
be memory intensive, which makes thrashing a serious problem for many petascale applications.
One way to overcome this challenge is to use adynamicnumber of processes, so that the total
amount of memory available for the computation can be increased on demand. This paper
describes modifications made to the massively parallel global optimization code pVTdirect in
order to allow for a dynamic number of processes. In particular, the modified version of the
code monitors memory use and spawns new processes if the amount of available memory is
determined to be insufficient. The primary design challenges are discussed, and performance
results are presented and analyzed.

1. Introduction and motivation

The ultimate goal of the work presented in this paper is to develop a robust global optimization code that runs efficientlyand
effectively at the petascale. This means that the program must run efficiently, and be able to tolerate failures of any kind, on a
cluster with hundreds of thousands of cores. There are a number of challenges that must be overcome before this is possible, for
instance, designing the optimization code so that the speedup obtained by using multiple cores scales up to hundreds of thousands
of cores. This challenge alone is enough to make the petascale daunting [1].

Beyond maintaining the efficiency of the code at the petascale, one must ensure that the code is robust and can recover from
any number of failures. One possible failure results when a node in the cluster crashes. This type of failure is generallydealt
with by including a checkpointing mechanism in the code. Another type of failure that can occur is insufficient main memory,
which can lead to thrashing. Given the crippling effects of thrashing, a mechanism for dealing with insufficient memory would be
indispensable to a large number of scientific and engineering codes that hope to run efficiently at the petascale.

The main contribution of this work is a global optimization code that is able to detect insufficient levels of available memory,
and in response spawn new processes on nodes with available memory. The solution to insufficient memory presented in thispaper
is specific to a particular global optimization code (pVTdirect), but many aspects of the design, as well as the lessons learned,
can be applied to a number of parallel scientific or engineering codes, especially those that make use of the master-worker design
pattern.

The rest of this paper is organized as follows. Section 2 presents a description of the DIRECT algorithm, which forms the
basis of the global optimization codepVTdirect. Some details of the codepVTdirect are also presented. A description of the
problem and the main challenges involved are presented in Section 3. Section 4 describes some stress tests performed to evaluate
two possible design choices. A dynamic load balancing mechanism is described in Section 5. Performance results are given in
Section 6. Section 7 discusses related work. Section 8 finishes with conclusions and lessons-learned.

⋆This work was supported in part by AFOSR Grant FA9550-09-1-0153 and AFRL Grant FA8650-09-2-3938.
∗Corresponding author.

E-mail addresses:nradclif@vt.edu (N.R. Radcliffe), ltw@cs.vt.edu (L.T. Watson), masha@scl.ameslab.gov (M. Sosonkina), haftka@ufl.edu (R.T. Haftka),
mtrosset@indiana.edu (M.W. Trosset)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Illustrations of DIRECT’s box columns (left), and VTdirect in action (right).

2. Description of DIRECT

The algorithm DIRECT (DIviding RECTangles) by D. R. Jones [2] is a deterministic global optimization algorithm. DIRECT
does not require the computation of the gradient of the objective function, or even objective function values (ranking information
is sufficient). It performs Lipschitzian optimization, butdoes not require knowledge of the Lipschitz constant.

DIRECT works as follows [3]. The algorithm begins with an initial box normalized to the unit hypercube. The objective
function (assumed to satisfy a Lipschitz condition) is evaluated at the center of this box. The current minimum value is initialized
to this value. An evaluation counterm and an iteration countert are initialized tom = 1 and t = 0. The following process
is repeated untilm or t reaches some prespecified limit (although the subroutinepVTdirect [3] supports several other stopping
conditions).

Selection. Identify the setS of “potentially optimal” boxes. Here “potentially optimal” means that (1) for some Lipschitz

constantK, the box potentially contains a point with smaller objective function value than any other box, and (2)F(c)−K ·L/2 ≤

fmin − ǫ| fmin|, whereF is the objective function,c is the center point of the box,K is the same Lipschitz constant,L is the box
diameter,fmin is the current minimum value for the objective function, andǫ is a small, nonnegative, fixed constant.

Sampling. Select one of the potentially optimal boxesB from S . For boxB, identify the setI of dimensions with maximum
side lengthL, and letδ = L/3. Sample the function at the points of the formc ± δei for eachi ∈ I, wherec is the center of the
box andei is theith standard basis vector. Updatem.

Division. Divide the box containing the pointc into thirds along the dimensions inI, beginning with the dimension with the

least value ofmin { f (c + δei), f (c − δei)}, and ending with the dimension with the greatest such value.Update the minimum
value.

Iteration. Remove the boxB from the set of potentially optimal boxesS . If S = ∅, then incrementt and go toSelection.
Otherwise, go toSampling.

The method of choosing the subbox according to both objective function value and box size gives DIRECT its local and global
aspects. DIRECT performs a convex hull computation to determine potentially optimal boxes without using the Lipschitzconstant
directly (see Figure 1 for an illustration). From Figure 1, it is clear that if a box is on the convex hull, then the box has anobjective
function value that is minimal amongst all boxes of the same size (notice that the set of boxes of the same size forms a “box
column”, as seen in Figure 1). Since every box is ultimately examined, DIRECT will not get stuck at a local optimum, but will
instead perform a global search of the feasible set. Furtherdetails can be found in [2].

VTDIRECT [4] is a Fortran 95 implementation of DIRECT that uses dynamic data structures and has options and stopping
conditions not in earlier implementations of DIRECT. Basedon experience from using the serial code VTDIRECT on applications
such as aircraft design, cell cycle modeling, and wireless communication system design, VTDIRECT was polished and extended to
include both serial and massively parallel (terascale) versions. These codes eventually became part of the ACM TOMS algorithm
VTDIRECT95 [3]. In this Fortran 95 package the user callablesubroutines areVTdirect (serial) andpVTdirect (parallel).
pVTdirect is efficient at the terascale [5][6][7] on real applications, but likely not so at the petascale. The motivation for the
present work is modifyingpVTdirect to be efficient at the petascale, where applications in systems biology and nuclear physics
await such capability.

2

2.1. Important details of the implementation

pVTdirect, the parallel version ofVTdirect and the only version under consideration in this paper, makes use of the master-
worker design pattern. The masters handle the program logic, whereas the workers perform function evaluation tasks. The masters
are tightly coupled, in the sense that the state of one mastersignificantly affects the state of other masters. There is a global
worker pool shared by all masters. Workers from the pool select masters to which they send requests, and masters respond to
these requests by sending points at which to evaluate the objective function. Optionally, the initial box can be partitioned into
subdomains, each with assigned masters, where masters assigned to separate subdomains operate independently. In fact, whenn
subdomains are used, it is almost like runningn separate instances ofpVTdirect, with the important exception that the separate
subdomain optimizations share some resources, e.g., workers. Both the masters and the workers run through a main loop. Since
the masters handle all the program logic, an iteration ofpVTdirect will be defined as an iteration of the main loop for the masters.
The masters synchronize at every iteration of their main loop viaMPI BARRIER, whereas the workers do not synchronize at all.

