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Abstract

Crew pairing is one of the most critical processes in airline management operations.
Taking a timetable as input, the objective of this process is to find an optimal way
to partition flights of the timetable without breaking rules and regulations which are
enforced by an airline. The problem has attracted many scientists in recent decades.
The main challenge is that there is no general method to work well with all kinds of
non-linear cost functions and rules.

In order to overcome the non-linearity, the thesis follows a main idea to transfer
this combinatorial optimization problem to a set partitioning problem which is one
of the most popular NP-hard problems. Although this problem has been studied
throughout decades, it becomes more complicated with the increasing size of the input.
The complication is induced not only in the transformation process, but also in the
methods to solve the resulting set partitioning problem. Finding quickly a good and
robust solution for large scale problems is more and more critical to airlines. They are
the main targets which are studied by the thesis.

The thesis presents exact methods which are usually based on a branch-and-bound
scheme. A branch-and-cut approach applies preprocessing techniques, cutting plane
generation methods, and heuristics which are suitable for crew pairing problems. The
implementation can solve small and medium sized problems. However, for large prob-
lems, a branch-and-price approach is necessary to cope with huge constraint matrices.
The thesis improves the weakness of standard column generation methods by applying
stabilized column generation variants with sophisticated parameter control schemes
into this approach. The computation time is reduced significantly by a factor of three.
Moreover, the work also focuses on the extensibility of the methods. This is quite
important for large scale problems. Then, we easily obtain a heuristic solution method
by controlling running parameters of the presented approaches or combining them to-
gether.

Utilizing the available computing resources to deal with large scale crew pairing
problems as effective as possible is also a target of the thesis. A new parallel branch-
and-bound library is developed to support scientists to solve combinatorial optimization
problems. With little effort, they can migrate their sequential codes to run on a parallel
computer. The library contains several load balancing methods and control parameters
in order to work well with specific problems. The sequential branch-and-cut code to
solve set partitioning problems is parallelized by the library and introduces a good
speedup for most crew pairing test problems. Parallel computing is also used to solve
a so-called pricing subproblem, which is the most difficult problem in the branch-and-
price approach, with a nearly linear speedup. The implementation solves large scale
crew pairing problems to optimality within minutes, whereas previous methods ended
up in the range of hours or more.



Zusammenfassung

Im operativen Betrieb von Fluglinien stellt das Crew-Pairing-Problem eine der
grössten Herausforderungen dar. Dieses Problem besteht darin, ausgehend von einem
Flugplan, eine optimale Aufteilung der Flüge des Flugplans zu finden, ohne aber Regeln
und Vorschriften zu verletzen, die von der Fluggesellschaft eingehalten werden müssen.
Crew-Pairing ist Gegenstand intensiver Forschung im Bereich der Mathematik und der
mathematischen Informatik. Die besondere Schwierigkeit resultiert aus der hohen An-
zahl unterschiedlich formulierter nichtlinearer Kostenfunktionen und Nebenbedingun-
gen. Diese machen die Entwicklung einer generischen, allgemein anwendbaren Methode
sehr problematisch.

Ein bekannter Ansatz zur Behandlung der auftretenden Nichtlinearitäten ist die
Umformulierung des kombinatorischen Crew-Pairing-Problems in ein Set-Partitioning
Problem, welches wiederum eines der am intensivsten studierten NP-schweren Prob-
leme ist. Viele spezielle Strukturen des Set-Partitioning-Problems sind seit Jahrzehn-
ten Forschungsthema und fanden bereits Anwendung bei der Lösung von Crew-Pairing-
Problemen. Allerdings steigt die Komplexität des Problems mit der Grösse der Flugpläne
stark an. Dies liegt nicht nur an der mathematischen Umformulierung, sondern ins-
besondere auch an den Methoden, die eingesetzt werden, um die resultierenden Set-
Partitioning-Probleme zu lösen. Dabei ist das schnelle und zuverlässige Auffinden
von Lösungen für sehr grosse Probleme von zunehmender Bedeutung für die Flugge-
sellschaften, gerade vor dem Hintergrund der aktuellen Krise in der Luftfahrt und dem
daraus resultierenden steigenden Kostendruck. Das schnelle und zuverlässige Auffinden
von Lösungen ist Ziel der vorliegenden Arbeit.

Es werden exakte Methoden vorgestellt, die auf dem allgemeinen Branch-and-
Bound Schema basieren. Ein hier vorgestellter Branch-and-Cut Ansatz verwendet
häufig eingesetzte Preprocessing-Techniken, Cutting-Plane Methoden, sowie spezielle
Heuristiken für das Crew-Pairing Problem. Die Implementierung dieses Schemas löst
kleine und mittelgrosse Probleme sehr gut. Für sehr grosse Probleme allerdings reicht
dieser Ansatz nicht aus. Hierfür wurde ein spezieller Branch-and-Price Ansatz entwick-
elt, der mit hochdimensionalen Nebenbedingungsmatrizen umgehen kann. Dabei wer-
den in der vorliegenden Arbeit Nachteile von Standardverfahren zur Column-Generation
durch den Einsatz von stablilisierten Column-Generation-Verfahren kompensiert, für
die eine problemspezifische Parametrierung vorgestellt wird. Die Rechenzeit für betra-
chtete Probleme konnte mit dieser Technik um den Faktor drei reduziert werden.

Darüberhinaus wurde zusätzlich zu den üblichen Leistungsmerkmalen grosser Wert
auf die Erweiterbarkeit der Methoden gelegt. Dies ist ein wichtiger Aspekt in Hinblick
auf reale, sehr grosse Probleme. Eine heuristische Lösung spezifischer Crew-Pairing
Probleme kann dann relativ leicht durch Anpassen der Programmparameter und durch
die Kombination der erwähnten Methoden erhalten werden.

Ein weiteres Ziel dieser Arbeit ist die möglichst effektive Nutzung vorhandener
Rechnerressourcen beim Lösen von grossen Crew-Pairing-Problemen. Eine neue Bib-
liothek von Parallelisierungsroutinen wurde entwickelt, um zukünftig das Bearbeiten



von solchen kombinatorischen Optimierungsaufgaben zu erleichtern und zu beschleu-
nigen. Mit nur geringem Aufwand kann nun ein sequentielles Programm auf einen
Parallelrechner migriert werden. Die Bibliothek bietet mehrere Load-Balancing Meth-
oden und Programmparameter an, um die Parallelisierung an das spezifische Problem
anzupassen. Die sequentielle Branch-and-Cut Methode liegt ebenfalls als parallelisierte
Variante in der Bibliothek vor. Weiterhin wurden Parallelisierungstechniken auf das
sogenanntes Pricing-Unterproblem übertragen, dessen Berechnung im übergeordneten
Branch-and-Price Verfahren die grössten Schwierigkeiten bereitet. Sämtliche Paral-
lelisierungsansätze zeigen in den betrachteten Beispielen gute Ergebnisse. Mit Hilfe der
aktuellen Implementierung kann eine optimale Lösung grosser Crew-Pairing Probleme
innerhalb von Minuten gefunden werden, während bisherige Methoden eine Rechenzeit
von bis zu Stunden aufweisen.
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Introduction

Crew pairing is one of the most critical processes in airline management operations.
Taking a timetable as input, the objective of this process is to find an optimal way
to partition flights of the timetable without breaking rules and regulations which are
enforced by an airline. The difficulties of the problem stay in its inherent properties
which have attracted many scientists in recent decades. Dealing with highly non-linear
cost functions and rules is always the main topic in this area. The challenge is that
there is no general method to work well with all kinds of non-linearity.

In order to overcome the non-linearity, one well-known approach is to transfer this
combinatorial optimization problem to a set partitioning problem which is one of the
most popular NP-hard problems (Garey and Johnson, 1979). The resulting problem
is similar to the process to group elements of a set into subsets governed by additional
rules and to maximize the profit from the grouping.

Many special structures of the set partitioning problem have been studied through-
out decades and even applied into solving the crew pairing problem. However, the
problem becomes more complicated with the increasing size of the input. The compli-
cation is induced not only in the transformation process, but also in the methods to
solve the resulting set partitioning problem. Although the solution methods are likely
to process efficiently small crew pairing problems, they are quite time-consuming with
large ones. Moreover, finding quickly a good and robust solution is more and more
critical to airlines. They are the main targets which will be studied by the thesis.

Having been investigated for a long period, the crew pairing problem is possibly
solved by variety of methods. Generally, they can fall into one of two categories: non-
exact or exact methods. Although, from a practical point of view, a better solution
is preferred, it is difficult to obtain it in a reasonable execution time and with an
available computing resource as well. Therefore, non-exact methods often select a
heuristic approach to find a good solution rapidly. By contrast, the thesis will present
exact methods which are usually based on the branch-and-bound scheme. The thesis
will discuss new advanced algorithms and techniques to obtain the optimal solution.
Furthermore, we easily obtain a heuristic solution method by controlling their running
parameters or combining them together.

Branch-and-cut and branch-and-price are well-known in the area of combinatorial
optimization. In the literature, there are several good results using them to solve the
crew pairing problem. Looking back to them, the thesis will present new combinations
to create good solution methods. Moreover, along with considering performance as-
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pects, the work also focuses on the extensibility of the methods. This is quite important
for large scale problems which have been previously mentioned to be of our interest.

Parallel computing is becoming an important part in scientific computing which
has emerged as a key technology recently. Although efficient sequential algorithms can
provide us with good solutions for crew pairing problems, they cannot utilize much
computing resources to deal with large scale crew pairing problems. Solving them in a
short time is more demanding, and parallel computing is a good choice in such a case.
However, in order to apply it into a specific problem or method, a careful study on
sequential methods should be made in advance.

Next, the order and overview of the thesis will be outlined in order to present how
the methodological aspects to be applied to the crew pairing problem.

Outline of the thesis

Chapter 1 starts with notations which will be used throughout the thesis. But, the
more important substances of the chapter are fundamental theories, algorithms and
methods in order to provide useful information to understand other chapters of the
thesis. Most of them will be used as the base of the work, and especially, included into
implementations.

The crew pairing problem will be described in more details in Chapter 2, including
its definition, and main inherent characteristics which make the problem of one airline
different from that of another. The literature survey is presented in this chapter in
which well-known methodological approaches of the problem will be considered along
with their strong and weak points. However, the thesis will emphasize on the exact
methods which have been motivated in the introduction. In addition, the chapter
will also give a case study, Vietnam Airlines, as a test problem for testing aspects of
methodology and implementation of the work.

Branch-and-cut is always one of the most favorite methods to fight a combinato-
rial optimization problem. An approach presented in Chapter 3 adopts this solution
method to solve the crew pairing problem. The implementation in this chapter applies
the well-known theory on the facet structure of set partitioning polyhedra. Moreover,
other techniques which are widely used in the context of the set partitioning problem
are also engaged to accelerate the solution process.

Chapter 4 shows a different approach whose main idea is based on the column
generation scheme. Observing the difficulties met by branch-and-cut, branch-and-
price only works on a subset of variables, and the remaining will be considered by a
so-call pricing subproblem if needed. With this clever idea, the method is expected
to work efficiently with larger problems. The chapter details methods for the pricing
subproblem which dominates the total computation time. In the context of the crew
pairing problem, this subproblem is proven to be NP-hard and is reported (in the
literature and this thesis) to take more than 90 percent of the total time. The chapter
will pay much attention to this step to find a good method.

2



Furthermore, Chapter 4 also contributes a new application of stabilized column
generation methods to reduce the number of iterations in which control parameters
play quite an important role. Empirical experiments on test problems will offer good
parameters for the stabilized methods whose implementations in the branch-and-price
code and computational results will be presented later in the chapter.

The parallelization of ABACUS, a well-known sequential framework for branch-and-
cut-and-price implementations, is described in Chapter 5. The application of parallel
computing in a general framework should be more useful to users who have little
experience in this area. In order to guarantee the performance, the design of the parallel
ABACUS suggests using non-blocking communication as its information exchanging
mechanism. The new library is tested with the sequential set partitioning solver in
Chapter 3 to solve crew pairing problems.

Chapter 6 dedicates itself to present an effort to speedup the execution time of
solving the pricing subproblem. Parallelizing this phase will be shown helpful without
worrying the impact of Amdahl’s law. The thesis shows the design of a general par-
allel pricing framework in which we can embed new sequential pricing methods. The
implementation aspects are also described in details to obtain good computational
performance.

The last chapter closes the thesis with discussions on problems which have been
studied in the previous chapters. By this way, readers not only know the study of the
author, but also see open problems which should be interesting in future research.
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Chapter 1

Notations and Foundations

This chapter supplies mathematical notations and terminology which will be used to
present the approach of the thesis to solve the crew pairing problem. Theoretical
foundations of necessary areas are also included here with emphasis on definitions and
propositions which will be the base for further considerations. Since the chapter will
certainly not cover all things needed, additional references will be given throughout
the thesis.

1.1 Linear Algebra

The real number line is denoted by
�

and the n-dimensional real vector space, the set
of ordered n-tuples of real numbers, by

� n. Such a tuple is called a vector of size n
and locates a point in

� n. The i-th component of a vector x is denoted by xi. We use
the notation x>y to present the inner product of two vectors x and y.

