4 research outputs found

    Algebraic Hardness Versus Randomness in Low Characteristic

    Get PDF
    We show that lower bounds for explicit constant-variate polynomials over fields of characteristic p > 0 are sufficient to derandomize polynomial identity testing over fields of characteristic p. In this setting, existing work on hardness-randomness tradeoffs for polynomial identity testing requires either the characteristic to be sufficiently large or the notion of hardness to be stronger than the standard syntactic notion of hardness used in algebraic complexity. Our results make no restriction on the characteristic of the field and use standard notions of hardness. We do this by combining the Kabanets-Impagliazzo generator with a white-box procedure to take p-th roots of circuits computing a p-th power over fields of characteristic p. When the number of variables appearing in the circuit is bounded by some constant, this procedure turns out to be efficient, which allows us to bypass difficulties related to factoring circuits in characteristic p. We also combine the Kabanets-Impagliazzo generator with recent "bootstrapping" results in polynomial identity testing to show that a sufficiently-hard family of explicit constant-variate polynomials yields a near-complete derandomization of polynomial identity testing. This result holds over fields of both zero and positive characteristic and complements a recent work of Guo, Kumar, Saptharishi, and Solomon, who obtained a slightly stronger statement over fields of characteristic zero

    On Matrix Multiplication and Polynomial Identity Testing

    Full text link
    We show that lower bounds on the border rank of matrix multiplication can be used to non-trivially derandomize polynomial identity testing for small algebraic circuits. Letting R‾(n)\underline{R}(n) denote the border rank of n×n×nn \times n \times n matrix multiplication, we construct a hitting set generator with seed length O(n⋅R‾−1(s))O(\sqrt{n} \cdot \underline{R}^{-1}(s)) that hits nn-variate circuits of multiplicative complexity ss. If the matrix multiplication exponent ω\omega is not 2, our generator has seed length O(n1−ε)O(n^{1 - \varepsilon}) and hits circuits of size O(n1+δ)O(n^{1 + \delta}) for sufficiently small ε,δ>0\varepsilon, \delta > 0. Surprisingly, the fact that R‾(n)≥n2\underline{R}(n) \ge n^2 already yields new, non-trivial hitting set generators for circuits of sublinear multiplicative complexity

    Deterministic Identity Testing Paradigms for Bounded Top-Fanin Depth-4 Circuits

    Get PDF
    Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4 reduction (Agrawal & Vinay, FOCS\u2708) has made PIT for depth-4 circuits, an enticing pursuit. The largely open special-cases of sum-product-of-sum-of-univariates (?^[k] ? ? ?) and sum-product-of-constant-degree-polynomials (?^[k] ? ? ?^[?]), for constants k, ?, have been a source of many great ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC\u2705; Kayal & Saxena, CCC\u2706; Saxena & Seshadhri, FOCS\u2710, STOC\u2711); depth-4 ideas (Beecken, Mittmann & Saxena, ICALP\u2711; Saha,Saxena & Saptharishi, Comput.Compl.\u2713; Forbes, FOCS\u2715; Kumar & Saraf, CCC\u2716); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS\u2709; Shpilka, STOC\u2719; Peleg & Shpilka, CCC\u2720, STOC\u2721). We solve two of the basic underlying open problems in this work. We give the first polynomial-time PIT for ?^[k] ? ? ?. Further, we give the first quasipolynomial time blackbox PIT for both ?^[k] ? ? ? and ?^[k] ? ? ?^[?]. No subexponential time algorithm was known prior to this work (even if k = ? = 3). A key technical ingredient in all the three algorithms is how the logarithmic derivative, and its power-series, modify the top ?-gate to ?

    Arithmetic Circuit Complexity of Division and Truncation

    Get PDF
    corecore