293,132 research outputs found

    Algebraic models of hadron structure: I. Nonstrange baryons

    Full text link
    We introduce an algebraic framework for the description of baryons. Within this framework we study a collective string-like model and show that this model gives a good overall description of the presently available data. We discuss in particular masses and electromagnetic couplings, including the transition form factors that can be measured at new electron facilities.Comment: to be published in Annals of Physics (N.Y.), 44 pages of LaTex, 11 postscript figure files on request, UU-94-0

    Hubbard Models as Fusion Products of Free Fermions

    Full text link
    A class of recently introduced su(n) `free-fermion' models has recently been used to construct generalized Hubbard models. I derive an algebra defining the `free-fermion' models and give new classes of solutions. I then introduce a conjugation matrix and give a new and simple proof of the corresponding decorated Yang-Baxter equation. This provides the algebraic tools required to couple in an integrable way two copies of free-fermion models. Complete integrability of the resulting Hubbard-like models is shown by exhibiting their L and R matrices. Local symmetries of the models are discussed. The diagonalization of the free-fermion models is carried out using the algebraic Bethe Ansatz.Comment: 14 pages, LaTeX. Minor modification

    Tensor models and 3-ary algebras

    Full text link
    Tensor models are the generalization of matrix models, and are studied as models of quantum gravity in general dimensions. In this paper, I discuss the algebraic structure in the fuzzy space interpretation of the tensor models which have a tensor with three indices as its only dynamical variable. The algebraic structure is studied mainly from the perspective of 3-ary algebras. It is shown that the tensor models have algebraic expressions, and that their symmetries are represented by 3-ary algebras. It is also shown that the 3-ary algebras of coordinates, which appear in the nonassociative fuzzy flat spacetimes corresponding to a certain class of configurations with Gaussian functions in the tensor models, form Lie triple systems, and the associated Lie algebras are shown to agree with those of the Snyder's noncommutative spacetimes. The Poincare transformations on the fuzzy flat spacetimes are shown to be generated by 3-ary algebras.Comment: 21 pages, no essential changes of contents, but explanations added for clarit

    Holomorphic matrix models

    Full text link
    This is a study of holomorphic matrix models, the matrix models which underlie the conjecture of Dijkgraaf and Vafa. I first give a systematic description of the holomorphic one-matrix model. After discussing its convergence sectors, I show that certain puzzles related to its perturbative expansion admit a simple resolution in the holomorphic set-up. Constructing a `complex' microcanonical ensemble, I check that the basic requirements of the conjecture (in particular, the special geometry relations involving chemical potentials) hold in the absence of the hermicity constraint. I also show that planar solutions of the holomorphic model probe the entire moduli space of the associated algebraic curve. Finally, I give a brief discussion of holomorphic ADEADE models, focusing on the example of the A2A_2 quiver, for which I extract explicitly the relevant Riemann surface. In this case, use of the holomorphic model is crucial, since the Hermitian approach and its attending regularization would lead to a singular algebraic curve, thus contradicting the requirements of the conjecture. In particular, I show how an appropriate regularization of the holomorphic A2A_2 model produces the desired smooth Riemann surface in the limit when the regulator is removed, and that this limit can be described as a statistical ensemble of `reduced' holomorphic models.Comment: 45 pages, reference adde

    From Quantum ANA_N to E8E_8 Trigonometric Model: Space-of-Orbits View

    Full text link
    A number of affine-Weyl-invariant integrable and exactly-solvable quantum models with trigonometric potentials is considered in the space of invariants (the space of orbits). These models are completely-integrable and admit extra particular integrals. All of them are characterized by (i) a number of polynomial eigenfunctions and quadratic in quantum numbers eigenvalues for exactly-solvable cases, (ii) a factorization property for eigenfunctions, (iii) a rational form of the potential and the polynomial entries of the metric in the Laplace-Beltrami operator in terms of affine-Weyl (exponential) invariants (the same holds for rational models when polynomial invariants are used instead of exponential ones), they admit (iv) an algebraic form of the gauge-rotated Hamiltonian in the exponential invariants (in the space of orbits) and (v) a hidden algebraic structure. A hidden algebraic structure for (A-B-C{-D)-models, both rational and trigonometric, is related to the universal enveloping algebra UglnU_{gl_n}. For the exceptional (GFE)(G-F-E)-models, new, infinite-dimensional, finitely-generated algebras of differential operators occur. Special attention is given to the one-dimensional model with BC1(Z2)TBC_1\equiv(\mathbb{Z}_2)\oplus T symmetry. In particular, the BC1BC_1 origin of the so-called TTW model is revealed. This has led to a new quasi-exactly solvable model on the plane with the hidden algebra sl(2)sl(2)sl(2)\oplus sl(2).Comment: arXiv admin note: substantial text overlap with arXiv:1106.501
    corecore