It is possible to have more than one master per subdomain. Thecomputational work done by masters is relatively insignificant,
but more than one master per subdomain may be desired—the masters store the current state of the search (in the form of box
columns), and the memory available to multiple masters may be required to completely store the current state. By the nature of
the computation, the memory required to store the current state of the search increases with time. This means that the current
collection of masters may become unable to store the currentstate of the search, which may lead to thrashing. Thrashing can be
avoided by increasing the number of processors in the computation, hence increasing the amount of memory available to store the
current state of the search. Since the memory burden is primarily on the masters, it is necessary to spawn new masters on idle
processors in order to obtain a substantial amount of extra memory. Ideally, one would like todynamicallyincrease the number
of masters, rather than restarting the computation (which may last for days, or even months) with a greater number of masters.
Doing this in the context of MPI and the (necessarily) distributed data structures used bypVTdirect is nontrivial, and constitutes
the core topic of this paper.

3. Problem description

Running low on memory is a problem for masters inpVTdirect. pVTdirect was modified in order to keep track of memory
use, and to spawn new masters when the amount of available memory falls below a certain threshold. Spawning new masters
when memory is low, and subsequently integrating them into the running program, is a complicated and subtle task. The primary
challenges are (1) determining which processes should do the spawning (this choice affects other design factors, such as how
the communication scheme is handled), (2) executing the spawn when the workers behave asynchronously, (3) updating the
communication scheme of the newly expanded collection of processes, and (4) integrating the spawned masters into the current
job, obtaining a coherent execution unit. A modification ofpVTdirect, calledspVTdirect, is considered as a possible solution
to the challenges described above.

The codespVTdirect works as follows. The number of boxes possessed by a particular master is monitored, and if the memory
needed to store those boxes exceeds a user-defined threshold, a spawn request is made. When all processes have detected the
spawn request,MPI COMM SPAWN is executed and new masters are spawned. All processes, bothspawning and spawned, must then
update their state in order to integrate the new masters intothe already-running job. After the state update procedure is completed,
the current iteration restarts at the top of the main loop forthe masters, and the workers restart at the top of their main loop.

3.1. Choosing the spawning communicator

The choice of communicator used to spawn the new masters is important, because it affects how communication between
workers and spawned masters will be handled. AfterMPI COMM SPAWN has been executed, a handle for an intercommunicator is
returned. Since the local group of the intercommunicator contains the processes that performed the spawn, and the remote group
contains the spawned masters, the spawned masters can only communicate directly with the processes that performed the spawn.
Consequently, as far as communication is concerned, the best choice of spawning communicator is the entire collection of current
processes. This choice of communicator facilitates communication between the spawned masters and all current processes.

However, using the entire collection of current processes to perform the spawn is problematic, because the spawning subroutine
MPI COMM SPAWN is both blocking and collective over the set of spawning and spawned processes. If the entire collection of
current processes performs the spawn, then the masters and workers must all make a collective blocking call toMPI COMM SPAWN.
This is simple for the masters, which synchronize at every iteration of their main loop viaMPI BARRIER. However, the situation
is more complicated with the workers since they operate asynchronously, in the sense that attempts to synchronize theirbehavior
with MPI BARRIER (or any collective, blocking operation) generally lead to deadlock.

3

3.2. Executing the spawn

Every master monitors its own memory usage. If the amount of available memory for a master falls below a given threshold, it
notifies all other processes of a need to spawn new masters (i.e., obtain more memory). After a process has received notification
of a spawn request, that process first calls a spawning subroutine that executesMPI COMM SPAWN, followed by a subroutine that
updates state.

Using all of the current masters, as well as the workers, to perform the spawn is a delicate procedure. Since the masters
already synchronize at the top of their main loop, it would betempting to synchronize all processes at that point, and then use
a collective communication to notify all processes of a spawn request. However, all attempts to synchronize the workerswith
MPI BARRIER have lead to deadlock. Two options for notifying all processes of a spawn request have been explored in the current
work. One option is to notify all processes of a spawn requestby having the requesting process write to a “spawn request” file.
This can be problematic, because different processes read the spawn request file at different times, and hence one process may
begin executingMPI COMM SPAWN while the others are still busy, which can lead to deadlock. Atime sharing method can be used
to prevent deadlock from occurring when a process performs point-to-point communications—when performing a point-to-point
communication, a process goes back and forth between checking if the communication has completed, and reading the “spawn
request” file to see if there is a pending request. Collectivecommunications are only performed by the masters, and they only occur
when the masters and workers are not communicating. Hence, they are never a source of deadlock during the spawn notification
procedure.

The time sharing method is effective, but it is not portable,due to its reliance on a shared file system. A more portable solution
is to first notify all masters of a spawn request using a type ofreduction operation (technically,MPI ALL REDUCE is used), and
then have the lead master notify the workers. If theMPI ALL REDUCE is executed at the top of the main loop for the masters,
then the masters can prepare for a spawning event before the next iteration even begins. After the masters have been notified,
the simplest solution for notifying the workers is to use code that is already in place inpVTdirect. In pVTdirect, the workers
receive messages from masters at every iteration of an innerloop for the workers, and the tag associated with a message determines
the response to that message. So, inspVTdirect, the lead master can simply send a message to each worker witha tag indicating
a pending spawn request. The workers receive the messages and prepare for spawning.

On iterations without a pending spawn request (this is the vast majority of them), there is no extra overhead for the workers,
and the only overhead for masters is oneMPI ALL REDUCE per iteration. This overhead is minimal, and performance results have
shown that the overhead has negligible impact on the runtimeper iteration (see Section 6 for performance results).

3.2.1. Further issues with spawning
There are a few further issues related to spawning that must be considered. First, MPI does not support spawning on a cluster

with a scheduler [8], asMPI COMM SPAWN requires the user to provide a list of processes in the form ofa host file (the host
file contains node names, like “ithaca42”, not just ranks). Consequently, a Fortran 95 module designed to support spawning on
scheduled clusters was developed and tested. Currently, the module (calledQSPAWN) only provides subroutines that build a host
file for spawning, but further support for spawning on scheduled clusters may be added in the future. In order to build a host file,
the names of all nodes scheduled for the job must be obtained,as well as the number of cores available on each node. MPI provides
support for determining node names, but not for determiningthe number of cores available on a node—for this, the OpenMP
commandOMP GET MAX THREADS is used.

