582 research outputs found

    Complementary Sets, Generalized Reed-Muller Codes, and Power Control for OFDM

    Full text link
    The use of error-correcting codes for tight control of the peak-to-mean envelope power ratio (PMEPR) in orthogonal frequency-division multiplexing (OFDM) transmission is considered in this correspondence. By generalizing a result by Paterson, it is shown that each q-phase (q is even) sequence of length 2^m lies in a complementary set of size 2^{k+1}, where k is a nonnegative integer that can be easily determined from the generalized Boolean function associated with the sequence. For small k this result provides a reasonably tight bound for the PMEPR of q-phase sequences of length 2^m. A new 2^h-ary generalization of the classical Reed-Muller code is then used together with the result on complementary sets to derive flexible OFDM coding schemes with low PMEPR. These codes include the codes developed by Davis and Jedwab as a special case. In certain situations the codes in the present correspondence are similar to Paterson's code constructions and often outperform them

    Decoding the Golay code with Venn diagrams

    Get PDF
    A decoding algorithm, based on Venn diagrams, for decoding the [23, 12, 7] Golay code is presented. The decoding algorithm is based on the design properties of the parity sets of the code. As for other decoding algorithms for the Golay code, decoding can be easily done by hand

    On formulas for decoding binary cyclic codes

    Get PDF
    We adress the problem of the algebraic decoding of any cyclic code up to the true minimum distance. For this, we use the classical formulation of the problem, which is to find the error locator polynomial in terms of the syndroms of the received word. This is usually done with the Berlekamp-Massey algorithm in the case of BCH codes and related codes, but for the general case, there is no generic algorithm to decode cyclic codes. Even in the case of the quadratic residue codes, which are good codes with a very strong algebraic structure, there is no available general decoding algorithm. For this particular case of quadratic residue codes, several authors have worked out, by hand, formulas for the coefficients of the locator polynomial in terms of the syndroms, using the Newton identities. This work has to be done for each particular quadratic residue code, and is more and more difficult as the length is growing. Furthermore, it is error-prone. We propose to automate these computations, using elimination theory and Grbner bases. We prove that, by computing appropriate Grbner bases, one automatically recovers formulas for the coefficients of the locator polynomial, in terms of the syndroms

    Permutation Decoding and the Stopping Redundancy Hierarchy of Cyclic and Extended Cyclic Codes

    Full text link
    We introduce the notion of the stopping redundancy hierarchy of a linear block code as a measure of the trade-off between performance and complexity of iterative decoding for the binary erasure channel. We derive lower and upper bounds for the stopping redundancy hierarchy via Lovasz's Local Lemma and Bonferroni-type inequalities, and specialize them for codes with cyclic parity-check matrices. Based on the observed properties of parity-check matrices with good stopping redundancy characteristics, we develop a novel decoding technique, termed automorphism group decoding, that combines iterative message passing and permutation decoding. We also present bounds on the smallest number of permutations of an automorphism group decoder needed to correct any set of erasures up to a prescribed size. Simulation results demonstrate that for a large number of algebraic codes, the performance of the new decoding method is close to that of maximum likelihood decoding.Comment: 40 pages, 6 figures, 10 tables, submitted to IEEE Transactions on Information Theor

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201
    • …
    corecore