An m× n matrix A with element Aij in Row i and Column j is written A = [Aij].
We denote by Ai. the ith row vector of the matrix, A.j the jth column vector of the
matrix. Throughout the thesis, we often assume that Aij ∈

�
. The transpose of the

matrix is written as A>.
A set of points x1, . . . , xk ∈ � n is linearly independent if the unique solution of

∑k
i=1 λix

i = 0 is λi = 0, i = 1, . . . , k. Note that the maximum number of linearly
independent points in

� n is n. The maximum number of linear independent rows
(columns) of a matrix A is the rank of A, and is denoted by rank(A).

A set of points x1, . . . , xk ∈ � n is affinely independent if the unique solution of
∑k

i=1 αix
i = 0,

∑k
i=1 αi = 0 is αi = 0, i = 1, . . . , k. Note that the maximum number of

affinely independent points in
� n is n + 1.

A (linear) subspace is a subset of a vector space Rn which is closed under vector
addition and scalar multiplication. An affine subspace A is a linear subspace S trans-
lated by a vector u, that is, A = {u+ x : x ∈ S}. The dimension dim(S) of a subspace
S is equal to the maximum number of linearly independent vectors in it. An affine
subspace A translated from a linear space S also has a dimension, dim(A), which is
dim(S).
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A proposition describing the relationship between a subspace and linear systems is
that the statements below are equivalent:

(i) H ⊆ � n is a subspace.

(ii) There is an m× n matrix A such that H = {x ∈ � n : Ax = 0}.
(iii) There is a k × n matrix B such that H = {x ∈ Rn : x = uB, u ∈ � k}.

1.2 Graph Theory

A graph G = (V, E) consists of a finite, nonempty set V = {v1, . . . , vm} and a set
E = {e1, . . . , en} whose elements are subsets of V of size 2, that is ek = (vi, vj), where
vi, vj ∈ V . The elements of V are called nodes (vertices), and the elements of E are
called edges (links).

A directed graph or digraph D = (V, A) consists of a finite, nonempty set V =
{v1, . . . , vm} and a set A = {e1, . . . , en} whose elements are ordered subsets of V of size
2 arcs.

Under the definition of a graph G = (V, E), several terms for its components should
be given. If e = (vi, vj) ∈ E, we say vi is adjacent to vj (and vice-versa) and that e
is incident to vi (and vj). For an undirected graph, Γ(v) denotes the set of incident
vectices of v. For a digraph, notations Γ−1(v) and Γ+1(v) are used for the set of
incoming vertices and outgoing vertices respectively. The degree of a vertex v of G
is the number of edges incident to v, also say |Γ(v)|. We denote by N(v) the set of
vertices adjacent to v.

Subsets of nodes and edges are also important so that we need some definitions for
them. A walk in a graph G = (V, E) is a sequence of nodes v1 . . . vk, k ≥ 1, such that
(vi, vi+1) ∈ E, i = 1, . . . , k − 1. A walk without any repeated nodes is called a path. A
circle is a closed walk which has no repeated nodes other than its first and last one.
Similarly, one can define corresponding terms for direct graphs.

There are many kinds of graph in theory and practice. In this preliminary section,
we just show some basic kinds of graph:

(i) A graph is connected if there is a path between each pair of its nodes.

(ii) A graph is said to be acyclic if it does not contain any cycles. The graph is
also called forest.

(iii) A connected forest is called a tree.

We usually work with weighted graphs which are associated with a function w :
E −→ �

(usually just
� + = {x ∈ �

: x ≥ 0}).
Reference to the graph theory can be found in many textbooks in computer science

and mathematics.
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1.3 Convex Programming

Firstly, a general definition of an optimization problem is given as following:

Definition 1.3.1. An instance of an optimization problem is a pair (F, c), where F is
the set of feasible points, c is the cost function, a mapping c : F −→ �

. The problem
is to find an f ∈ F for which

c(f) ≤ c(y) ∀y ∈ F.

Such a point is called a globally optimal solution to the given instance.

Note that the words “programming” and “optimization” have the same meaning
in applied mathematics. Restricting the feasible region and the cost function gives
different classes of optimization problem. In order to describe convex programming,
we need two definitions below.

Given two points x, y ∈ � n, a convex combination of them is any point of the form

z = λx + (1− λ)y, λ ∈ �
and 0 ≤ λ ≤ 1.

If λ 6= 0, 1, we say z is a strict convex combination of x and y. A set S ⊆ � n is convex
if it contains all convex combinations of pairs of points x, y ∈ S. The convex hull of
a set S, denoted by conv(S), is the set of all points which are convex combinations of
points in S.

Let S ⊆ � n be a convex set. The function c : S −→ �
is convex in S if for any two

points x, y ∈ S

c(λx + (1− λ)y) ≤ λc(x) + (1− λ)c(y), λ ∈ �
and 0 ≤ λ ≤ 1.

A function c defined in a convex set S ⊆ � n is called concave if −c is convex in S.
Convex programming regards the minimization of a convex function on a convex

set. If the convex feasible region is defined by a set of inequalities involving concave
functions, the optimization problem is called a convex programming problem. More
precisely, the definition of convex programming is as follows:

Definition 1.3.2. An instance of an optimization problem (F, c) is a convex program-
ming problem if c is convex and F ⊆ � n is defined by

hi(x) = 0 i ∈ H
gj(x) ≥ 0 j ∈ G

where hi :
� n −→ �

are linear functions, and gj :
� n −→ �

are concave functions.
Note that H,G are sets of indices.

These problems have the interesting property that local optima are global. More
precisely, we describe an associated proposition below:
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Proposition 1.3.3. In a convex programming problem, every point locally optimal with
respect to the Euclidian distance neighborhood Nε which is defined by

Nε(x) = {y : y ∈ F, ||x− y|| ≤ ε}

is also globally optimal. (Note that generally a neighborhood is a mapping N : F −→
2N .)

We also have conditions for optimality that are sufficient, the Kuhn-Tucker condi-
tions.

Further discussion of convex analysis can be found in Hiriart-Urruty and Lemaréchal
(1993). The book covers not only the aspects of property, but also practical algorithms.
Convex programming is presented in some books about the combinatorial optimization,
such as Papadimitriou and Steiglitz (1998), Nocedal and Wright (1999), Nemhauser and
Wolsey (1988).

1.4 Polyhedral Theory

The theory focuses on investigating the feasible set of optimization problems which are
described by a set of linear inequalities.

Definition 1.4.1. A polyhedron P ∈ � n is the set of points which satisfy a finite
number of linear inequalities, that is, P = {x ∈ � n : Ax ≤ b}, where (A, b) is an
m × (n + 1) matrix. A polytope is a bounded polyhedron (i.e., ∃ω ∈ � + : P ⊆ {x ∈

� n : −ω ≤ xj ≤ ω, j = 1, . . . , n}).

It is quite clear that a polyhedron is a convex set. A polyhedron P ∈ � n is called
full dimensional if dim(P ) = n. Note that dim(P ) is the dimension of the smallest
affine space that contains the polyhedron.

Consider a polyhedron P = {x ∈ � n : Ax ≤ b}. In order to find out neces-
sary inequalities to describe the polyhedron, we should address some definitions for
inequalities.

Definition 1.4.2. The inequality πx ≤ π0 (abbr. (π, π0)) is called valid inequality
for P if it is satisfied by all x ∈ P . {x ∈ � n : πx = π0} is called a hyperplane. A
hyperplane divides

� n into two hyperspaces:

{x ∈ � n : πx ≤ π0}
{x ∈ � n : πx ≥ π0}.

Definition 1.4.3. If πx ≤ π0 is a valid inequality for P , and F = {x ∈ P : πx = π0},
F is called a face of P , and we say that πx ≤ π0 represents F .

We have three different kinds of faces:

• A facet is a face of dimension n− 1.
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• A vertex is a face of dimension zero (a point).

• An edge is a face of dimension one (a line segment).

Foundation on the polyhedral theory can be found in Nemhauser and Wolsey (1988).
The book is quite interesting to review ways of describing polyhedra by facets.

1.5 The Simplex Method

The class of the convex programming problem mentioned in Section 1.3 covers a prob-
lem to be discussed in this section, the linear programming problem. The feasible
convex region of a linear program is defined by a polyhedron and the cost function is
linear as following:

z∗ = min c>x
s.t. Ax = b

x ≥ 0,
(1.1)(LP)

where A is a m × n matrix of elements Aij ∈ � , and c, b ∈ � n. Note that m, n are
positive integers. Problem (1.1) is said to be in the standard form (i.e., there are only
equalities). It is quite simple to prove that the general form of a linear program in
which both equalities and inequalities exist is equivalent to the standard form of that
problem.

Linear programming plays an important role in optimization. Many real applica-
tions can be modelled as linear programs or integer programs which are usually solved
by relaxation to linear programs. There are two main algorithms for solving LPs: the
simplex method and interior point methods. In this thesis, we only focus on the sim-
plex method and its aspects. Two good text books for more details on interior point
methods are of Vanderbei (2001) and Nocedal and Wright (1999).

The simplex method was invented by Dantzig in 1949 and is described in his book
(Dantzig, 1963). In spite of having an exponential complexity (Klee and Minty, 1972),
it has been revisited by scientists and been improved much to apply to practical appli-
cations throughout six decades. Therefore, there are variants of the simplex method
which cannot all be included in the thesis. Instead, only a basic knowledge of the
method will be reviewed.

Before going further to the simplex method, we need several definitions.

Definition 1.5.1. Without loss of generality, we can assume A is of rank m.

(i) A m × m nonsingular matrix AB = (A.B1, . . . , A.Bm
) is called a basis, where

B = {B1, . . . , Bm} is the set of column indices. Let N = {1, . . . , n} \B. Now
permute the columns of A, we can write Ax = b as ABxB + ANxN = b, where
x = (xB, xN).

(ii) The solution xB = A−1
B b, xN = 0 is called a basic solution of Ax = b.

(iii) xB is the vector of basic variables and xN is the vector of nonbasic variables.
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(iv) If A−1
B b ≥ 0, then (xB, xN) is called a basic primal feasible solution and AB is

called a primal feasible basis.

(v) Let ĀN = A−1
B AN . Then c̄N = cN − c>BĀN is called the reduced cost vector for

nonbasic variables.

In order to find an optimal solution, the main idea of the simplex method is to pivot
from one basis to another adjacent basis which is defined to be different in only one
column with the previous basis. An outline of the algorithm can be as Algorithm 1.5.1.
In Step 1, we possibly have to introduce artificial variables to obtain the first feasible
basis. The idea is to create another linear program which is feasible. The result of the
new problem will be used as the starting point for the first problem. Another question
is how to choose which column r enters the basis. One of approaches is to select the
most negative c̄r which corresponds to a kind of steepest descent policy.

Algorithm 1.5.1 The (primal) simplex method

1: Start with a primal feasible basis AB. {Initialization}
2: while c̄N < 0 do {Optimality testing}
3: Choose an r ∈ N with c̄r < 0. {Pricing}
4: if Ā.r ≤ 0 then {Unboundedness Testing}
5: z∗ = −∞.
6: break
7: else {Basis pivoting}
8: Find the unique adjacent primal feasible basis AB(r) that contains A.r.
9: Let B ← B(r).

10: end if
11: end while

Textbooks of Vanderbei (2001), Nocedal and Wright (1999) are preferred for much
more details in the classical simplex method and its variants. Short and clear introduc-
tion to linear programming is also given by Nemhauser and Wolsey (1988), Papadim-
itriou and Steiglitz (1998). Their books are quite useful if one wants to consider linear
programming within the context of integer programming.

1.6 Integer Programming

Variables of optimization problems fall into two categories: continuous variables, and
discrete variables. We call those problems with discrete variables combinatorial opti-
mization problems which look for an object from a finite, or possibly countably infinite,
set. Loosely speaking, dealing with different kinds of variables of optimization problems
requires different methods to solve them “efficiently”.

In Section 1.5, we have defined a linear programming problem and mentioned its
close relationship to the following optimization problem:
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Definition 1.6.1. An optimization problem written as

min c>x + h>y
s.t. Ax + Gy = b

x ∈ � n
+, y ∈ � p

+

(1.2)(MIP)

is called a linear mixed integer program. If there is no continuous variable, the problem
is called a linear integer programming problem, or integer program (IP) for short. If,
in an (IP), we restrict the variables x as x ∈ {0, 1}n, we have a binary problem.

Solving an IP involves not only general algorithms but also problem specific tech-
niques. General algorithms can be classified into 2 types: non-exact algorithms and
exact ones. Non-exact methods are mainly based on heuristics or approximation al-
gorithms. Greedy and local search algorithms could be the first choice of researchers
to attack a combinatorial optimization problem. Unfortunately, under the local search
mechanism, we can get trapped in a local minimum. In order to escape from that, we
need an improved heuristic. Some techniques which help us in such a case are: tabu
search, simulated annealing, generic algorithms. They are called meta-heuristics.