Second, the new masters should ideally be spawned on idle processors in order to obtain a substantial amount of extra memory.
Where these idle processors come from is a serious concern. One possibility is to replace a worker with the spawned master.
However, it is not guaranteed that a worker will be running onits own processor—it is possible for the worker to be runningon a
node along with other workers and a master (since masters arememory hogs, it is preferable to place them on separate nodes). So,
the only solution that will work consistently is to spawn newmasters on unused nodes. For clusters without a scheduler, this can
be done by providingspVTdirect with a list of all available nodes (possibly obtained from a system administrator). For clusters
with a scheduler, one solution is to use a system call to push anew job onto the scheduler’s queue. Performance concerns dictate
that the computation should continue, and hence state update be postponed, until after the new job is launched by the scheduler,
as their may be a substantial delay before the new job is launched. After the job is launched, communication can be established
between the current and newly-launched jobs, and state update can proceed as described in Section 3.4.

Another solution is to run multiple jobs simultaneously, allowing these jobs to share a global pool of nodes. Rather than
launching each job separately, a single job with one process(but many reserved nodes) could be launched using the cluster’s
scheduler. The single process could then spawn all of the specified jobs usingMPI COMM SPAWN, as well as maintain a list of
available nodes. All involved jobs would simply take nodes off the list as they consume them, and repopulate the list withnodes as
they finish with them. This idea of consolidating jobs can only work if (most of) the jobs have fluctuating resource requirements,
allowing them to consume and release nodes periodically. Although the number of nodes needed byspVTdirect may increase
with time, it never decreases. Consequently, it is not clearif this solution is feasible forspVTdirect.

4

3.3. Updating the communication scheme

The spawning procedure reorders some processes (the ranks of workers are translated), and add others (the spawned masters).

This means that communicators must be updated in order to ensure that messages are sent to and from the correct processes.In

particular, the state (ordering of processes) of the communicators after being updated must be consistent with the state of the

communicators before the spawning procedure began.

The communication between the current and spawned processes depends on which subset of the current processes does

the spawning. If only the set of current masters performs thespawning, then communication between the workers and the

spawned masters becomes infeasible—the intercommunicator returned from the call toMPI COMM SPAWN only allows for direct

communication between the spawning and spawned processes.If the workers are not involved in spawning the new masters, then

communication between the workers and spawned masters mustbe indirect. Although indirect communication is possible (and can

be coded cleanly with wrappers for the standard MPI communication subroutines), it is relatively inefficient as all communication

between the workers and spawned masters must pass through one (or more) of the current masters. In particular, if there isonly

one master, then that master becomes a bottleneck for all communication between the workers and spawned masters. Therefore,

it is preferable to have the set of all current processes executeMPI COMM SPAWN. In this case, communication between the workers

and the spawned masters is direct. If every member of the current world of processes executesMPI COMM SPAWN, then the best

way to update the communication scheme is as follows. The commandMPI INTERCOMM MERGE is used to merge the local and

remote groups of the intercommunicator returned byMPI COMM SPAWN. The processes in this merged intracommunicator must be

reordered so that they are consistent with the current ordering of processes—masters have the lower ranks, starting with zero, and

workers have the higher ranks, beginning with the number of masters. This allowsspVTdirect, with an updated communication

scheme, to continue to run properly.

However, the communication scheme was not originally updated as described above. This is because the authors had initially

used only the set of current masters to perform the spawning.As explained above, this choice was made to simplify the spawning

procedure itself, but such simplified spawning greatly complicates communication. In this case, communication is handled by

using wrappers for the standard MPI communication subroutines. These wrappers are namedMC 〈 subroutine name 〉, where

MC stands for “many communicator”. The wrapper subroutines take an array of communicators calledcommArray (rather than

a single communicator) as an argument, allowing the communication scheme to adjust to increases in the number of masters.

Processes are given a global rank within the collection of communicators specified bycommArray. The global rank of a process

in the ith communicator is

rankglobal = N1 + N2 + ...+ Ni−1 + ranklocal,

whereNj is the size of thejth communicator forj = 1, . . . , i − 1, andranklocal is the usual rank of the process within theith

communicator.

Such “many communicator” subroutines were written for bothpoint-to-point and collective communications. For example,

consider the “many communicator” subroutine for a point-to-point send communication, calledMC SEND. For the subroutine

MC SEND, the global rank of the receiving process is given as an inputparameter. The global rank is used to determine the relevant

communicator and the local rank of the receiving process within that communicator. If the global rank is strictly less than the

size ofcommArray(1), thencommArray(1) is the communicator and the local rank of the receiving process incommArray(1) is

simply its global rank. If the global rank is greater than or equal to the size ofcommArray(1), then the receiving process must be

an element ofcommArray(i) for somei > 1. In this case, the size ofcommArray(1) is subtracted from the global rank to obtain a

new value, and this value is compared against the size ofcommArray(2) to determine if the receiving process is an element of this

communicator. This process is repeated until the relevant communicator and local rank within that communicator are determined.

The idea behindMC SEND, as well as the other “many communicator” subroutines, is toallow the communication scheme of

spVTdirect to be updated simply and cleanly every time new masters are spawned. When new masters are spawned, only a few

data structures (such ascommArray) need to be updated. These data structures are then passed asinput parameters to the “many

communicator” subroutines, and the communication scheme is automatically adjusted to take into account the newly spawned

masters. Stress tests were done to compare the performance of the “many communicator” and “merge” methods. The results of

these tests are presented in Section 4.

5

3.4. Dealing with inconsistent states

The current job hasnm masters andnw workers, whereas the spawned job hasnm masters and zero workers (notice that the
spawned job is not intended to run on its own). These two jobs need to be integrated into a coherent execution unit with2nm

masters andnw workers. The integration of the two jobs is complicated by the inconsistencies in state between the current and
spawned masters—at the point of spawning, the current masters have generally run through quite a few iterations of the main loop,
whereas the spawned masters are just beginning. Dealing with the difference in state between the current and spawned masters is
tricky, and it is all too easy for subtle problems to arise when attempting to integrate the spawned masters into the already-running
job.

After the intercommunicator has been merged, the difference in state between the current and spawned masters must be dealt
with in order to successfully integrate the spawned mastersinto the current job. One solution is to transfer state from one of the
current masters to the spawned masters. Although this solution may seem obvious, the real challenge is in the details of making this
seemingly simple solution work. For a trivial example of thechallenges involved, consider the following facts aboutpVTdirect.
In pVTdirect, the lead master in a subdomain (i.e., the master with rank zero) behaves differently from the other masters in the
same subdomain. Since, in general, the lead master is the only master guaranteed to exist, it makes sense to transfer the state of the
lead master to the spawned masters. However, if done naively, this would mean that all spawned masters would think they were
lead masters, which is obviously problematic. This problemis trivial—it is only meant to illustrate the sort of problems that can
arise when the states of all processes are not properly updated after spawning new masters.

