1,050 research outputs found

    Solving a robust airline crew pairing problem with column generation

    Get PDF
    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness in this case is related to the ability of accommodating these extra flights at the time of operation by disrupting the original plans as minimally as possible. We focus on the crew pairing aspect of robustness and prescribe that the planned crew pairings incorporate a number of predefined recovery solutions for each potential extra flight. These solutions are implemented only if necessary for recovery purposes and involve either inserting an extra flight into an existing pairing or partially swapping the flights in two existing pairings in order to cover an extra flight. The resulting mathematical programming model follows the conventional set covering formulation of the airline crew pairing problem typically solved by column generation with an additional complication. The model includes constraints that depend on the columns due to the robustness consideration and grows not only column-wise but also row-wise as new columns are generated. To solve this dicult model, we propose a row and column generation approach. This approach requires a set of modifications to the multi-label shortest path problem for pricing out new columns (pairings) and various mechanisms to handle the simultaneous increase in the number of rows and columns in the restricted master problem during column generation. We conduct computational experiments on a set of real instances compiled from a local airline in Turkey

    Solving Large Scale Crew Pairing Problems

    Get PDF
    Crew pairing is one of the most critical processes in airline management operations. Taking a timetable as input, the objective of this process is to find an optimal way to partition flights of the timetable without breaking rules and regulations which are enforced by an airline. The problem has attracted many scientists in recent decades. The main challenge is that there is no general method to work well with all kinds of non-linear cost functions and rules. In order to overcome the non-linearity, the thesis follows a main idea to transfer this combinatorial optimization problem to a set partitioning problem which is one of the most popular \np-hard problems. Although this problem has been studied throughout decades, it becomes more complicated with the increasing size of the input. The complication is induced not only in the transformation process, but also in the methods to solve the resulting set partitioning problem. Finding quickly a good and robust solution for large scale problems is more and more critical to airlines. They are the main targets which are studied by the thesis. The thesis presents exact methods which are usually based on a branch-and-bound scheme. A branch-and-cut approach applies preprocessing techniques, cutting plane generation methods, and heuristics which are suitable for crew pairing problems. The implementation can solve small and medium sized problems. However, for large problems, a branch-and-price approach is necessary to cope with huge constraint matrices. The thesis improves the weakness of standard column generation methods by applying stabilized column generation variants with sophisticated parameter control schemes into this approach. The computation time is reduced significantly by a factor of three. Moreover, the work also focuses on the extensibility of the methods. This is quite important for large scale problems. Then, we easily obtain a heuristic solution method by controlling running parameters of the presented approaches or combining them together. Utilizing the available computing resources to deal with large scale crew pairing problems as effective as possible is also a target of the thesis. A new parallel branch-and-bound library is developed to support scientists to solve combinatorial optimization problems. With little effort, they can migrate their sequential codes to run on a parallel computer. The library contains several load balancing methods and control parameters in order to work well with specific problems. The sequential branch-and-cut code to solve set partitioning problems is parallelized by the library and introduces a good speedup for most crew pairing test problems. Parallel computing is also used to solve a so-called pricing subproblem, which is the most difficult problem in the branch-and-price approach, with a nearly linear speedup. The implementation solves large scale crew pairing problems to optimality within minutes, whereas previous methods ended up in the range of hours or more

    Disruption management in passenger railway transportation.

    Get PDF
    This paper deals with disruption management in passengerrailway transportation. In the disruption management process, manyactors belonging to different organizations play a role. In this paperwe therefore describe the process itself and the roles of thedifferent actors.Furthermore, we discuss the three main subproblems in railwaydisruption management: timetable adjustment, and rolling stock andcrew re-scheduling. Next to a general description of these problems,we give an overview of the existing literature and we present somedetails of the specific situations at DSB S-tog and NS. These arethe railway operators in the suburban area of Copenhagen, Denmark,and on the main railway lines in the Netherlands, respectively.Since not much research has been carried out yet on OperationsResearch models for disruption management in the railway context,models and techniques that have been developed for related problemsin the airline world are discussed as well.Finally, we address the integration of the re-scheduling processesof the timetable, and the resources rolling stock and crew.

    Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm versus Column Generation Method

    Full text link
    Airline crew cost is the second-largest operating cost component and its marginal improvement may translate to millions of dollars annually. Further, it's highly constrained-combinatorial nature brings-in high impact research and commercial value. The airline crew pairing optimization problem (CPOP) is aimed at generating a set of crew pairings, covering all flights from its timetable, with minimum cost, while satisfying multiple legality constraints laid by federations, etc. Depending upon CPOP's scale, several Genetic Algorithm and Column Generation based approaches have been proposed in the literature. However, these approaches have been validated either on small-scale flight datasets (a handful of pairings) or for smaller airlines (operating-in low-demand regions) such as Turkish Airlines, etc. Their search-efficiency gets impaired drastically when scaled to the networks of bigger airlines. The contributions of this paper relate to the proposition of a customized genetic algorithm, with improved initialization and genetic operators, developed by exploiting the domain-knowledge; and its comparison with a column generation based large-scale optimizer (developed by authors). To demonstrate the utility of the above-cited contributions, a real-world test-case (839 flights), provided by GE Aviation, is used which has been extracted from the networks of larger airlines (operating up to 33000 monthly flights in the US).Comment: 7 pages, 3 figure
    corecore