Tabu search was started by Glover (1986) and strongly discussed in two following
texts (Glover, 1989, 1990). The idea behind the method is to avoid cycling in the
process of moving among feasible solutions. A basic version of the tabu search algorithm
can be in Algorithm 1.6.1.

Algorithm 1.6.1 A tabu search algorithm

1: Initialize an empty tabu list. Get an initial solution x.
2: while (stopping condition not reached) do
3: Choose a subset N ′(x) ∈ N(x) of non-tabu solutions.
4: Let x′ = arg min{c(y) : y ∈ N(x)}.
5: x← x′ and update the tabu list.
6: end while

Note that N(x) in the algorithm denotes a predefined neighborhood of x and it is
usually problem dependent.

Simulated annealing approaches in a different way by choosing randomly a neighbor
to move to. Precisely, the neighbor will be chosen with the probability of 1 if it has a
better cost value, otherwise, with some probability strictly between 0 and 1. An outline
of the simulated annealing method can be found in Algorithm 1.6.2. The method is
described in Metropolis et al. (1953), Kirkpatrick et al. (1983).

Genetic algorithms originated with the work of Holland (1975), Goldberg (1989).
Not working with an individual solution, at each iteration, the method considers a
finite set of solutions (called population) and this set will change randomly from one
generation to the next. A sketch of the method can look like Algorithm 1.6.3.

If one prefers an exact approach, cutting plane algorithms and branch and bound
algorithms are widely used methods. Furthermore, they can also be used in non-exact
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Algorithm 1.6.2 A simulated annealing algorithm

1: Initialize a temperature T and a reduction factor r ∈ (0, 1).
2: Get an initial solution x.
3: while (not yet frozen) do
4: Pick a random neighbor x′ ∈ N(x). Let ∆ = c(x′)− c(x).
5: if ∆ ≤ 0 then
6: x← x′

7: else
8: x← x′ with probability e−∆/T .
9: end if

10: Reduce the temperature T ← rT .
11: end while

heuristics. Given an (IP): min{c>x : Ax = b}, a cutting plane method tries to find
out the description of the convex hull of the set of feasible solutions. The method
iteratively cuts off fractional points of the polyhedron P = {x ∈ � n : Ax = b} by valid
inequalities. In order to understand the algorithm, we must perceive the following
definition:

Definition 1.6.2. The separation problem associated with a combinatorial optimiza-
tion problem min{c>x : x ∈ X ⊆ � n} is the problem: given x∗ ∈ � n, is x∗ ∈ conv(X) ?
If not, find a valid inequality π>x ≤ π0 for X, but violated by the point x∗.

The equivalence of optimization and separation is shown by Grötschel et al. (1981).

In Algorithm 1.6.4 which describes a basic cutting plane algorithm, F in the al-
gorithm denotes a family of valid inequalities for X. Certainly, the algorithm can
terminate without finding an integral solution. Moreover, although several cutting
plane algorithms (e.g., the cutting plane algorithm with Gomory cuts) were proved,
under some circumstances, to be of finite convergence, it is still not practical to con-
tinue the loop until no violated valid inequality is found. The exit from the loop gives

Algorithm 1.6.3 A genetic algorithm

1: Initialize a population X = {x1, . . . , xk}.
2: while (stopping condition not reached) do
3: (Evaluation): evaluate the fitness of the individuals of X.
4: (Parent selection): select certain pairs of solutions (called parents) P ′ ⊆ P =

{(xi, xj) : xi, xj ∈ P} based on their fitness.
5: (Crossover): each pair combines to create one or two new solutions.
6: (Mutation): modify randomly some of the new solutions.
7: (Population selection): based on their fitness, create a new population X ′ by

replacing some or all individuals of the old population X.
8: end while
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an improved formulation which can be the input of a branch and bound method to be
discussed in the next section.

Algorithm 1.6.4 A cutting plane algorithm

1: t← 0, P 0 ← P .
2: while (stopping condition not reached) do
3: Solve the linear program xt = arg minx{c>x : x ∈ P t}
4: if xt ∈ � n then
5: xt is an optimal solution.
6: break
7: else
8: Solve the separation problem for xt and the family F .
9: if ∃(πt, πt

0) ∈ F such that πt>x > πt
0 then

10: P t+1 ← P t ∩ {πt>x ≤ πt
0}.

11: t← t + 1.
12: else
13: break
14: end if
15: end if
16: end while

Links to integer programming can be found in many textbooks on combinatorial
optimization or integer programming, such as Nemhauser and Wolsey (1988), Papadim-
itriou and Steiglitz (1998), Wolsey (1998). A book of Kallrath and Wilson (1997) which
shows the integer programming problem under the application’s point of view could be
helpful to those who want to solve practical problems.

1.7 Branch-and-Bound

The so-called branch-and-bound method is based on two following conclusions:

Proposition 1.7.1. Consider the problem z = minx{c>x : x ∈ X}. Let X = X1 ∪
. . . ∪XK be a decomposition of X into smaller sets, and let zk = minx{c>x : x ∈ Xk}
for k = 1, . . . , K. Then z = mink zk.

Proposition 1.7.2. Use the same notations as in Proposition 1.7.1. Let zk be a lower
bound on zk, and zok be an upper bound on zk. Then zu = mink zk is a lower bound
on z and z = mink zk is an upper bound on z.

With the help of Proposition 1.7.2, many smaller problems finding zk do not need to
be solved or be stopped quickly because they violate some bounds. The idea is called
implicit enumeration which contrasts to explicit enumeration which explores totally
the feasible region. It is not necessary to solve smaller problems to optimality. Instead,
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upper or lower bounds are enough for the branch-and-bound method (otherwise, we can
decompose those problems to smaller parts). Hence, a relaxation of an integer problem
(IP) is needed, being defined as an optimization problem (RP) with the feasible set
XR ⊇ X, and the cost function zR(x) ≤ c>x for x ∈ X. Algorithm 1.7.1 gives a general
branch-and-bound algorithm for solving (IP): minx{c>x : x ∈ X}.

Algorithm 1.7.1 A general branch-and-bound algorithm

1: L ← {(IP)}, X0 ← X, z0 ← −∞, zIP ←∞.
2: while (L 6= ∅) do
3: Select and delete a problem (IP)i from L. {Problem selection}
4: Solve its relaxation (RP)i with optimal value zi

R, and optimal solution xi
R (if

they exist). {Problem relaxation}
5: if (zi

R < zIP) then {Bounding}
6: if (xi

R ∈ X i and c>xi
R < zIP) then

7: zIP ← c>xi
R.

8: Delete from L all problems with zi ≤ zIP. {Fathoming}
9: if (c>xi

R = zi
R) then

10: continue
11: end if
12: end if
13: Decompose X i into {X ij}kj=1 and add associated problems {(IP)ij}kj=1 to L,

where zij = zi
R for j = 1, . . . , k. {Branching}

14: end if
15: end while

In the algorithm, there are many rising questions, such as how to select the next
problem (IP)i, how to decompose X i. Choosing a “good” relaxation is also a concern.
Linear relaxation is often a choice in many branch-and-bound codes partly due to the
linear presentation of the remaining problem if we drop the integral constraints of an
integer problem.

Obviously, exploring a branch-and-bound tree of an instance of an optimization
problem is a time consuming task, especially with NP-hard problems. Not only being
discussed in many textbooks on integer programming, branch-and-bound is also imple-
mented in many application codes. Developers often prefer to build branch-and-bound
as a general framework (Nemhauser et al., 1994, Thienel, 1995, Ralphs, 2001) from
which users can embed effortlessly their own application codes.

Parallel computing described in the next section is one of many methods to utilize
computing resources of parallel machines to explore branch-and-bound trees.

1.8 Parallel Computing

Loosely speaking, parallel computing is concerned with using groups of computing el-
ements simultaneously. Unlike sequential computing, involving many processors into
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computation raises the issue of how all processors cooperate efficiently to solve appli-
cation problems. Several aspects of parallel computing which should be considered
are: parallel architectures, parallel algorithms, parallel programming languages and
performance analysis.

Since the thesis pays attention to an application in airline management, it will not
show much details in parallel architecture. Readers can easily find many good books
on this area, for example Hwang (1984), Hwang and Xu (1998). The level of algorithms
can be said one of the most important ingredients for parallel computing. A parallel
algorithm describes how to partition a given problem into smaller problems, how to
communicate among processors, and how to join the partial solutions to produce the
final result. We should agree with several basic definitions for further understanding:

Definition 1.8.1.

(i) A process is a sequence of program instructions performed in sequence within
an operating system.

(ii) A processor is a hardware element to execute program instructions

Sometimes, we use these two terms synonymously. This happens when only one
process is mapped onto a processor. In such a case, almost all computing power of
the processor is dedicated to the process (there are other light control processes of the
operating system).

Considering the precedence graph of a computation is quite essential for parallel
computing. The graph views the dependencies of computation blocks in which the
order of blocks must be satisfied to produce the result correctly.

In a multiprocessor environment, the way of processors communicating with each
other has two possibilities:

(i) Message passing communication: processors communicate via communication
links.

(ii) Shared memory communication: processors communicate via common mem-
ory.

Evolution of cluster computing has given the message passing model an advantage
over shared memory counterpart due to its extendibility and flexibility. Most of parallel
computers built in recent years are off-the-shelf clusters. In order to develop parallel
algorithms on these systems, users can choose one of several message passing commu-
nication libraries, such as PVM (Geist et al., 1994), or MPI (Message Passing Interface
Forum, 1995).

One of the remaining important issues is performance analysis which observes com-
putational results in order to improve the efficiency or to measure the quality of parallel
algorithms.

Definition 1.8.2. A speedup of a parallel computation utilizing p processors is derived
as the following ratio:

Sp =
ts
tp
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where ts is the execution time to perform the computation on one processor and tp is
the execution time needed to do the same computation using p processors. (Sometimes,
ts is defined as the time spent by the ”best” sequential algorithm.)

The efficiency of a parallel computation is defined as follows:

Ep =
Sp

p

A ”good” parallel computation should deliver a speedup near to the number of
processors in use. Normally 1 ≤ Sp ≤ p, however, in practice, a speedup greater than
p processors can be observed and is called a super-linear speedup.

An excellent online book is presented by Foster (1995). Other helpful textbooks are
Hwang and Xu (1998), Roosta (1999). The standards published by Message Passing
Interface Forum are quite effective for those who implement parallel codes on cluster
systems.
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Chapter 2

The Crew Pairing Problem

2.1 Airline Management Operations

The efficient management of airline operations has become more challenging and com-
plex than ever before, particularly in today’s dynamic and often unpredictable air travel
industry. Although mathematical programming tools have been applied in this area
for several decades, its problems are still challenging scientists and software engineers.
The size of these problems is increasing and restrictions on them are becoming more
and more complicated. On the other side, airlines always want to solve them as well
as possible in order to reduce the operating cost and raise the revenue. Moreover,
the airline industry has become more time-demanding. Solutions for its management
operations have to be available readily. These challenges have motivated the research
presented in this thesis.

We suppose that a timetable of flights operated in a schedule period exists already
to match the expectations of the market demands. Then, there are planning and
scheduling tasks for aircraft and crews. The first problem is called fleet assignment
problem and has the timetable as input. The departure times are not necessary to be
fixed. Time windows are often used for them to give a more robust solution. Given
a homogenous aircraft fleet (a group of aircraft of the same type), the aim of the
fleet assignment step is to find an aircraft schedule to maximize the profits which
are characterized by a costs/revenues function to map aircraft to flight legs. The
assignment of individual aircraft has to satisfy additional constraints. For example,
an airline company has a limited number of aircraft for a certain type, certain aircraft
are not allowed to operate at certain times and airports, a minimum ground time of
each aircraft type at a certain airport has to be respected, etc. The results of the fleet
assignment problem are: the exact departure time for each flight leg, the sequence
of flight legs for an aircraft. A general review on the fleet assignment problem is
found in Rushmeier et al. (1995). An application of branch-and-bound with column
generation method for aircraft routing and scheduling is shown by Desaulniers et al.
(1997b). Another work on the problem was reported at Delta Airlines by Subramanian
et al. (1994).
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Crew cost is the second largest portion of the overall-cost, next to fuel cost. Prac-
tical reports say that major airlines in the United States and Europe spend about $1
billion for crew cost. Therefore, the second problem called crew scheduling problem is
very important. This problem is often divided into 2 smaller problems: crew pairing
problem and crew rostering problem (also called crew assignment problem). The crew
pairing problem takes the scheduled flights which were fixed by the fleet assignment
step as input. Instead of assigning aircraft, the aim now is to allocate crews to cover
all flight legs and maximize an objective function. The feasible region of the solution
search is limited by a complicated set of rules coming from several sources. In the crew
pairing process, planners do not consider individual crew and the scheduling is often
applied for a period. The result of this process will be used for different periods within
a session. The flights are grouped into small sets called pairings (also called rotations)
which must start from a home base and end at that base. A pairing often has few
flights legs (usually ≤ 6). The rostering process will do the remaining task to assign an
individual crew to a flight leg. Since it is the final step, all constraints must be involved
in. In reality, the problem is interpreted as assigning the generated pairings to named
individuals considering all their activities such as training requirements, vacations, etc.
The objective of this step is often to maximize the utilization of crew (to reduce the
number of crew involved). Remember that the rostering problem must take care of any
changes between daily or weekly schedules to create a fully dated schedule.