A conservative approach is taken to updating state after a spawning event. In general, an aspect of the state of a process is reset
when it is not clear how to properly maintain and/or augment that aspect. This means that some information is lost; however,
the lost information has no effect on the mathematical correctness of the algorithm. Succinctly,VTdirect, pVTdirect, and
spVTdirect all produce exactly the same set of boxes and function values. Note that some aspects of state, such as the iteration
counter,mustbe fabricated for the spawned masters (since the iteration number can be used as a stopping condition).

Since state is reset when it is not clear how to update and/or augment it, it is beneficial for the states of data structures to not be
persistent across iterations (note that it is sufficient forthe state of a data structure to be determined by a simple formula, i.e., the
ith element of an array is the rank of theith master). If the state of a data structure is not persistent(or if it can be determined by a
simple formula), then its state is trivial to update after a spawning event. Hence, the less state that is persistent, theeasier it is to
update the state of a process after a spawning event. For example, consider the arraylcConvex, which contains the convex hull
box counters for every master in a subdomain. Since convex hull boxes are reassigned to different masters at every iteration, the
values oflcConvex are recomputed at every iteration, and hence it is safe to resetlcConvex to an arbitrary state after a spawning
event.

Now consider the following example of state that is persistent across iterations. When a worker chooses a master in orderto make
a request, the worker chooses from the set of busy masters, which requires the 2-dimensional arraysmasterID andmasterStat.
The arraymasterID holds the ranks of every master in every subdomain, and the array masterStat holds the status (‘busy’ or
‘idle’) of every master in every subdomain. Updating the contents ofmasterID after a spawning event is trivial (its contents are
determined by a simple formula), but it is not obvious how to update the contents ofmasterStat while maintaining the statuses
of the spawning masters. Hence, a conservative strategy that simply (re)initializes the contents ofmasterStat is used.

3.4.1. Derived data types
The data structures with derived types used for storing box-related information do not have to be updated for any process. The

main data structure holding box information ismHead (technically,mHead is just the initial link in a larger data structure).mHead
is a fairly complex data structure, basically a dynamic listof matrices, where columns in the matrices represent box columns. If
a particular box column grows beyond the height of the matrix, the column can be extended (multiple times, if necessary) using
fixed-length arrays. The boxes stored by a particular process are unique to that process, and so the data structure pointed to by
mHead need not be transferred to spawned masters—the spawned masters initializemHead and fill it in with box information from
scratch. This means that there is a substantial imbalance inthe number of boxes stored by spawning and spawned masters. A
dynamic load balancing mechanism is used to balance the number of boxes stored by each master (Section 5).

4. Comparison between the “many communicator” and “merge” methods

Stress tests were performed to compare the two methods—the “merge method” and the “many communicator” method—for
updating the communication scheme after a spawning event. As described above, the “merge” method requires that the spawning
process be collective over all processes. In this case, the intercommunicator returned fromMPI COMM SPAWN is simply merged
into an intracommunicator. The “many communicator” methodwas designed so that the spawning process need only be collective
over the current set of masters. This method uses an array of communicators to implement a dynamic communication scheme that
can adjust to increases in the number of masters.

6

4.1. Experimental setup

For the “many communicator” method, the experimental setupfor the broadcast and gather tests was the same, but differed
from the setup for the send and receive tests. All four sets oftests ran through 20 iterations, increasing the number of integers
communicated at each iteration. At each iteration, two extraneous sends and receives were needed to handle the timing. This did
not substantially affect the accuracy of the timing measurements because the communications being timed sent much moredata
than the communications needed for taking measurements. For the send and receive tests, the source was chosen at random from
one of two communicators, and the destination was chosen at random from the other communicator. For the broadcast and gather
tests, the root process was chosen at random. Further, the tests for each message length were performed 1000 times, and the mean
communication time was determined. To do this, a separate program was used to execute the timing program 1000 times, and to
obtain data such as means and standard deviations, for each message length. The timing data was averaged over a large number
of tests for each message length because unusually noisy data was obtained in previous tests.

4.1.1. Broadcast and gather

Two communicators were used in all the tests, each containing 32 processes. One was a parent communicator that spawned
the other. The tests consisted of 20 iterations of communication, where the message length increased with each iteration. For
broadcast,500 · k integers were sent to every process at iterationk , making for a total of32, 000 · k integers broadcast at each
iteration. For gather,500 · k integers were gathered from each process, making for a totalof 32, 000 · k integers gathered at each
iteration. Although32,000 · k integers are communicated during each subroutine call, themessage length at iterationk will be
considered500 · k (integers per process, with 64 processes involved in each communication). The root was chosen as a random
element of the parent communicator.

4.1.2. Send and receive

Two communicators—a parent and a child communicator—were used in all the tests, and each communicator contained four
processes. The tests consisted of 20 iterations of communication, where the message length was 5,000,000 times the iteration
number. The source was selected as a random number between zero and seven, and the destination was chosen as follows. First,
a random number,h, between zero and three was generated. If the value of the source was between zero and three, then the
destination wash + 4; otherwise, the value of the destination was simplyh. Notice that this guaranteed that the source and
destination were in distinct communicators.

4.1.3. The “merge” method

For the “merge” method, one simply needs to useMPI INTERCOMM MERGE to obtain a merged intracommunicator, and then this
communicator can be used with existing MPI communication subroutines. Thus, ignoring spawning concerns, the “merge” method
is quite simple to implement. Whenever possible, the experimental setup for the “merge” method was the same as the setup for
the “many communicator” method. In particular, the number of integers sent per communication at each iteration, the number of
timing tests performed at each iteration, and the selectionof the source, destination, and root were the same as described above for
the “many communicator” method.

4.1.4. Hardware/software

The experiments were conducted on System G, which is the world’s largest power-aware compute research cluster. System
G has working power-aware features, power and thermal sensors on-board and accessible via software, and high performance
processors and interconnects. The cluster consists of 325 Apple MacPro (dual processor quad core Xeon 2.8 GHz) systems with
8GB memory per node and a Mellanox QDR Infiniband interconnect. Users have access to the 30+ thermal sensors and 30+ power
sensors in each MacPro. The version of MPI used for the tests was Open MPI 1.4.1.

4.2. Results

In general, the results for the “many communicator” method are illustrated in plots using triangles, and circles are used for the
“merge” method. The middle curve for each method representsthe mean, and the curves above and below the middle curve show
one standard deviation above and below the mean, respectively. The three curves for each method form a band that likely contains
the “true” runtime curve for the method.

