4 research outputs found

    A NOVEL ARCHITECTURE WITH SCALABLE SECURITY HAVING EXPANDABLE COMPUTATIONAL COMPLEXITY FOR STREAM CIPHERS

    Get PDF
    Stream cipher designs are difficult to implement since they are prone to weaknesses based on usage, with properties being similar to one-time pad besides keystream is subjected to very strict requirements. Contemporary stream cipher designs are highly vulnerable to algebraic cryptanalysis based on linear algebra, in which the inputs and outputs are formulated as multivariate polynomial equations. Solving a nonlinear system of multivariate equations will reduce the complexity, which in turn yields the targeted secret information. Recently, Addition Modulo  has been suggested over logic XOR as a mixing operator to guard against such attacks. However, it has been observed that the complexity of Modulo Addition can be drastically decreased with the appropriate formulation of polynomial equations and probabilistic conditions. A new design for Addition Modulo is proposed. The framework for the new design is characterized by user-defined expandable security for stronger encryption and does not impose changes in existing layout for any stream cipher such as SNOW 2.0, SOSEMANUK, CryptMT, Grain Family, etc. The structure of the proposed design is highly scalable, which boosts the algebraic degree and thwarts the probabilistic conditions by maintaining the original hardware complexity without changing the integrity of the Addition Modulo

    On Selection of Samples in Algebraic Attacks and a New Technique to Find Hidden Low Degree Equations

    Get PDF
    The best way of selecting samples in algebraic attacks against block ciphers is not well explored and understood. We introduce a simple strategy for selecting the plaintexts and demonstrate its strength by breaking reduced-round KATAN32 and LBlock. In both cases, we present a practical attack which outperforms previous attempts of algebraic cryptanalysis whose complexities were close to exhaustive search. The attack is based on the selection of samples using cube attack and ElimLin which was presented at FSE’12, and a new technique called Universal Proning. In the case of LBlock, we break 10 out of 32 rounds. In KATAN32, we break 78 out of 254 rounds. Unlike previous attempts which break smaller number of rounds, we do not guess any bit of the key and we only use structural properties of the cipher to be able to break a higher number of rounds with much lower complexity. We show that cube attacks owe their success to the same properties and therefore, can be used as a heuristic for selecting the samples in an algebraic attack. The performance of ElimLin is further enhanced by the new Universal Proning technique, which allows to discover linear equations that are not found by ElimLin

    Optimization and Guess-then-Solve Attacks in Cryptanalysis

    Get PDF
    In this thesis we study two major topics in cryptanalysis and optimization: software algebraic cryptanalysis and elliptic curve optimizations in cryptanalysis. The idea of algebraic cryptanalysis is to model a cipher by a Multivariate Quadratic (MQ) equation system. Solving MQ is an NP-hard problem. However, NP-hard problems have a point of phase transition where the problems become easy to solve. This thesis explores different optimizations to make solving algebraic cryptanalysis problems easier. We first worked on guessing a well-chosen number of key bits, a specific optimization problem leading to guess-then-solve attacks on GOST cipher. In addition to attacks, we propose two new security metrics of contradiction immunity and SAT immunity applicable to any cipher. These optimizations play a pivotal role in recent highly competitive results on full GOST. This and another cipher Simon, which we cryptanalyzed were submitted to ISO to become a global encryption standard which is the reason why we study the security of these ciphers in a lot of detail. Another optimization direction is to use well-selected data in conjunction with Plaintext/Ciphertext pairs following a truncated differential property. These allow to supplement an algebraic attack with extra equations and reduce solving time. This was a key innovation in our algebraic cryptanalysis work on NSA block cipher Simon and we could break up to 10 rounds of Simon64/128. The second major direction in our work is to inspect, analyse and predict the behaviour of ElimLin attack the complexity of which is very poorly understood, at a level of detail never seen before. Our aim is to extrapolate and discover the limits of such attacks, and go beyond with several types of concrete improvement. Finally, we have studied some optimization problems in elliptic curves which also deal with polynomial arithmetic over finite fields. We have studied existing implementations of the secp256k1 elliptic curve which is used in many popular cryptocurrency systems such as Bitcoin and we introduce an optimized attack on Bitcoin brain wallets and improved the state of art attack by 2.5 times
    corecore