An example of a crew pairing problem

A B

A

A

A

B

BB

B B

C C

C C

CC

D

D

D

D

schedule period

PSfrag replacements

f2

f1 f3

f4

f5 f10

f6 f8

f7 f9

Figure 2.1: An example timetable for a crew pairing problem

Let us consider the timetable in Figure 2.1. There are 3 aircraft routes that possibly
result from a previous fleet assignment problem. The problem is to find a “good” set
of pairings to cover all the flights in the timetable assumed to be operated in a given
time period (e.g., a day, a week). A simple set of airline rules can be as following:

• Rule 1: a pairing cannot have more than 4 legs,

• Rule 2: a pairing must last less than the given schedule period,
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• Rule 3: the ground time between two consecutive flights must not be less than
40 minutes.

Assume that the set of home base airports is {A,B}. Under those assumed rules,
we can easily see the set P of feasible pairings for the timetable:

p1 : f2 → f5 → f10

p2 : f2 → f4 → f10

p3 : f3 → f7 → f9 → f1

p4 : f3 → f7 → f8

p5 : f4 → f6 → f8

p6 : f4 → f6 → f9 → f1

p7 : f4 → f10 → f2

p8 : f4 → f1

p9 : f5 → f10 → f2

p10 : f5 → f6 → f8

p11 : f5 → f6 → f9 → f1

p12 : f5 → f1

p13 : f7 → f9 → f1 → f3

p14 : f7 → f8 → f3

Two of solutions for the crew pairing problem are {p1, p3, p5} and {p1, p4, p6}. With
a given cost function, we can choose the best among all solutions if it is feasible (it is
the case in the example). In the list of pairings, you cannot see the pairing f2 → f4 →
f6 → f8 → f3 though it starts from base A and ends at it. The pairing violates rule
2 in the rule set. The pairings p8, p9 would be invalid in case that the ground time
between f5 and f6 is less than 40 minutes mentioned in rule 3. We can see that certain
pairings (e.g., p5, p9) pass the time period boundary in order to connect flights. This is
easily understood because we assume the timetable is the same in every period, which
is also the assumption of other crew pairing problems.

In the next section, we will review characteristics which characterize up a crew pair-
ing problem. Before going to the part of finding solution methods, the understanding
of the problem will help us to solve it effectively.

2.2 Characteristics of the Crew Pairing Problem

As defined in the previous section, the main task of crew pairing can be thought as
finding a set of subsets of a ground set to “cover” the ground set with minimal cost.
The cost of a subset is given according to a specific problem. In a strict version, all the
subsets must be disjoint as in a set partitioning problem. In a crew pairing problem,
the ground set corresponds to the set of flight legs to be scheduled in a time period,
and the subsets are pairings. Moreover, the crew pairing problem does not allow every
subset to be used as a candidate. It requires that pairings must conform to safety rules,
contractual agreements and regulations of a company. Another difference to standard
set partitioning problems is that the ground set in a crew pairing problem is an ordered
set according to the departure time of flights.

We will see main factors which shape a crew pairing problem:

• Crew category and fleet (aircraft types): a crew often consists of different cate-
gories, for example, cockpit crew and cabin crew. Different crew categories are
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obviously restricted by different airline rules and paid by different salaries. It is
reasonable to consider different categories as different problems. The problem
for cabin crew is often larger than that of cockpit crew, but the latter costs more
than the former does. Moreover, in all airlines, a crew is often qualified to fly
a few number of aircraft types due to some reasons of safety, effectiveness and
low cost in airline management operations. Cabin crews are allowed to serve on
more fleets than cockpit crews do. Therefore, the crew pairing problem is often
decomposed by crew category and fleet.

• Regularity of timetable: this property also determines the size of a crew pairing
problem. Many papers (e.g., Anbil et al. (1991a), Andersson et al. (1997)) say
that major U.S. airlines operate daily timetables with a large number of flight legs.
European airlines often provide weekly regular timetables. Vietnam Airlines, as
being seen later, operates a weekly timetable. Although there are few differences
between these two kinds of regularity, they can be considered to repeat in every
given time period (e.g., day, week). After creating pairings for that period, we
can use them for the rostering process which uses many other factors as well in
order to create a real schedule. Certainly, it is quite unreasonable to build a
weekly problem by putting a sequence of 7 same daily timetables together. The
result of the problem could be improved (according to a cost structure), but will
be quite time-consuming.

• Network structure: the operational flight network is decided by market demands
and capabilities of airlines. However, it also affects the crew pairing step. Most
airlines follow the hub-and-spoke idea. A connection between two non-hub air-
ports must go through a hub. Besides economic reasons, this design helps to deal
with disruptions which often happen nowadays. For example, if there is a pool of
crew resources at a hub, airlines can overcome flight delays in some extents. Since
a star-shaped flight network presents more possibilities for outgoing connections,
there will be more pairings for its optimization problem. This will be seen in
more details in the solution chapters.

• Rules and regulations: any airlines company has its own set of rules to define how
a pairing is feasible. Rules can come from governmental obligations, such as FAA
regulations of the United States. A pairing is infeasible if it violates agreements
between employees, unions and employers. Sometimes, for the purpose of man-
agement operations, additional rules can be used to limit the number of feasible
pairings. The airlines rules and regulations make the crew pairing problem quite
complicated. It is quite hard to find a good method to deal with the diversity of
rules and regulations. It is an area involving many researchers nowadays.

• Cost structure: it depends on the individual airlines. Some airlines pay a fixed
salary for a working hour. Others calculate the salary based on credit hours
which are the maximum of the flying time and some guaranteed minimum hours.
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The cost of a pairing also includes a cost paid to the crew for staying away from
their base (e.g., accommodations, transportation), deadheading (when crew are
transported on a flight as passengers), and other penalty costs.

2.3 Literature Survey

Given the timetable of an airline company and the aircrafts associated with each flight,
the crew pairing problem is to assign crews to service the flights such that the total
service cost is minimal. Although we can see the crew pairing problem looks like
the assignment problem, it has two inherent properties which make the problem more
difficult. The first relates to a set of complicated rules specified by the airlines. Many of
them are impossible or quite hard to model as mathematical formulations. The second
concerns the complexity of the cost function which is often non-linear. Therefore, most
successful published papers follow the idea of using an enumeration to consider all
possible pairings. By this way, we can avoid the two mentioned difficulties in some
extents.

The crew pairing problem is usually modelled as a set partitioning problem,

min c>x
s.t. Ax = e

x ∈ {0, 1}n.
(2.1)(SPP)

We denote the number of all feasible pairings by n. Every column of A represents a
feasible pairing and every row corresponds to a flight that has to be serviced. Then, e
denotes the unit vector which means each flight must be covered exactly by one pairing.
Sometimes, the vector e is replaced by a vector of integer values which define how many
crew members are required for a particular flight (see Andersson et al. (1997) for more
details). We have Aij = 1, if pairing j covers flight i, and Aij = 0, otherwise. The
cost of pairing j is given by cj. The variable xj states whether its respective pairing
is in the optimal solution or not. The cost cj of a pairing includes the crew costs, the
accommodation costs and the penalty costs. In the following we do not distinguish
between the terms “pairing”, “column”, and “variable”.

With this way of transforming the crew pairing problem to the set partitioning
problem, we will receive a huge number of pairings. Later in the thesis, readers will see
that a timetable of 297 flights can generate millions of pairings. Besides the difficulties
presented by integer constraints, the size of the constraint matrix is also an interesting
target for research.

The example in Section 2.1 is now modelled as the following integer problem
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min c1x1 + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + c7x7

+c8x8 + c9x9 + c10x10 + c11x11 + c12x12 + c13x13 + c14x14

s.t. x3 + x6 + x8 + x11 + x12 + x13 = 1
x1 + x2 + x7 + x9 = 1
x3 + x4 + x13 + x14 = 1
x2 + x5 + x6 + x7 + x8 = 1
x1 + x9 + x10 + x11 + x12 = 1
x5 + x6 + x10 + x11 = 1
x3 + x4 + x13 + x14 = 1
x4 + x5 + x10 + x14 = 1
x3 + x6 + x11 + x13 = 1
x1 + x2 + x7 + x9 = 1

xj ∈ {0, 1}, j = 1, . . . , 14.

(2.2)

A deadheading often happens when planners want to move crews around airports
to satisfy a given timetable. Certainly, in that case, the deadheading will contribute
certain cost to the pairing which contains the flight transporting the deadheading crew.
This issue is modelled by changing the set partitioning form of (2.1) to the set covering
form which means a flight leg can be covered by more than one pairing.

Among additional constraints, certain constraints can be presented directly within
the integer model. One group of them is called base constraints, which restrict the
aggregate time that all crews at a home base spend away from that home base. With
these constraints, we can control the availability of crews at a base. They are modelled
as the following inequalities:

t0 ≤ Bx ≤ t1,

where the rows of matrix B corresponds to the set of home bases. Bij is the time that
a crew spends away from base i for pairing j, and Bij = 0 otherwise.

In this thesis, deadheading and base constraints will not be paid attention to. More
reviews on them can be found in Rushmeier et al. (1995), Andersson et al. (1997). Next,
we will review methods in the context of the crew pairing problem.

2.3.1 Pairing generation

It is reasonable not to consider all pairings of the whole schedule period for a large set
of flight legs. Therefore, two general variants of pairing generation are easily seen: to
generate all pairings for a subset of flights or to generate a limited number of pairings
for the whole flight set.

Complete generation of a flight subset

This approach was originally developed by Rubin (1973) and has three main steps.
First, a limited number of initial “good” feasible pairings are generated. Depending
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on these pairings, we can obtain a better final solution even in a shorter computation
time. This is typical for other local optimization methods. Generating the initial
solution depends strongly on each specific crew pairing problem. One approach is to
use the pairing construction methods of Baker et al. (1979) in this step. The set of
flights building these initial pairings will be the base set for the second step. It is
also called the subproblem. In the second step, all feasible pairings will be generated
for the current subset of flights. Certainly, all labor rules and contractual regulations
are taken into account in this step and the first step as well. The step results in a
set partitioning problem. Third, the integer problem is solved by a set partitioning
optimizer which can give a better objective cost. In this case, the new pairings will
be used as the incumbent solution. It is quite clear that the method only finds a local
minimum. In order to avoid it, before starting a new iteration, the method replaces
some of the flight legs in the current set with ones which have not been covered yet.
More heuristics are discussed in Anbil et al. (1991a). The process will go back to the
first step if a certain terminating condition has not been reached.

In a paper, Andersson et al. (1997) say that the subproblem creation is not restricted
to limiting the number of pairings. Planners can prefer different possibilities to build
the subproblem which contains only a subset of flight legs. For example, limiting a
time interval for pairings is a variant.

The complete generation for a flight subset has been chosen by most of major U.S.
airlines. More details on this approach and its applications to real airlines can be
found in Gerbracht (1978), Gershkoff (1989), Anbil et al. (1991a), Graves et al. (1993),
Rushmeier et al. (1995), Wedelin (1995).

Partial generation of a full flight set

In a different way, the second idea is to generate a limited number of pairings consider-
ing the whole set of flight legs. Working directly on a very large number of pairings is
not a good choice. Instead, the approach employs techniques to pick up only favorite
pairings. The approach has three main steps. The first again is to generate an initial
solution which consists of “good” pairings. In the second step, the subproblem which
has been created by the current set of pairings is solved. Basing on information of the
optimization, the third step will generate favorite pairings in order to be put into the
current subproblem. A widely-used method in this step borrows an idea from linear
programming, called column generation. It chooses columns (pairings) which have a
negative reduced cost in the expectation of improving the cost function. By doing that,
we do not have to make an exhaustive search through all feasible pairings. The problem
of the third step now can be modelled as a constrained network problem (Desrosiers
et al., 1995).

The second approach with column generation method has been a well-known method
for many routing and scheduling problems in recent years. Desrosiers et al. wrote a
good survey on this, not only in theoretical aspects but also in applications. Barnhart
et al. (1998) also provide us with an interesting survey on branch-and-price, which is a
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combination of column generation and the branch-and-bound framework. Applications
of this approach in the airline crew pairing problem can further be found in Lavoie et al.
(1988), Desaulniers et al. (1997a), Vance et al. (1997), Gustafsson (1999).

2.3.2 Methods

Two schemes presented in the previous section is the ways to reduce the problem size
if working on original problems is impossible. They both reduce these crew pairing
problems to smaller ones. Whenever the reduced subproblems can be solved in terms
of memory and computing power, they can be handled by methods to be surveyed
next.