7

ò

ò ò ò

ò ò ò ò ò ò ò ò ò
ò ò ò ò ò ò òò

ò ò ò

ò ò ò ò ò ò ò ò ò ò
ò ò ò ò ò ò

ò

ò ò ò

ò ò ò ò ò
ò ò ò ò ò ò

ò ò ò ò ò

æ

æ æ æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

æ æ æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

æ æ æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

2000 4000 6000 8000 10 000
Message Length

10

20

30

40

50

60

70
Time Hin millisecondsL

Bcast

æ MG - Σ

æ MG + Σ

æ MG mean

ò MC - Σ

ò MC + Σ

ò MC mean

Fig. 2. “Many communicator” (triangles) and “merge” method (circles) broadcasts on System G.

ò

ò ò

ò

ò ò ò ò ò ò ò ò ò ò ò
ò ò ò ò ò

ò

ò ò

ò

ò ò ò ò ò ò ò ò ò ò ò
ò ò ò ò ò

ò

ò ò

ò

ò ò ò ò ò ò ò ò ò ò ò
ò ò ò ò ò

æ
æ

æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ
æ

æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ
æ

æ

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

2000 4000 6000 8000 10 000
Message Length

50

100

150

200

250

300
Time Hin millisecondsL

Gather

æ MG - Σ

æ MG + Σ

æ MG mean

ò MC - Σ

ò MC + Σ

ò MC mean

Fig. 3. “Many communicator” (triangles) and “merge” method (circles) gathers on System G.

4.2.1. Broadcast and gather
For the broadcast and gather tests (Figures 2 and 3), with a few exceptions, the “many communicator” method generally

performed better. For message lengths of 1000 to 2000 integers per process, the “merge” method outperformed the “many
communicator” method for the broadcast tests. The runtimesfor both methods were relatively low for these message lengths,
producing a “dip” in both bands. For message lengths of 2500 to 10,000, the “many communicator” method performed better than
the “merge” method. Notice that there was no overlap in bandswhenever the “many communicator” method outperformed the
“merge” method.

4.2.2. Send and receive
For the send/receive tests usingMPI ANY SOURCE as the source argument, the “merge” method consistently outperformed the

“many communicator” method (see Figure 4). The performanceof the “merge” method was also more consistent—the standard
deviation for the “merge” method was generally less than 0.5, whereas the standard deviation for the “many communicator” method
was between about two and five. It is not clear why the “merge” method performed better than the “many communicator” method.
It is possible that the relatively poor performance of the “many communicator” method is due to usingMPI IPROBE to determine

8

ò
ò
ò

ò
ò
ò

ò

ò

ò

ò
ò
ò
ò

ò
ò
ò
ò
ò

ò

ò

ò
ò
ò

ò
ò
ò

ò

ò
ò
ò
ò
ò
ò

ò
ò
ò

ò
ò
ò

ò

ò
ò
ò
ò
ò
ò

ò

ò

ò

ò
ò
ò
ò

ò
ò
ò
ò
ò

ò

ò

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

2´107 4´107 6´107 8´107 1´108
Message Length

50

100

150

200

Time Hin millisecondsL
Send, MPI_ANY_SOURCE

æ MG - Σ

æ MG + Σ

æ MG mean

ò MC - Σ

ò MC + Σ

ò MC mean

Fig. 4. “Many communicator” (triangles) and “merge” method (circles) gathers on System G.

the relevant communicator. A more efficient method for determining the communicator could yield better runtimes for the“many
communicator” method.

The performance of both methods was nearly identical for thesend/receive tests using a specific value for the source argument
(plot not shown). Since only two communicators were used in the tests, it was quite simple to determine the communicator that
contained the destination, as well as the local rank of the destination process within that communicator. Consequently, most of the
runtime was taken up by the transmission time associated with a standardMPI SEND. Presumably, this is why the runtimes for the
two methods were so similar. This situation is not unrealistic, as the number of child programs spawned for the global optimization
application is generally small.

5. Dynamic load balancing

The main source of memory use for masters is storing boxes, so“memory load” and “box load” are essentially interchangeable
for masters. The box load on masters is monitored to determine when new masters must be spawned. If we definespawn countto
be the number of spawning events that have occurred at a certain point of the execution of the program, then the memory threshold
for masters is roughly1− 1/2s, wheres is the current spawn count, i.e., new masters are spawned when one half of the currently
available memory is used. The threshold for sufficient memory is intentionally low because boxes are not transferred from the
current to the spawned masters. Rather, the rate at which boxes are accumulated decreases (resp. increases) temporarily for the
current (resp. spawned) masters. Notice that each spawningevent doubles the number of masters (and because of this exponential
increase in masters, the number of spawning events is limited by a user-defined parameter).

As mentioned above, the box load is strongly imbalanced immediately after new masters are spawned, as the spawned masters
have not had time to accumulate boxes. Since spawning new masters creates an imbalance in box load, a dynamic load balancing
mechanism is required. To this end,load deviationfor theith master is defined as

devi =
bci − bca

bct

,

wherebct is the total box count across all masters,bca is the average box count, andbci is the box count for theith master. Load
deviation measures the extent (either positive or negative) to which a master’s box count deviates from the average box count.
Notice that the sum of load deviations for all masters is zero, and that|devi| ≤ 1.

In order to dynamically balance the box load for all masters,the number of boxes received by a master after the convex hull
computation is initially⌊(1 − devi)T/N⌋, whereT is the total number of new boxes obtained from the convex hullcomputation,
andN is the number of masters. After the initial distribution of boxes, remaining boxes are distributed pseudorandomly amongst
the masters. This essentially scales a master’s share of newboxes by1 − devi, so that masters with below average box loads will
receive more boxes than those with above average loads. In Section 6.3, it is shown that this method is effective in dynamically
balancing box load after new masters are spawned.

9

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò

ò ò

ò
ò

ò

ò

ò
ò

ò

ò

ò ò
ò
ò

ò ò òò

æ

æ

æ
æ
ææ

æ

æ

æ
æ

æ

æ

æææ

æ

æ

æ
ææ
ææ
ææ
æ
æ
ææ
ææ

5 10 15 20 25 30
Iteration

0.0001

0.0002

0.0003

0.0004

0.0005
Time HsecondsL

Runtime per iteration for GR

æ pVTdirect

ò spVTdirect

ò
ò

ò

ò ò

ò

ò

ò ò

ò

ò

ò ò ò

ò
ò

ò ò ò

ò
ò

ò ò

ò

ò

ò

ò ò

ò ò ò ò ò ò

æ

æ æ
æ

æ æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ æ æ æ æ æ æ æ

5 10 15 20 25 30
Iteration

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Time HsecondsL
Runtime per iteration for QU

æ pVTdirect

ò spVTdirect

Fig. 5. Comparison of runtimes per iteration for the GR (left) and QU (right) objective functions.

