34 research outputs found

    Algebraic model counting

    Get PDF
    Weighted model counting (WMC) is a well-known inference task on knowledge bases, and the basis for some of the most efficient techniques for probabilistic inference in graphical models. We introduce algebraic model counting (AMC), a generalization of WMC to a semiring structure that provides a unified view on a range of tasks and existing results. We show that AMC generalizes many well-known tasks in a variety of domains such as probabilistic inference, soft constraints and network and database analysis. Furthermore, we investigate AMC from a knowledge compilation perspective and show that all AMC tasks can be evaluated using sd-DNNF circuits, which are strictly more succinct, and thus more efficient to evaluate, than direct representations of sets of models. We identify further characteristics of AMC instances that allow for evaluation on even more succinct circuits

    Hunting for Tractable Languages for Judgment Aggregation

    Get PDF
    Judgment aggregation is a general framework for collective decision making that can be used to model many different settings. Due to its general nature, the worst case complexity of essentially all relevant problems in this framework is very high. However, these intractability results are mainly due to the fact that the language to represent the aggregation domain is overly expressive. We initiate an investigation of representation languages for judgment aggregation that strike a balance between (1) being limited enough to yield computational tractability results and (2) being expressive enough to model relevant applications. In particular, we consider the languages of Krom formulas, (definite) Horn formulas, and Boolean circuits in decomposable negation normal form (DNNF). We illustrate the use of the positive complexity results that we obtain for these languages with a concrete application: voting on how to spend a budget (i.e., participatory budgeting).Comment: To appear in the Proceedings of the 16th International Conference on Principles of Knowledge Representation and Reasoning (KR 2018

    kProbLog: an algebraic Prolog for machine learning

    Get PDF

    On the Complexity of Optimization Problems based on Compiled NNF Representations

    Full text link
    Optimization is a key task in a number of applications. When the set of feasible solutions under consideration is of combinatorial nature and described in an implicit way as a set of constraints, optimization is typically NP-hard. Fortunately, in many problems, the set of feasible solutions does not often change and is independent from the user's request. In such cases, compiling the set of constraints describing the set of feasible solutions during an off-line phase makes sense, if this compilation step renders computationally easier the generation of a non-dominated, yet feasible solution matching the user's requirements and preferences (which are only known at the on-line step). In this article, we focus on propositional constraints. The subsets L of the NNF language analyzed in Darwiche and Marquis' knowledge compilation map are considered. A number of families F of representations of objective functions over propositional variables, including linear pseudo-Boolean functions and more sophisticated ones, are considered. For each language L and each family F, the complexity of generating an optimal solution when the constraints are compiled into L and optimality is to be considered w.r.t. a function from F is identified
    corecore