Branch-and-cut-and-price based methods

Branch-and-cut has been considered as a good framework for general mixed integer
solvers. Nowadays, there are many libraries following this direction and they are also
used to solve integer problems coming from the crew pairing problem. However, a
general solver cannot be much efficient to handle this specific problem. Therefore, a
special solution should be required. Hoffman and Padberg (1993) present one of the
most successful works on the crew pairing problem in this context. The branch-and-cut
framework has been chosen to solve set partitioning problems transformed from crew
pairing problems. Their method and set of test problems have become well-known in
this research area. Certainly, since they only focus on set partitioning problems, issues
relating to real airlines operations have been dropped out of consideration. Borndörfer
(1998) revisits three closely related problems: set packing, set partitioning, and set
covering problems. Then, he also contributes a fast algorithmic implementation to
solve the problems of Hoffman and Padberg. Computational results are impressive.
Many problems can be solved using only the cutting plane phase without any further
branching. We will see more details about this approach in Chapter 3.

Branch-and-price solution methods follow the idea mentioned in the previous sec-
tion. The main difference to branch-and-cut is to generate variables instead. By this
way, they possibly work with large problems. The main difficulty of this method be-
longs to a subproblem which readers will see more details in Chapter 4.

LP-based heuristics

There are many heuristics for set covering problems which can come from crew pairing
problems. Only some of them are listed here due to their successes. Fisher and Kedia
(1990) apply a heuristic to improve the lower bound. The well-known 3-opt operation
in combinatorial optimization is used by these authors to modify the dual solution
when keeping the dual feasibility. Techniques in set covering problems by Chvátal
(1979) are chosen for the primal heuristics. The algorithm used by Fisher and Kedia
also includes a branch-and-bound algorithm in case that the primal and dual bound
are not equal.

24



Another good heuristics applied to airline scheduling is the cost perturbation of Wedelin
(1995). Let’s consider the Lagrangian relaxation of (SPP)

min
0≤x≤1

c>x + π>(b− Ax). (2.3)

It is clear that if the solution to the relaxed problem is feasible to (SPP), then it
is also optimal for (SPP). Wedelin contemplates the impact of the reduced cost vector
c = c− π>A on the solution x as following:

xj =











0 if cj > 0
any value in [0, 1] if cj = 0
1 if cj < 0

(2.4)

In the process of solving a Lagrangian dual of the relaxation, the author makes
an attempt to perturb the vector c in order to satisfy the fact that reduced costs are
greater than 0 or less than 0 for all j. The solution method has been applied in a
software package for airline management operations (Andersson et al., 1997).

Vance et al. (1997) report an LP-based heuristic which uses many techniques in
branch-and-price. The authors have decided to solve the column generation problem
approximately, making the whole algorithm find only near optimal solutions. Further-
more, the tree is just explored partly. However, it is quite easy to turn it to an exact
method. We will return to this method in Chapter 4.

Genetic algorithms

Genetic algorithms are also involved as tools to solve the crew pairing problem (Chu and
Beasley, 1995, Levine, 1996). Although being not more successful than the traditional
approach using the branch-and-bound framework, they still have some advantages,
such as keeping a population of possible solutions. From a practical point of view, this
is preferable. However, as shown in the computational results of the papers above,
the performance of this approach is quite poor. When solving a standard set of set
partitioning problems generated from airline crew pairing problems, genetic algorithms
only present optimal solutions for a subset. Moreover, because of working on set
partitioning problems, the genetic algorithms still do not consider the difficulties from
complex airline rules and regulations.

Tabu search

One of few papers on tabu search in the area of crew scheduling is by Cavique et al.
(1999). In their work, the solution for an urban transportation problem has been solved
by techniques in Tabu search. Moreover, since the rules on crew schedules are extremely
strict, the authors employ a technique to separate the neighborhood structure into two
substructures to deal with the easy in-feasibility. The ejection chains technique (Rego,
1998) has been used in order to reduce the neighborhood. The approach is proved to
be effective for solving a set of crew scheduling problems in urban transportation.

25



Constraint logic programming

Constraint logic programming (CLP) has been revisited in recent years due to its
ability of expressing complex working rules which are quite hard to be presented by
operations research (OR) techniques. In addition, nowadays there are more and more
rules which cannot be modelled in a linear form because they do not satisfy certain
properties (see Desrosiers et al., 1995). Another reason for constraint programming’s
comeback is its improved performance. With constraint propagation and domain re-
duction mechanisms, a constraint programming environment can spread a variable
bounding throughout the whole space, reducing the search space of feasible solutions.
Clearly, it is more comfortable to use the declarative programming model of constraint
programming to represent airline rules. There are some efforts following a natural
approach to use constraint programming completely to solve the problem. However,
this approach seems not to be so successful. The performance of the inference engine
in constraint programming tools is still poor (Guerinik and Caneghem, 1995). Thus,
techniques from operations research are still highly efficient to support constraint pro-
gramming, introducing a hybrid approach. Roughly speaking, there are two ways of
integrating operations research and constraint programming: OR in CLP framework
and vice versa. The latter is often the preferred one. A good paper on a general frame-
work to apply CLP in a column generation algorithm is presented by Fahle et al. (1999)
for crew assignment problems. Yunes et al. (2000) show another real-world application
of this approach for a crew scheduling problem of a metropolitan area.

Other heuristics

One of the early methods for the crew pairing problem was presented by Baker et al.
(1979). Carefully considering characteristics of an airline, the paper shows a pairing
construction procedure which is a continuous process to assign flight legs to a partially
completed pairing. Certainly, there are several criteria for assignment. The process is
ended when the pairing reaches the starting base. Then, one of the remaining flight
legs is picked as a seed of the new pairing in the next iteration. The method is simple
to implement and can be used to construct an initial solution for other methods.

Readers will find more useful information on this approach towards the crew pairing
problem in papers of Barnhart et al. (1997), Lagerholm et al. (2000), Klabjan et al.
(2001b,a, 2002).

Stochastic programming

The aviation industry is a very dynamic environment. The real airline operations can
be different with the planned schedule due to disruptions. For example, a delay in the
arrival of one flight possibly breaks the original schedule. To overcome this kind of
problems, planners often perform a recovery procedure to bring the operations back
to the original schedule. This is not easy but rather ineffective. Therefore, a robust
solution which can compensate for the early disruption is quite important in airline
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operations. This means the solution still minimizes the cost function, and be less
sensitive to the schedule disruptions. Stochastic programming is often the choice of
researchers to deal with the uncertainty where the probability distribution of unknown
data is known or can be estimated. Methods in this area often follow the two-stage
stochastic integer programs with the recourse. One of the model can be as following,

min c>x +
∑K

k=1 pkq>yk

s.t. Ax ≤ b
Tx + Wyk = bk, k = 1, . . . , K
x ∈ X, yk ∈ Y, k = 1, . . . , K

(2.5)

where K is the number of scenarios, and pk is the probability of the k-th scenario.
The modified model (2.5) has an additional expected cost for disruptions. Benders’
decomposition is a well-known approach for solving this class of problems. Note that
the objective function now changes to minimizing the expected cost. Some works in
this direction are Yen (2000), Schaefer (2000).

Parallel optimizer

Generally, there are two ways of solving the crew pairing problem in parallel. The
first is to study the integer model of the problem and to solve it as a general integer
model. This approach has been performed as a generalized parallel mixed integer
optimizer or a parallel set partitioning optimizer. Using strong cutting planes for the
set partitioning problem is often better than using general mixed integer cuts. One work
in this direction is the parallel set partitioning solver of Linderoth et al. (2001). Besides
employing recent techniques for the set partitioning solver, the authors apply both the
functional decomposition and domain decomposition for parallel environment. The
parallelization is quite complicated and quite specific to the set partitioning problem.
Computational results of the work prove that the parallel computing is effective with
large scale combinatorial optimization problem, even though the speedup is not quite
good.

The second approach considers the crew pairing problem itself directly. Alefragis
et al. (2000) work on the heuristic presented by Wedelin (1995), and build a parallel
optimizer for crew scheduling problems. As seen above, the sequential heuristic depends
strongly on variable updates to solve a Lagrangian dual problem. Therefore, in order to
separate computing tasks among processors, the presented method uses a fined grained
parallelism, which distributes variables across the processors. The paper shows good
speedups with a small number of processors in solving real world airline crew pairing
problems. Some more details on the integration of this work to a commercial software
(named PAROS) can be found in Alefragis et al. (1998). In PAROS, the parallelization
is not implemented in the process of solving the linear relaxation problem of the master
problem. Instead, it distributes the enumeration of pairings over the processors and
their outputs will be sent into the parallel set partitioning optimizer mentioned before.

To support other researchers, Klabjan and Schwan (1999) have made a research on
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how to generate pairings quickly on a cluster of machines. As shown in their work, and
in this thesis as well, there are often a very large number of feasible pairings for each
flight set. This requires a method to work efficiently. Workload balancing schemes are
introduced to guarantee a fair distribution of tasks among processors in the process of
exploring the whole set of pairings.

Over several decades, it is obvious that there are many research efforts on the
problem. The survey above on this area may not include all of them. However, there
are still many gaps for the research. In the next chapters, the research on the airline
crew pairing problem will be presented. The motivation will be presented in each of
them. Main contributions of this thesis will be presented in Chapters 4, 5, and 6. In
the next section of this chapter, the thesis will present an airline crew pairing problem
which serves as a main application throughout the thesis.

2.4 A Case Study: Vietnam Airlines

The crew pairing problem in Vietnam Airlines is the first problem which attracted
me in the beginning of the Ph.D. research. Until 2002, the problem has been still
solved manually by a group of personnel in a crew scheduling department. Since the
number of flights is small and the operational flight network is simple, this task can be
done in such a way. Furthermore, the planners have only focused on the availability
of crew for flight legs within an “acceptable” cost . In other words, a solution for the
crew pairing problem in Vietnam Airlines has been only ensured to be feasible. The
cost function has not been paid much attention although it still has been considered
intuitively in the manual scheduling process. Below, only information allowed to obtain
on the operations of this company will be presented. Figure 2.2 sketches functional
blocks of the scheduling process in Vietnam Airlines, including both crew pairing and
crew rostering.

Characteristics

Under the point of view presented in Section 2.2, the main aspects of the crew pairing
process in Vietnam Airlines are introduced as following:

• Crew category and fleet: the pairing problem is decomposed by crew category.
As mentioned before in other airlines, the crew pairing in Vietnam Airlines is
also decomposed by crew category due to the difference of properties. Pilots are
qualified to fly one aircraft type. Cabin crew can fly several aircraft types. And
each person in crew planning group of Vietnam Airlines performs scheduling for
each aircraft type in a manual process. Table 2.1 shows different aircraft types
along with their number of flight legs in a week. In summary, the crew pairing
in Vietnam Airlines is decomposed by crew category and aircraft type.

• Regularity of timetable: Vietnam Airlines operates a constant schedule for every
week within a session (a half of year). Column “#daily legs” of Table 2.1 says
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(Season, week, day)

Crew pairings

Rules and Regulations
(FOM, rules,...)

Other timetables:
− Request from crews,
− Ground timetable,
− Training timetable
− Vacations,

Crew Rostering Process

Crew Pairing Process

Flight timetable

for individuals
Crew timetables

− Some optimization objectives

Other changes in flight timetable

− ...

− Database of flight abibilities of crew
Previous database

(statistical data on FDP)

Figure 2.2: Scheduling steps in Vietnam Airlines

Name Aircraft type #legs per week #daily legs
vn320 320 (Airbus 320) 301 140
vn321 321 (Airbus 321) 168 126

330 (Airbus 330) 12 0
343 (Airbus 340-300) 6 0
734 (Boeing 737-400) 8 0
737 (Boeing 737-100) 34 0
763 (Boeing 767-300) 86 14

767 (Boeing 767) 4 0
76C (Boeing 767-300 freighter) 2 0

777 (Boeing 777) 58 7
vnAT7 AT7 (ATR 72) 296 210

F70 (Fokker 70) 56 56
total 1031 553

Table 2.1: Aircraft types and their numbers of flight legs (Sep 6, 2004 – Sep 13, 2004)
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that about one half of all flight legs are operated every week day. They often fall
into categories: short and medium-range connections. Generally, it can be said
that the company applies a weekly schedule.

• Network structure: the operational flight network of Vietnam Airlines is quite
simple (for each kind of category). In Figure 2.3, you can see the networks of
Vietnam Airlines, in which flights often start from SGN or HAN to a subsidiary
airport and return to them immediately after that.

Note that the scaling ratio of sub-figures are not the same. Moreover, the posi-
tions and arc lengths do not correspond to real locations either.

• Rules and regulations: the scheduling process must follow strictly the flight oper-
ations manual (FOM) (Vietnam Airlines, 1998). Several rules which have impact
on the crew pairing process have been collected and they are presented as follow-
ing:

– Flight duty period shall not exceed in times in the planning table 2.2, ac-
cording to the current number of flight legs that have been taken.

Reporting time (LT) 1,2 3 4 5 6 or over
07:00-17:59 1330 1230 1200 1100 1030
18:00-21:59 1330 1200 1130 1030 1000
22:00-04:59 1300 1130 1100 0930 0900
05:00-06:59 1330 1200 1130 1030 1000

Table 2.2: Flight duty limitation

The numbers in the second column and columns after it mean the time
duration (e.g., 1330 means 13 hours and 30 minutes).