ò

ò ò

ò

ò

ò

ò

ò

ò

ò

ò ò
ò

ò

ò

ò

ò

ò
ò ò

ò

ò

ò ò

ò ò òò

æ

æ

æ
æ æ

æ

æ

æ
æ
æ

æ
æ
æ

æ
æ

æ æ

æ

æ
æ

æ

æ
æ æ

æ

æ

5 10 15 20 25
Iteration

0.0001

0.0002

0.0003

Time HsecondsL
Runtime per iteration for SC

æ pVTdirect

ò spVTdirect

ò

ò

ò
ò

ò

ò

ò

ò ò

ò

ò

ò

ò

ò

ò

ò

ò

ò ò ò ò ò ò ò
ò

ò ò

ò

ò òòò

æ

æ

æ

æ

æ
æ æ

æ
æ
æ

æ æ

æ

æ

æ

æ
æ

æ

æ
æ æ
æ æ æ æ æ

æ æ

æ

5 10 15 20 25 30
Iteration

0.0001

0.0002

0.0003

0.0004
Time HsecondsL

Runtime per iteration for MI

æ pVTdirect

ò spVTdirect

Fig. 6. Comparison of runtimes per iteration for the SC (left) and MI (right) objective functions.

6. Performance results

A variety of optimization problems were used to test the modifications made topVTdirect. Several toy problems, as well as a
realistic nulcear physics problem (MFDn), were used. SincebothpVTdirect andspVTdirect consider the objective function to
be a black box, the runtime per iteration for bothpVTdirect andspVTdirect should only depend on the runtime of the objective
function. Consequently, it is useful to test the performance of spVTdirect using objective functions with a variety of runtimes
and runtime patterns (i.e., the runtime might increase withiterations, or stay roughly constant). Four of the toy problems have
negligible runtimes (on the order of10−4 seconds), one toy problem has runtimes around one second, and the real-world physics
problem has (parallel) runtimes ranging from about eight tofifteen seconds.

A single spawning event was artificially made to occur at the seventh iteration ofspVTdirect. For the toy problems,pVTdirect
was run with either nine or twelve processes, andspVTdirect was run with eight or ten processes (chosen to meet the restraints
set bypVTdirect on the ratio of masters to workers).spVTdirect spawned either one or two new masters, so that the numbers
of processes used bypVTdirect andspVTdirect were identical after the spawning event. For the MFDn objective function,
pVTdirect was run with six processes, andspVTdirect was run with five processes.spVTdirect spawned one new master, so
thatpVTdirect andspVTdirect were both running with six processes after the spawning event. Every instance of MFDn was
run with six processes.

6.1. Toy problems

The four toy problems with negligible runtimes were the Griewank function (GR), the Quartic function (QU), Schwefel’s
function (SC), and Michalewicz’s function (MI), all taken from [3]. Figures 5 and 6 show runtimes per iteration forpVTdirect
andspVTdirect with GR, QU, SC, and MI as objective functions. The runtimes for spVTdirect are shown with triangles,
and those forpVTdirect are shown with circles. Notice that the runtimes per iteration for spVTdirect are quite similar to the
runtimes per iteration forpVTdirect. Predictably, the runtime forspVTdirect is much larger for the seventh iteration (when the
spawning event occurred). The runtime per iteration forspVTdirect generally stabilizes to values that consistently hover slightly
above the values forpVTdirect. See the plot of runtimes per iteration for MI (Figure 6, right) for a nice illustration of this effect.

The toy problems with negligible runtimes were useful for comparing thetotalnumber of iterations and function evaluations for
spVTdirect andpVTdirect, as well as comparing other global properties. The total number of iterations and objective function
evaluations, the minimum box diameter, and the stopping rule used to end the search were always identical forspVTdirect and

10

òòòòò

ò

òò

òòò

ò

òòò

ò

òò

ò

òòò

ò

òòò

ò

òò

òæ æ æ æ æ æ æ æ

æ æ æ

æ

æ æ æ

æ

æ æ

æ

æ æ æ

æ

æ æ æ

æ

æ æ

æ

5 10 15 20 25 30
Iteration

0.5

1.0

1.5

2.0

2.5

3.0
Time HsecondsL

Runtime per iteration for MISleep

æ pVTdirect

ò spVTdirect

Fig. 7. Comparison of runtimes per iteration for the MISleep objective function.

pVTdirect. Although there are very minor differences in performance,the boxes examined at every iteration are identical for
pVTdirect andspVTdirect.

In Figure 7, the runtimes per iteration are plotted forpVTdirect andspVTdirect with the objective function MISleep—a
variant of the MI toy problem discussed above—that is designed to run for about one second. The runtimes forspVTdirect and
pVTdirect are shown with triangles and circles, respectively. From the plot in Figure 7, it is clear that the runtimes per iterationfor
pVTdirect andspVTdirect with the MISleep objective function are nearly identical, with the exception of the seventh iteration
for spVTdirect (where the spawning event occurs). The same basic pattern isseen in other similar variants of toy problems
(GRSleep, etc.). One can conclude that the overhead forspVTdirect has negligible impact on the runtime per iteration when the
objective function has a sufficiently long runtime (according to the tests done for this work, a runtime of at least one second is
sufficiently long).

6.2. MFDn

MFDn, which stands for “many fermion dynamics nuclear”, is anuclear physics code [9] developed at Iowa State University
that computes theoretical values for certain observables relevant to the spectra of atomic nuclei. The computed valuesfor these
observables can be compared to empirical values using aχ2 function, and a value is obtained representing the goodnessof fit.
Since MFDn has an input file containing several input parameters, one can vary these parameters, and observe the goodnessof fit
obtained by each setting of input parameters. This suggeststhe use of an optimization algorithm in order to find an optimal set
of parameters, where an “optimal” set of parameters means a set of parameters that yields a minimalχ2 value. For the problem
considered here, there are only three input parameters thatvary. Also, the output of the objective function is not simply theχ2

value for the (sequences) of computed and empirical values.Instead, MFDn is run twice with two separate input files. The input
files are identical with the exception of a single parameter,which is not amongst the three that are varied. The output of the
objective function is the sum of the twoχ2 values for the two runs of MFDn.

The computation of the MFDn objective function is very complex and involves finding a solution to the Schrodinger equation
with a large, sparse, and irregularly structured Hamiltonian matrix [10]. One reason for this is that MFDn is itself a parallel
computation, and so it must be spawned usingMPI COMM SPAWN. Another reason is that two instances of MFDn need to be run in
order to determine the output of the objective function (each instance of MFDn uses a different input data set). A third reason is
that multiple processes may executeMPI COMM SPAWN simultaneously, and hence (on shared file systems) multipleprocesses may
attempt to access the executable simultaneously, causing the program to crash. Notice that even though MFDn runs on separate
processes from the worker that spawned it, the worker’s callto the objective function does not complete until both instances of
MFDn complete, because the objective function waits for a completion message from MFDn. This means that the computationof
the MFDn objective function takes on the order of eight to fifteen seconds to complete. The runtime of this objective function is
not entirely consistent because it must be run in parallel.

MPI does not provide any means for locking executables to prevent race conditions when callingMPI COMM SPAWN, so it is up
to the user to prevent such conditions. Fortunately, MPIdoesprovide support for locking files when reading or writing to them.
So, one way to prevent race conditions when usingMPI COMM SPAWN is to have each process read a value from a file, where the
value indicates which process currently “owns” the executable. A process continually reads from the file until it reads “f” (for

11

ò

ò
ò

ò
ò ò ò ò

ò

ò
ò

ò
ò
ò
ò
ò

ò ò
ò
ò ò
ò
ò ò
ò
ò ò ò

ò
ò

æ

æ
æ

ææææ

æ

æ

æææ
ææ

æ
ææææææ

æ

æ

æ

ææ
ææ
æ
æ

5 10 15 20 25 30
Iteration

10

20

30

40

50

60

Time HsecondsL
Runtime per iteration for MFDn

æ pVTdirect

ò spVTdirect

Fig. 8. Comparison of runtimes per iteration for the MFDn objective function.

“free”), in which case the process writes its own rank to the file, executesMPI COMM SPAWN, and then writes “f” to the file once

both instances of MFDn have been spawned.

Figure 8 shows runtimes per iteration forpVTdirect andspVTdirect, both with MFDn as objective function. The triangles and

circles show the runtimes per iteration forspVTdirect andpVTdirect, respectively. The runtimes per iteration forspVTdirect

with objective function MFDn are roughly the same as runtimes per iteration forpVTdirect, ignoring the variations in runtime

for bothpVTdirect andspVTdirect. The overhead inspVTdirect does not have a significant impact on its performance.

6.3. Performance of the dynamic load balancing mechanism

In order to test the dynamic load balancing mechanism,spVTdirect was run with one master using GR and QU as objective

functions. The amount of memory available on a node is read from an input file. The value for available memory was set artificially

low so that a spawning event would occur at iteration 25, increasing the number of masters to two. Box count and load deviation

were monitored before and after the spawning event. Before the spawning event, the spawned master did not exist, and hence its

box count is assumed to be zero. After the spawning event, thebox count for the spawned master increased until it was almost

identical to the box count for the current master (Figure 9).

The tests for load deviation began at iteration 25, when the new master was spawned. Load deviation was initially0.5 for the

spawning master, and−0.5 for the spawned master for both objective functions. For both GR and QU, the load deviation moved

toward zero for both masters; however, load deviation approached zero more quickly (and smoothly) for GR (Figure 10). This

was due to the fact that the number of new boxes added per iteration was greater for GR than for QU, and that (for technical

reasons) the lead master must receive at least one box per iteration. In general, at most three new boxes were added per iteration

for QU, and since the lead master received at least one box, the spawned master could receive at most two boxes, regardlessof

the load deviation. This observation inspired a modification to the load balancing mechanism that increases the number of boxes

added per iteration, thereby balancing the box load in feweriterations. An input parameter forpVTdirect andspVTdirect,

called the “aggressive” switch, specifies that all boxes on the convex hull should be selected, not just those meeting theminimum

improvement condition. For 20 iterations after a spawning event, the aggressive switch is turned on. This number of iterations

was selected based on the observation that 20 iterations wasgenerally sufficient to reduce load deviation to about 0.1. When the

temporary aggressive switch is used (Figure 11), it takes far fewer iterations for load deviation to reach 0.1 (about 7 iterations,

versus 50 iterations when the “aggressive” switch is not used at all).

12

òòòò
òò
ò
ò
ò
ò
ò
ò
òò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò
ò

ò

ò

ò

æææææææææææææ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

æ

æ

10 20 30 40 50 60
Iteration

1000

2000

3000

4000
Box count

Box count for GR after a spawning event

æ Spawned

ò Initial

ò
ò

ò

ò

ò
ò
ò
ò
ò
ò
ò
ò
ò ò
ò ò
ò ò
ò
ò ò
ò
ò ò
ò
ò

æææææ
æ
æ
æ
æ
æ
æ

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

20 40 60 80 100 120
Iteration

200

400

600

800

Box count
Box count for QU after a spawning event

æ Spawned

ò Initial

Fig. 9. Box count versus iteration for GR (left) and QU (right).

ò

ò

ò
ò
ò
ò ò ò ò ò ò ò ò ò ò ò ò ò

æ

æ

æ
æ
æ
æ æ

æ æ
æ æ æ æ

æ æ æ æ æ30 35 40 45 50 55 60
Iteration

-0.4

-0.2

0.2

0.4

Deviation
Load imbalance for GR after a spawning event

æ Spawned

ò Initial

ò

ò

ò
ò
ò
ò
ò
ò ò

ò ò ò ò ò ò ò ò ò ò ò ò ò

æ

æ

æ
æ
æ
æ
æ
æ æ

æ æ
æ æ

æ æ æ
æ æ æ æ

æ æ40 60 80 100 120
Iteration

-0.4

-0.2

0.2

0.4

Deviation
Load imbalance for QU after a spawning event

æ Spawned

ò Initial

Fig. 10. Load deviation versus iteration for GR (left) and QU (right).

7. Related work

Adaptive parallel applications are applications that can alter their process count in response to changes in availableresources.
Adaptive parallel applications are primarily used in grid computing due to fluctuations in available resources (a user might not
want cycles being borrowed from his machine when he is using it), as well as the loose coupling of tasks. As far as the authors
know, dynamically adjusting the process count of a parallelMPI application with tightly coupled processes is unique tothe current
work.

Tools have been developed to help users write adaptive parallel applications. In [11], a system that enables OpenMP programs
to run on a network of workstations with a variable number of nodes is described. There are similar systems for grid computing,
such as the system described in [12]. The adaptive parallel systems intended for grid computing are of little use for the purposes
of this work, because they depend on the noninteraction of processes in the user application (i.e., the user applicationmust be
embarrassingly parallel). The communication between the masters inpVTdirect complicates increasing their count.

Process migration has been used to adjust the number of MPI processes running on a physical processor (although the total
number of processes remains unchanged). Adaptive MPI [13] uses processor virtualization to dynamically manage resources.
In particular, virtual MPI processes can be migrated from one physical processor to another, allowing applications written with
Adaptive MPI to increase the process count on a particular processor (while decreasing the process count on one or more
processors). Although Adaptive MPI is intended for use withapplications developed in C++, it might seem as if process migration
more generally could be useful for the present work. For instance, if masters lacked sufficient memory, one or more masters could
be migrated to processors with more available memory. However, this is not an ideal strategy for increasing the memory available
to masters inpVTdirect for two reasons. First, if a process is migrated to a new node,then the memory that had been used to
store boxes on the previous node is lost. Second, unused processors are in general needed to increase overall available memory
(see Section 3.2.1). Within master-worker style applications, such aspVTdirect, it may be wasteful to allocate one process per
node, and so it is difficult to ensure enough memory without spawning an extra process on a “fresh” node.