– The minimum rest time period which must be provided before undertaking
a flight duty period shall be at least as long as the preceding duty period,
and not less than 11 hours. In case of time zone difference, rest periods
would be longer (more details in FOM).

– Some other control variables:

∗ Pre-flight and post-flight-time,

∗ Minimum ground time (minimum time between two legs that can be
connected together in a pairing),

∗ Maximum number of days for a pairing,

∗ Maximum number of flight legs in a pairing,

• Cost structure: Due to its strictly confidential nature, this is the most unknown
part in Vietnam Airlines. As mentioned in the beginning, the planners often try
to find a “good” feasible solution. The scheduling process does not pay much
attention to finding an optimal or near-optimal solution. Vietnam Airlines only
distinguishes 3 kinds of objectives: a cost for flying time, the crew utilization and

30



HAN

DAD

DIN

SGN

BMV

CXR

PXU

UIH

DLI

PNH

PQC REP

TBB

VKG

(a) ATR 72

HAN
SGN

CAN

CXR

HKG

HUI KMGKUL

REP

SIN

VTE

BKK

DAD

FUK

HPH

VII

(b) Airbus 320

HAN

SGN

BKK

DAD

HKG

PEK

REP

TPE

HUI

KHH
KUL

SIN

(c) Airbus 321

HAN
VTE

SGN

CXR

PNH

(d) Fokker 70

HAN

CAN

KUL

TPE

SGN

MNL

(e) Boeing 734, 737,
and 738

HAN

SGN

ICN

KIX

NRT

DAD

PUS

TPE

(f) Boeing 763, 767,
and 76C

HAN

SGN

DME

HKG

NRT

FRA

(g) Boeing 777

Figure 2.3: Operational flight network for each aircraft category. (Note that home
bases are denoted by shaded ellipses.)
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a cost for ground time. The company pays each crew a fixed amount of money
for a unit of flying time. Therefore, with a given timetable, the company must
spend a fixed cost to cover all flights. The crew utilization and the resting time
are the two most important factors in the planning. But, the planners do not
realize how important they are. Therefore, an assumption must be made that
the most important cost which Vietnam Airlines wants to minimize is the cost
for ground time which is mainly the cost for the accommodation when crews take
a rest far away from their bases. In this thesis, the deadheading and some other
penalty costs will not be taken into account.

Applied methods

Algorithm 2.4.1 Tung’s heuristic for the crew pairing problem

p← first flight starting from a home base.
while (p is not valid) do

d← a schedule direction based on p.
F ← list of flight legs which can be appended to p and with the direction d.
if ( F == ∅ ) then
break

end if
f ← the best first of F .
p← p + f .

end while

To my knowledge, there is only one work on this problem at Vietnam Airlines. More
details can be seen in the work of Tung (1998). Outline of the suggested heuristic is
shown in Algorithm 2.4.1.

The algorithm is based mainly on the idea of Baker et al. (1979). Furthermore, it is
quite simple and cannot ensure the quality of the final solution. The only difference is
to use the variable d to specify the preferred direction to be scheduled. The direction
here means the crew should “leave” or “return” the home base where they start. In that
work, this has been done intuitively because the author has experiences in Vietnam
Airlines. There is no algorithmic method suggested in this part.

In Table 2.1, the three largest sets of flights legs belong to the aircrafts Airbus 320,
Airbus 321, and ATR 72. We will use these problem sets as case studies in the crew
pairing solvers presented in the next chapters. Column “Name” of Table 2.1 denotes
the problem names.
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Chapter 3

A Branch and Cut Approach

3.1 Set Partitioning Model

It can be said that set partitioning is one of the most widely used models in practical
applications.

Definition 3.1.1. A set partition problem is defined as following:

zSPP = min c>x
s.t. Ax = e

x ∈ {0, 1}n,
(3.1)(SPP)

where A is an m × n matrix of zeros and ones, c is an arbitrary n-vector. Note that
the right hand side e is an m-vector of 1’s.

Let M = {1, . . . , m} be the row index set and N = {1, . . . , n} be the column index
set of (3.1). For each column A.j, let M j = {i ∈ M : Aij = 1} and associate the set
with a cost cj. We also denote by N i = {j ∈ N : Aij = 1}. With these notations, we
can interpret a (SPP) as finding a minimum cost family of subsets M j, j ∈ N which
is a partition of M . It is not true that every subset of M can belong to the optimal
partition. This relates to the fact that “application” constraints seems to be embedded
into the definition of the set {M j : j ∈ N}.

A large number of scheduling problems can be formulated as follows: given

(i) a finite set M ,

(ii) a constraint set C defining a family P of “feasible subsets” of M , and

(iii) a cost associated with each member of P,

find a minimum cost collection of members of P, which is a partition of M .
In order to solve such scheduling problems, we can use a two-step framework de-

scribed as following:
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Step 1: Generate explicitly all feasible subsets of M according to the constraint set C
(i.e., generate P). An approximation approach could be performed by creating
a subset P ′ ∈ P so that the probability of an optimal solution being contained
in P ′ is sufficiently high.

Step 2: Create a (SPP) in which P (P ′, for approximations) defines the set of columns.
Solving the (SPP) is equivalent to solving the original scheduling problem.

Applying the idea above, the set partitioning problem is used to model many prac-
tical applications: bus crew scheduling, airline crew scheduling, vehicle routing, circuit
design, facility location problems, etc.

3.1.1 Set packing and set covering models

Replacing the equality constraints with inequality ones, we obtain two closely-related
problems. They are the set packing problem:

zSP = min c>x
s.t. Ax ≤ e

x ∈ {0, 1}n,
(3.2)(SP)

and the set covering problem:

zSC = min c>x
s.t. Ax ≥ e

x ∈ {0, 1}n.
(3.3)(SC)

We also define six associated polyhedra:

PSPP(A) = conv(x ∈ {0, 1}n : Ax = e) PLSPP(A) = {x ∈ � n
+ : Ax = e}

PSP(A) = conv(x ∈ {0, 1}n : Ax ≤ e) PLSP(A) = {x ∈ � n
+ : Ax ≤ e}

PCP(A) = conv(x ∈ {0, 1}n : Ax ≥ e) PLCP(A) = {x ∈ � n
+ : Ax ≥ e}.

At a first glance, (SP) is a tightly constrained problem, and (SC) is a loosely-
constrained problem, in comparison with the set partitioning problem. In a (SC), the
set M is likely to be divided into overlapping subsets. Meanwhile, a (SP) restricts that
a member of M only belongs to at least one subset.

Without loss of generality, it is assumed that there are no empty columns and rows
in A which can be redundant, making problems unbounded, or infeasible. Obviously,
PSPP(A) = PSP(A) ∩ PSC(A). With this observation, working on the set partitioning
model could be done by investigating equivalent models (SP) and (SC). Lemke et al.
(1971) shows how to transform a (SPP) to (SC). However, (SC) cannot be brought to
a (SPP). On the other hand, (SP) and (SPP) are equivalent (i.e., two problems have
the same optimal solutions) under certain conditions. In more details, if we denote by
c′ = θeA− c, (SPP) can be rewritten as a (SP) as following:
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max θm + c′>x
s.t. Ax ≤ e

x ∈ {0, 1}n.

Whenever the new (SP) is feasible, and θ, a scalar, is sufficiently large, the new
problem has the same optimal solution as the (SPP). This equivalence is important
because instead of considering the original problem, we can investigate the related
problems.

Theory on set packing and set covering shows a strong relation of them to associated
problems in graph theory. Given an undirected graph G = (V, E) with |V | = n and
|E| = m. Constructing a node-edge incidence matrix AG (i.e., AG

ij = 1 if node i is
incident to edge j). An edge matching ME ⊆ E is a set of disjoint edges, that is, at
most one edge of a matching is incident to any node v ∈ V . A matching is called
perfect if every node of G is incident to exactly one edge in the matching. Oppositely,
we have a definition of an edge covering which is a set CE ⊆ E of edges being incident
to every node of G. This also means every node of G is incident to at least one edge
of CE. The problem of finding maximum cardinality edge matching (edge matching
problem) is

zEM = max e>x
s.t. AGx ≤ e

x ∈ {0, 1}n,
(3.4)(EM)

and the problem of finding minimum cardinality edge covering (edge covering problem)
is

zEC = min e>x
s.t. AGx ≥ e

x ∈ {0, 1}n.
(3.5)(EC)

A node packing is a set MN ⊆ N of nodes such that every edge of G is incident to at
most one node of MN . A node covering is a set MC ⊆ N of nodes such that every edge of
G is incident to at least one node of MC . There are also two associated problems which
are to find the maximum cardinality node packing (node packing problem) defined as
follows:

zNP = max e>x

s.t. AG>
x ≤ e

x ∈ {0, 1}n,
(3.6)(NP)

and to find the minimum cardinality node covering (node covering problem) defined as
follows:

zNC = min e>x

s.t. AG>
x ≥ e

x ∈ {0, 1}n.
(3.7)(NC)

35



There is an interesting relation among the optimal solution of these problems that
was presented by Gallai (1959).

Theorem 3.1.2. For any nontrivial connected graph G with n nodes,

zEM + zEC = n = zNP + zNC

Although (EM) and (EC) can be solved by a polynomially bounded algorithm,
(NP) and (NC) are classified as NP-hard problems (assume NP6= P). If we create an
intersection graph GA = (N, E) of A which has one node for every column of A, and
one edge for every nonorthogonal column of A (i.e., (i, j) ∈ E if and only if A.iA.j ≥ 1.
Denote by AG node-edge incident matrix of GA. A weighted node packing problem in
which the objective vector e is replaced by the objective vector c is

zWNP = max c>x

s.t. AG>
x ≤ e

x ∈ {0, 1}n.
(3.8)(WNP)

If (WNP) is feasible, the corresponding (SP) is also feasible and zWNP = zSP. The
converse is true as well. This remark gives a way to solve a set packing problem by
solving a node packing problem which has a more structured constraint matrix.

The set packing problem also relates closely to the stable set problem on the associ-
ated intersection graph with node weights cj. From this point of view, a (SP) is merely
to find the maximum weight of stable sets which are defined as the sets of pairwise
nonadjacent nodes.

In the thesis, a further review on related problems will not be included. Readers
could refer to Edmonds (1965) for the original work on edge matching problems. A
more general review is of Nemhauser and Wolsey (1988, Chap. III.2). Since being
classified as an NP-hard problem, (NP) has attracted many researchers as for finding
facets and algorithms to separate them. Some of them are Padberg (1973), Edmonds
(1965), Trotter (1973), Grötschel et al. (1988). There are some good surveys, such as
Balas and Padberg (1976), Borndörfer (1998).

3.1.2 Crew pairing to set partitioning problem

As presented in Chapter 2, crew pairing is a scheduling problem, and certainly can be
transformed into a (SPP) using the two-step idea mentioned in Section 3.1. Assume
a flight set F = {fi : i = 1, . . . , m} for a schedule period. This set corresponds to M
in the method. Following a set of rules and regulations, a set of all feasible pairings
P = {pi : i = 1, . . . , n} is generated for that period. Note that, in the thesis, a
schedule is assumed to be repeated for next periods (e.g., a weekly schedule will be
repeated exactly the same during the following weeks). Changes in schedule in real
airline operations will not be considered in the thesis as mentioned in Section 2.2.

An example should explain the idea more clearly. Remember the example in Chap-
ter 2. Under a given set of airline rules, the first step gives us the set partitioning
problem (2.2).
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We can formulate the crew pairing problem with variables xij where xij = 1 if crew i
is assigned to flight leg j. However, this way of formulating produces a highly non-linear
objective function which is difficult to express. Therefore, this is also another advantage
of applying the set partitioning model when dealing with non-linear cost functions.
Cost for a pairing depends on airlines and is easily calculated while generating pairings.
The cost cj of a pairing possibly includes the crew costs, the accommodation costs and
the penalty costs. After all, a (SPP) has been created in which each column is a pairing
and the objective is to partition all flight legs into a set of pairings with a minimum
cost.

Although the idea is quite simple, there are issues which should be described in
more details.

Pairings over schedule boundary

Although we only consider the time period of a given schedule, there still exist some
pairings starting in this period and stopping in the successive one. In the example,
the schedule is daily, several pairings start in the current day but stop in the next day,
denoted by a line from the rightmost flight to the leftmost flight. This means, in order
to generate all feasible pairings, we need to duplicate the ground flight set to the next
periods. The extent of such a duplication depends on the maximum length of a valid
pairing. Note that flight legs which are repeated for consecutive periods are considered
as the same in the process of transforming into a (SPP) (i.e., they correspond to the
same row of the problem). In the example above, such pairings are p6, p7, p8, p9 and
p10.

Large number of feasible pairings

It is quite clear that there are a lot of pairings generated in spite of the limitation on the
number of flight legs in a pairing and restrictions of airline rules as well. Exhaustive
enumeration is combinatorial explosive which should be considered carefully. From
a practical point of view, the more pairings, the more difficulties there are. Then,
the more memory is required to store them. Furthermore, a data structure to keep
all feasible pairings in memory can impact the efficiency of algorithms (see Hu and
Johnson, 1999). The thesis will return to this topic later in computational issues. A
(SPP) with a very large number of columns could be a difficult zero-one optimization
problem. Mentioned in many real applications, the number of all pairings can reach
billions for a set of about 1000 flight legs. Therefore, crew pairing generation is also a
time consuming task which even needs support from parallel computing (Klabjan and
Schwan, 1999).

There are generally two approaches to avoid dealing directly with a large set of
pairings. The first one was described by Rubin (1973), Gerbracht (1978) and imple-
mented in the software package ALPPS. The method starts by choosing randomly a
subset F ′ of F (to satisfy some condition, e.g. |F ′| is less than a given number) and
generate the set P ′ of all possible pairings for it. A new (SPP) in which the set of
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rows corresponds to F ′ and the set of columns corresponds to P ′ will be created and
solved by a set partitioning solver. Columns in the incumbent solution (if it exists) are
kept in F ′. The next iteration again randomly selects flight legs for F ′. The process
above is iteratively executed until a limitation of time is reached or there is no further
improvement in the objective value. A detailed procedure of this approach can be
found in Anbil et al. (1991a).

An alternative approach is to initially generate a set P ′ of pairings which covers all
flight legs of F . There is a (SPP) corresponding to these pairings and flight legs. Only
pairings belonging to the final solution (if it exists) are kept in P ′ which will again
include additional “good” pairings generated by a heuristic process. A “good” pairing
is possibly determined by the value of its corresponding binary variable in linear relax-
ation (e.g, xp > 0). Two steps of generating pairings and optimizing set partitioning
problems are repeated until some given condition is satisfied. This approach is imple-
mented in TRIP, a software package to solve crew scheduling problems for American
Airlines. A report of Anbil et al. (1991b) describes a successful attempt to work with
a real practical problem. Another paper applying this approach was presented by Chu
et al. (1997).

Both approaches require a set partitioning optimizer. Generally speaking, an outer
loop of including more flight legs (first approach) or generating more pairings (second
approach) is just a way of avoiding being kept in local optima. Therefore, solving set
partitioning problems efficiently is the most important topic in this area. In the next
sections of the chapter, aspects of polyhedral theory of (SPP) will be considered under
a practical point of view. Readers being interested in two approaches above can refer
to Andersson et al. (1997), Hoffman and Padberg (1993), Gustafsson (1999) for more
descriptions.

Density of constraint matrix

The example before shows that the constraint matrix is very sparse. In the crew pairing
step, a crew is often prohibited to fly more than a given number of flight legs which
is small with respect to the total number of flights. For example, in Vietnam Airlines,
the former number is set to 6. This also means, under specific rules, the more flights
to be scheduled, the more sparse the constraint matrix. The well-known test problems
supplied by Hoffman and Padberg (1993) support this comment. More experiences on
the density of the constraint matrix can be found in Borndörfer (1998). The density of
the test problems will be given in Section 3.3. Considering the sparsity of the constraint
matrices should be helpful in organizing a good storage structure.

3.2 Facial Structure of Set Partitioning Polytope

As mentioned in a remark of Section 3.1.1, the investigation on the polyhedron PSPP(A)
can be done by studying the two associated polyhedra PSP(A) and PSC(A). Following
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sections will consider well-known facets which were discovered and are widely used in
practical solvers.

3.2.1 Set packing facets

Facets of set packing polytopes are often obtained from some subgraphs of the inter-
section graph. These subgraphs are called facet defining graphs. We will introduce the
facets with their associated graphs.

Clique inequality

Consider the intersection graph G = (N, E) of a (SP) (N = {1, . . . , n}). A clique in
the graph G is a maximal complete subgraph of G.

Theorem 3.2.1. An inequality

∑

i∈C

xi ≤ 1, (3.9)

where C ⊆ N , is a facet of PSP if and only if C is
the node set of a clique in G (Fulkerson, 1971, Padberg,
1973).
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It is quite clear that (3.9) is valid for all x ∈ PSP because C is the node set of a
clique. We create n linearly independent zero-one solutions to (SP): for each i ∈ C,
set xi = 1 and xk = 0 for k ∈ N \ {i} (obtaining |C| solutions); for each i ∈ N \ C,
choosing j ∈ C so that (i, j) 6∈ E (there exists at least such j because C is the node set
of the maximal complete subgraph), set xi = xj = 1 and xk = 0 for all k ∈ N \ {i, j}
(obtaining |N \C| solutions). These n solutions are valid to PSP and satisfy (3.9) with
equality. Therefore, (3.9) is a facet and the “if” direction has been proved.

The “only if” direction can be seen as follows. Suppose a graph of C and edges
which join them in G is not a maximal complete subgraph. This means that there exists
i such that C∪{i} with the respective edges of G make a larger complete subgraph. We
can choose n linearly independent solutions to PSP which satisfy (3.9) with equality.
Thus, they also satisfy

∑

k∈C∪{i}

xk ≤ 1

with equality. Furthermore, we can create at least one solution xi = 1 and xk = 0,
otherwise. The new solution is clearly independent from the others. It is a contradiction
because there are not more than n linearly independent points on a hyperplane of

� n.

Odd cycle inequality

Given the intersection graph G = (N, E) of a (SP), an edge connecting two non-
consecutive nodes of a cycle of G is called chord. We have a theorem below about
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another valid inequality.

Theorem 3.2.2. Given an odd cycle C in G, the in-
equality

∑

i∈C

xi ≤
|C| − 1

2
, (3.10)

where C is the node set of the cycle, is a valid inequality
to (SP).
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If x is feasible to (SP), it is clear that we can find j ∈ C with xj ≤ 1/2. Without
loss of generality, we can number the node set of the odd cycle C by 1, . . . , 2k + 1, and
assume j = 2k + 1. We have

∑

i∈C xi =
∑k

i=1(x2i−1 + x2i) + x2k+1

≤ k + 1
2

because the sum of the objective values of each pair of consecutive nodes is less than
1. Since xi ∈ {0, 1}, we can drop the fraction to obtain (3.10).

Generally, an odd cycle inequality is not a facet. However, Padberg (1973) showed
in a paper that an odd cycle without chord can be lifted to a facet of the polytope PSP

by a procedure called sequential lifting (see Hoffman and Padberg (1993), Borndörfer
(1998) for more details). However, this procedure is too computationally expensive to
be implemented. This is the reason why the thesis does not consider it further.

Other inequalities

Set packing polytopes are studied well among many combinatorial optimization prob-
lems. Therefore, many their facets have been found so far. Some of its valid inequalities
are listed below.

• Odd antihole inequality (Nemhauser and Trotter,
1973): if C is an odd antihole (i.e., complement of
an odd hole), then

∑

i∈C

xi ≤ 2

is a valid inequality to (SP).
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• Wheel inequality (Grötschel et al., 1988): a wheel
is an odd cycle C with an additional node j, called
rim, connecting to all nodes of the cycle. The wheel
inequality associated with a wheel (C, j) is

|C| − 1

2
xj +

∑

i∈C

xi ≤
|C| − 1

2
.
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xj

• Antiweb and web inequalities (Trotter, 1975): a web is a graph W(n,k) = (N, E)
(|N | = n ≥ 3) in which

(i, j) ∈ E ⇔ j = i + k, i + k + 1, . . . , i + n− k,

where all sums are taken modulo n. If W(n,k) is a web, we have a valid inequality
∑

i∈N

xi ≤ k.

The complement W (n,k) of a web W(n,k), called antiweb, also contributes a valid
inequality

∑

i∈N

xi ≤ bn/kc
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In this section, two important valid inequalities are reviewed: the clique inequality
and the odd cycle inequality. They will be implemented in our code. One of the
reasons to use them is that all left hand side coefficients of them are zero-one. This
will guarantee that the storage structures for inequalities are coded easily and efficiently
in space and in speed as well. The generalization of clique and odd circle inequalities
relates to the work of Chvátal (1975). In one of his theorems, there is a valid inequality

∑

j∈N

xi ≤ α(G),

where α(G) is the maximum cardinality of stable sets of G = (N, E).
The reader is referred to Borndörfer (1998) for a good survey of the valid inequalities

of set packing polytope.
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3.2.2 Set covering facets

Besides trivial facets, such as xj ≤ 0, j ∈ N (if and only if |Ii \ {j}| ≥ 2 for each
i ∈ M), xj ≤ 1, j ∈ N , Sassano (1989) discovers several facets with all left hand side
coefficients being zero. The idea starts from the following definition:

Definition 3.2.3. Let G = (M, N, E) be a bipartite graph associated with a zero-one
matrix A in which M is the row index set, N is the column index set, and the edge
(i, j) ∈ E : i ∈ M, j ∈ N if Aij = 1. Let H = (MH , NH , EH) be a subgraph of G, then
we call

∑

j∈NH

xj ≥ β(H)

rank inequality associated with H. β(H) is the minimum cardinality of a cover in H
and also called covering number of H. In a similar way, a facet defined by a rank
inequality is called rank facet.

We will introduce 2 facets discovered by Sassano which are contained in a class of
rank facets.

• Let R(p, t, q) = (MR, NR, ER) be a (q, t)-rose of order p. We have the following
facet of the associated matrix of R

∑

j∈NR

xj ≥
⌈

(t− q + 1)p

t

⌉

if and only if p(q − 1) 6= 0 (mod t), or t = p.

• Let R(p, q, q) = (MR, NR, ER) be a q-rose of order p, p 6= q. We have a following
facet of the associated matrix of R

∑

j∈NR

xj ≥
⌈

p

q

⌉

if and only if p 6= 0 (mod q).

The proof of these facets and associated definitions can be found in Sassano (1989).
In the same paper, Sassano also introduces the method to lift the facet to be globally
valid. The figure below gives an example of a 3-rose of order 5.
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The thesis of Borndörfer (1998) reviews more facets of the set covering polyhedron.
It also introduces necessary and sufficient conditions for a rank inequality to become
a facet which was shown by Euler et al. (1987) and generalized by Laurent (1989).

3.3 Computational Issues

3.3.1 Data structure

Section 3.1.2 claims the sparsity of the constraint matrix of a (SPP) generated from
a crew pairing problem. Generally, it is also a property of set partitioning matrices
modelling scheduling problems which are dealt by the two-step method mentioned in
Section 3.1. The column nnz of Table 3.1 demonstrates the number of nonzeros in the
constraint matrix of most difficult test problems which are obtained from a well-known
test set mentioned in Hoffman and Padberg (1993), Borndörfer (1998), from Vietnam
Airlines problems discussed in Section 2.4, and from randomly generated problems
which will be described later. All problems in the first set have less than 9 nonzeros in
each column and those of the second set have less than 6 in each column. This sparsity,
with zero-one coefficients, needs a special data structure in order to get efficiency.

A widely-used structure to store such sparse zero-one matrices is column major
format (or row major format). It only stores row indices of nonzero coefficients. In
addition, this storage method uses two other arrays: one to store the number of nonzero
entries in a column and another to store the index to the major array where the row
index of the first nonzero of the column located. It is not convenient to scan a matrix
stored in the column major format by row oriented operations. In such a case, we
can additionally store the matrix using the row major format. Certainly, two these
data structures must be synchronized to be the same. Besides saving memory, another
advantage of this storage method is to load the matrix quite quickly into a linear solver
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Figure 3.1: The zero-one matrix of the example shown in Section 3.1.2 is stored in a
set of sparse format rows and in a set of sparse format columns

(e.g., CPLEX) which supports the sparse matrix storage format. Details of the formats
are found in CPLEX (1997), Hoffman and Padberg (1993), Borndörfer (1998).

The thesis solves the storage problem in a different way. Every column (row) is kept
in a separate array which stores only indices of nonzero elements. This means that the
whole matrix is not considered as an entity. Although a set of the columns is enough
to present the matrix, a different set is needed to hold the rows (also in the sparse
format). The storage method needs an equivalent space for a matrix in comparison
with the column (row) major format mentioned in the paragraph above. The required
space depends mainly on the number of nonzero coefficients. The separately stored
columns can require more extra space for their arrays to be extendable. An example
of this storage method is depicted in Figure 3.1.

Additionally, there are the following reasons to use the format.

• Row oriented and column oriented operations are performed easily on the data
structures.

• ABACUS (Thienel, 1995) is used as a framework for the implemented set parti-
tioning solver. The usage of this library requires users to define a separate data
structure for each kind of constraint (variable). This also means that a data
structure for a whole constraint matrix (as done by other people) is not accept-
able to work with ABACUS. A brief discussion of ABACUS will be introduced
in Chapter 5. More internal design of the library can be found in Thienel (1997).

• Data objects for constraints and variables will be exchanged individually within a
parallel computing environment. We do not have to extract some rows (columns)
out of the matrix before sending them. This also means reducing the computation
time. We will go back to this topic later in Chapter 5.
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Every variable (and constraint) is assigned a global identification (ID). Since the
constraints of the original integer formulation are global, they should be implemented to
remember which variables they cover (i.e., which columns the corresponding coefficients
are 1).