13

ò
ò
ò

ò
ò

ò

ò

ò

òò
òò
òò
òò
òò
òò
òò
òò

æææææ

æ

æ

æ

æ
ææ
æ
æ
æ
æ
ææ
ææ
æ
ææ
æ
æ

20 40 60 80 100 120
Iteration

200

400

600

800

1000

1200

1400
Box count

Box count for QU after a spawning event
using temporary "aggressive" switch

æ Spawned

ò Initial

ò
ò
ò
ò
ò
ò
òòòòòòòòòòòòòòòòòòòòòòò

æ
æ
æ
æ
æ
æ
ææ
ææ
æææ

æææ
ææææ

æææææ
ææææ

30 35 40 45 50
Iteration

-0.4

-0.2

0.2

0.4

Deviation
Load imbalance for "aggressive" QU after a spawning event

æ Spawned

ò Initial

Fig. 11. Box count (top) and deviation (bottom) versus iteration for QU using temporary “aggressive” switch.

8. Conclusions and discussion

This work shows that it is possible to dynamically adjust thenumber of masters in the global optimization codepVTdirect,
and hence prevent thrashing when the amount of available memory becomes insufficient. Performance results show that theextra
communication overhead inspVTdirect has a negligible impact on the performance of the application.

There were a number of lessons learned during the course of this work that should be useful to anyone designing a master-worker
style parallel code with the capability to adjust process count on demand. Updating state after new processes are spawned can be
quite subtle if some of the processes are tightly coupled and/or there are persistent aspects of program state, i.e., aspects of state
that are persistent across iterations of a main loop. One wayto deal with the problem of updating/fabricating state is todesign the
code so that processes are only loosely coupled, i.e., the state of a process has minimal effect on the state of any other process. If
the processesmustbe tightly coupled, then a reasonable design choice is to prevent state from being persistent across iterations.
If processes are unaware of any state from the previous iteration, then integrating spawned processes into the computation should
be simple. Another useful design choice is to regularly synchronize all masters. This should simplify the task of notifying all
processes of a spawn request, assuming all processes are involved in the spawning procedure. Of course, all processes need not

14

be involved, but the present work has shown that this can simplify communication between the current and spawned processes.
Synchronizing the workers may also be beneficial, but it might create an unreasonable amount of idle time for the workers.

One final point is that the number of workers could also be dynamically adjusted on demand. This would require only minor
modifications tospVTdirect—the spawn notification method used for masters could be usedfor spawning new workers, and the
state update would be much simpler than for spawning masters. Adjusting the number of workers on demand would be useful in
many situations. For instance, the user could supply parameters specifying that some minimal amount of progress has to be made
by the search in a fixed amount of time. If sufficient progress is not made, then more workers could be spawned on demand to
perform more function evaluations, and hopefully speed up the progress of the search.

Acknowledgements

The authors would like to thank the National Energy ResearchScientific Computing Center (NERSC) for use of the Carver
cluster, and Aron Ahmadia at the King Abdullah University ofScience and Technology (KAUST) for use of the Shaheen and
Neser clusters.

References

[1] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, S. Kumar, E.Lusk, R. Thakur, J. Larsson, MPI on a million processors, in:Proceedings of the 16th European

PVM/MPI Users’ Group Meeting on Recent Advances in ParallelVirtual Machine and Message Passing Interface, M. Ropo, J. Westerholm, J. Dongarra (Eds.),

Springer-Verlag, Berlin, Heidelberg, (2009), 20–30.

[2] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl. 79 (1993) 157–181.

[3] J. He, L. T. Watson, M. Sosonkina, Algorithm 897: VTDIRECT95: serial and parallel codes for the global optimization algorithm DIRECT, ACM Transactions on

Mathematical Software 26 (2009) 1–24.

[4] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer, A. Verstak, J. Jiang, K. Bae, W. H. Tranter, Dynamic data structures for a direct search algorithm, Comput.

Optim. Appl. 23 (2002) 5–25.

[5] J. He, A. Verstak, L. T. Watson, M. Sosonkina, Performance modeling and analysis of a massively parallel DIRECT - part1, Int. J. High Perform. Comput. Appl.

23 (2009) 14–28.

[6] J. He, A. Verstak, M. Sosonkina, L. T. Watson, Performance modeling and analysis of a massively parallel DIRECT - part2, Int. J. High Perform. Comput. Appl.

23 (2009) 29–41.

[7] T. D. Panning, L. T. Watson, N. A. Allen, K. C. Chen, C. A. Shaffer, J. J. Tyson, Deterministic parallel global parameter estimation for a model of the budding yeast

cell cycle, J. of Global Optimization 40 (2008) 719–738.

[8] J. Squyres, “The spawn of MPI”, cw.squyres.com Feb. 2005, ClusterWorld magazine, Nov. 2011 <http://cw.squyres.com/columns/2005-02-CW-MPI-

Mechanic.pdf>.

[9] J. P. Vary, The Many-Fermion-Dynamics Shell-Model code, Iowa State University, 1994, Unpublished.

[10] P. Sternberg, E. G. Ng, C. Yang, P. Maris, J. P. Vary, M. Sosonkina, H. V. Le, Accelerating configuration interaction calculations for nuclear structure, in:

Proceedings of the 2008 ACM/IEEE conference on Supercomputing (SC ’08), IEEE Press, Piscataway, NJ, USA, (2008), Article 15, 12 pages.

[11] A. Scherer, H. Lu, T. Gross, W. Zwaenepoel, Transparentadaptive parallelism on NOWs using OpenMP, in: Proceedingsof the 7th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP ’99), ACM, New York, NY, USA, (1999), 96–106.

[12] E. Godard, S. Setia, E. L. White, DyRecT: software support for adaptive parallelism on NOWs, in: Proceedings of the 15 IPDPS 2000 Workshops on Parallel and

Distributed Processing (IPDPS ’00), D. P. Rolim (Ed.), Springer-Verlag, London, UK, UK, (2000), 1168–1175.

[13] C. Huang, O. Lawlor, L. V. Kalé, Adaptive MPI, in: Proceedings of the 16th International Workshop on Languages and Compilers for Parallel Computing (LCPC

2003), LNCS 2958, (2003), College Station, Texas.

306–322 [14] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI—the Complete Reference, Vol. 1: the MPI Core(2nd. ed.), MIT Press, Cambridge,

MA, USA, 2000.

[15] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir, M. Snir, MPI—the Complete Reference, Vol. 2: the MPI Extension (2nd. ed.),

MIT Press, Cambridge, MA, USA, 2000.

15