The transformation of constraint matrices from user data structures to structures
used by linear solvers is done by ABACUS. Users are required to supply functions to
determine the value at a position on the matrix. These functions could be quite slow if
we do not consider their design carefully. The simplest function, named coeff(), is to
determine the value at a point on the matrix. Since the list of IDs which is covered by
a row is sorted according to the cardinality of IDs, checking the existence of a variable
ID on the variable ID list of the row is best performed by a binary search.

Although a binary search has been involved, it is still easily seen that the process of
regenerating a whole row by iteratively calling the function coeff() is time consuming.
Therefore, ABACUS supplies a function genRow() which can be overridden by users to
regenerate the whole row at a time (i.e., ABACUS does not determine point-by-point
and gather them to create the row). The input of the function is a list V of column
IDs whose coefficients on the row are required.

Figure 3.2: Nonzero coefficients of the constraint matrix of the problem sppnw32

Note that Section 3.1.2 comments that there are a large number of variables and
that rows are very sparse. Figure 3.2 visualizes the constraint matrix of a typical (SPP)
generated from a crew pairing problem. Therefore, instead of traversing one-by-one
through V , it should be better to bypass a given number s of variables before restarting
the next search. This means that if we go ahead s variables and see that the variable
ID at that position is less than the current variable ID of the row, we will jump to that
point immediately. Otherwise, we make a search on these variables.

The idea of the new approach is sketched in Function 3.3.1. This technique also
has an advantage of utilizing the fact that many nonzero coefficients often stay nearby.
With the function, the LP loading time is reduced significantly. The constant s can be
set depending on the sparsity of the row. The worst case complexity of the technique
is easily seen to be O(|Ni|+ |V |) if s = 1.

3.3.2 Preprocessing

In this section, we focus on how to remove constraints and variables which are redundant
in the integer model. In general, the main purpose of preprocessing techniques is
to reduce the size of coefficients in the constraint matrix and the size of bounds on
the variables as well. In our case, all coefficients of the constraint matrix are zero-
one. Therefore, special techniques of preprocessing the problem are involved. A good
discussion on preprocessing and probing techniques for mixed integer programming
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Function 3.3.1 genRow( N i, V )

k ← 0, l← 0
repeat

knext ← k + s
if Vknext−1 < N i

l then
k ← knext

else
while (k < knext) ∧ (l < |N i|) do

if Vk < N i
l then

k ← k + 1
else if Vk > N i

l then
l ← l + 1

else
AiVk

← 1 {only nonzero coefficients are needed}
k ← k + 1
l ← l + 1

end if
end while

end if
until (k ≥ |V |) ∨ (l ≥ |N i|)

problems is exhibited by Savelsbergh (1994). As for the problems of zero-one constraint
matrices, Hoffman and Padberg (1991) present techniques to deal with their special
property. Borndörfer (1998) reviews many good preprocessing techniques for the set
partitioning problem. Although there are many preprocessing and probing techniques,
some of them have been chosen due to their efficiency on tightening the set partitioning
problems generated from crew pairing problems.

Duplicated columns (P1)

As commented in Section 3.1.2, a given timetable is duplicated to several consecutive
periods. This increases the ability that a group of flights could be covered (or presented)
by different pairings as shown in Figure 3.3. Costs of two pairings in the figure are
possibly different and we only need to keep one of them in the model. Consider two
columns k, l ∈ N . Generally, it is quite clear that if M k = M l and ck ≥ cl, the column
k can be removed without any change to the problem.

Determining all duplicated columns is a computational problem. Denote the maxi-
mum number of nonzeros of a column by cnz. We assume that all row and column iden-
tifications stored in columns and rows are sorted. Another easy-to-obtain assumption is
that columns are ordered lexicographically which can take the time of O(n×ln(n)×cnz)
to be done. The worst case complexity to find all duplicated columns is O(n× cnz).
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Figure 3.3: Two pairings cover the same group of flights, creating two duplicated
columns in the set partitioning model

Dominated rows (P2)

Figure 3.4 demonstrates an example of the domination of rows. Both flights f1, f2

are elements of pairings p1, p2 and p3. However, f2 is also covered by the additional
pairing p4. Since at least one of the pairings covering f1 belongs to a feasible solution,
p4 becomes redundant. We say that the constraint for f1 is dominated by that of f2

which can be removed. The idea of row domination becomes clearer when we look into
two corresponding constraints below:

f1 : x1 + x2 + x3 = 1
f2 : x1 + x2 + x3 + x4 = 1

Variable x4 of the second constraint can be set to zero. More generally, for two rows
k, l ∈M , if Nk ⊆ N l, we can set all {xj : j ∈ N l \Nk} to 0 and remove the row l.
PSfrag replacements

p1

p2

p3

p4

f1

f2

Figure 3.4: Two flights are covered by the same group of pairings. The second flight
is covered by an additional pairing p4

In order to find dominated rows, the method discussed in Borndörfer (1998) will
be used. The procedure comes from the the following idea: the set of rows which
dominates the row i is equal to

(
⋂

k:i∈J k

J k) ∩M.

The technique could be understood as a process of iteratively removing rows which
do not have the same set of pairings to the considered row. The worst case complexity
of determining all dominated rows is O(m × rnz × cnz). Note that rnz denotes the
maximum number of nonzero coefficients on a row.
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Row cliques (P3)

This preprocessing technique is mainly based on the set partitioning model. If a column
k is neighbors to every column l of a row, xk can be removed. (Two columns k, l are
neighbor to each other if Mk ∩M l 6= ∅.) The idea behind is quite simple: there is
at least one column of the row equal to 1 in a feasible solution. Thus, xk must be 0.
Given a column k, we can easily compute the set of its neighbor columns. The set is
⋃

l∈Mk N l. From this computation, we can determine columns which are neighbors to
every column of a row by intersecting neighbor sets of all columns of the row. It is
easily seen that the complexity of the mentioned procedure is O(rnz2 × cnz).

Row singleton (P4)

If a row has only one nonzero coefficient, the associated variable can be set to one.
Furthermore, other variables on rows which contain this variable can be removed from
the model. The time to compute all singleton rows and remove variables is O(m×cnz).

The preprocessing techniques also become useful for non-root problems of a branch-
and-bound tree. A preprocessing technique could be recalled after other techniques
have processed the constraint matrix. For example, if we remove some constraints, two
different columns can turn out to be the same and one could be removed due to the
column duplication. Therefore, the preprocessing will be put in front of the cutting
plane stage in the implementation.

An effective post processing technique, called reduced cost fixing should be re-
minded. Denote by z∗ the optimal value of the current linear relaxation, z the best
known feasible integer solution. If x∗

j = 0 and z ≤ z∗ +cj, variable j can be eliminated.
Fortunately, the reduced cost fixing has been implemented into ABACUS.

3.3.3 Branch-and-bound

In solving a combinatorial optimization problem by branch-and-bound, there are sev-
eral algorithmic choices which have a strong impact on the performance of computation.
Some of the most important choices are:

• Branching strategy,

• Node selection strategy.

In this thesis, a thorough study of how to branch a branch-and-bound node (node,
for short) and how to select the next open node will not be given. Many basic points in
this are addressed in the textbooks of Nemhauser and Wolsey (1988), Wolsey (1998).
One of the best surveys on search strategies is possibly the one by Linderoth and
Savelsbergh (1999).
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Branching Strategy

Linderoth and Savelsbergh (1999) classify branching strategies into two general types:
variable dichotomy and GUB dichotomy (GUB stands for generalized upper bound).
The variable dichotomy divides a node into two (possibly more) child nodes by imposing
new bounds on a variable. For example, given a variable xj with a fractional value x∗

j ,
we can branch the current node into a left node with an additional constraint xj ≤ bx∗

jc
and a right node with an additional constraint xj ≥ dx∗

je. Certainly, constraints of the
father node are also included in the child nodes. In a different way, the GUB dichotomy
pays attention to GUB constraints of the form

∑

j∈T xj = 1 (or
∑

j∈T xj ≤ 1), where
T is a subset of the column index set. If there exists a subset T ′ of T satisfying that
0 <

∑

j∈T ′ xj < 1, the GUB dichotomy uses the constraint
∑

j∈T\T ′ xj = 0 for the left
node and the constraint

∑

j∈T ′ xj = 0 for the right node.
Although ABACUS has implemented strong branching, it still requires the sup-

port from linear solvers. It will be used in computation because it is quite useful for
degenerate problems like set partitioning problems.

Some additional methods for choosing a variable to be branched have been imple-
mented. Let F be the index set of fractional variables. The implementation has the
following variable branching schemes.

• ValueTimeObjectiveCoefficient: choose j = arg maxj∈F{cj min{x∗
j , 1− x∗

j}}.

• PadbergRinaldi (Padberg and Rinaldi, 1991): this method is quite complicated,
intending to obtain two targets simultaneously: x∗

j is close to 1/2 and |cj| is large.
In order to find j, the method firstly computes two values:

L = max
j∈F
{x∗

j : x∗
j ≤ 1/2} U = min

j∈F
{x∗

j : x∗
j ≥ 1/2}.

Now, with a given parameter α ∈ [0, 1] (by default, α = 0.25), choose j =
arg maxj∈F{|cj| : (1− α)L ≤ x∗

j ≤ U + α(1− U)}.

• StrongEffect: choose j = arg maxj∈F{|N(j)|}. (Note that we denote by N(j)
the set of neighboring variables of j in the associated intersection graph.)

A GUB branching is also implemented in the branch-and-cut code. Since every set
partitioning constraint can be a candidate for GUB branching, one of them should be
chosen. In this case, the constraint with the greatest number of fractional variables is
selected. The most important advantage of the GUB dichotomy is that it is believed to
create a more balanced branch-and-bound tree. The reason is that the branching cre-
ates two similar child problems. The list of the fractional variables is sorted according
to an increasing order of their relaxation values into x∗

j1
, x∗

j2
, . . . , x∗

j|T |
. (Therefore GUB

branching is also called special ordered set (SOS) branching.) After that, we build a

set T ′ = {j2k−1 : 1 ≤ k ≤ |T |+1
2
}.

Another branching strategy which looks similar to GUB dichotomy is also investi-
gated. It is based on an idea of Ryan and Foster (1981).
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Theorem 3.3.1. If A is a zero-one matrix, and a basic solution x∗ to Ax = 1 is
fractional (i.e., at least one component of x∗ is fractional), then there exist two rows i′

and i′′ such that
0 <

∑

j:Ai′j=1,Ai′′j=1

x∗
j < 1 (3.11)

Consider a fractional variable xj′ and a row i′ containing xj′ (i.e., Ai′j′ = 1). Since
A>

i′.x
∗ = 1, there exists at least another basic column xj′′ which x∗

j′′ is fractional. It is
quite clear that two basic columns cannot be the same. Therefore, we can easily find
another row i′′ such that Ai′′j′ = 1 or Ai′′j′′ = 1, but not both. We have

1 = A>
i′.x

∗

=
∑

j:Ai′j=1 x∗
j

>
∑

j:Ai′j=1,Ai′′j=1 x∗
j

because only one of x∗
j′ and x∗

j′′ is included in the last summation. The left inequality
of (3.11) is obvious because x∗

j′ and x∗
j′′ are fractional.

From the theorem above, we can create the two following constraints, one for each
disjoint subregion:

∑

j:Ai′j=1,Ai′′j=1

xj = 0
∑

j:Ai′j=1,Ai′′j=1

xj = 1.

The meaning of the Ryan-Foster branching is clearer in the context of branch-and-
price where the method is widely used. We will go back to its details in Chapter 4.

Node Selection Strategy

A good node selection strategy should deal effectively with two goals: finding a good
feasible integer solution and proving that no solution is better than the current solution.
Linderoth and Savelsbergh (1999) divide node selection strategies into four categories:
static, estimated-based, two-phase, and backtracking.

The thesis does not go into details of enumeration strategies. A new strategy is
added to the implementation. It is called least-fractional variable first which means
to pick the node containing the least number of fractional variables first for computa-
tion. Node selection strategies provided by ABACUS will also be used in computation.
Certainly, the most popular method is best-first search in which the node with the
smallest relaxation value of z∗ will be explored first. In this manner, the method tries
to improve the global lower bound, and hence, possibly reduces the total number of
branch-and-bound nodes.

3.3.4 Cutting plane generation

Section 3.2.1 shows important discovered facets of a set partitioning polytope. But in
the implementation, only clique and odd cycle inequalities are generated. In this sec-
tion, we will go to the problem of how to generate them and lift zero-valued variables
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to make them stronger. Remember that all left hand side coefficients of these valid in-
equalities are zero-one, similar to the constraints of the original formulation. Another
point which should be remembered is that the inequalities used in the implementa-
tion are globally valid. Although general cutting planes, such as the Chvátal-Gomory
cutting planes, the lift-and-project cutting planes, have been revisited and introduced
good performance, they are locally valid. This can lead to a memory problem when
solving very large scale crew pairing problems. One good paper describing how to use
lift-and-project cutting plane in solving zero-one problems is written by Balas et al.
(1993). In another paper, Balas et al. (1996) also present a way to lift Gomory cuts to
be globally valid.

Clique Inequalities

As shown before, clique inequality is a facet of the polytope. However, separating clique
inequalities is a difficult problem (Grötschel et al., 1988). Therefore, only fast methods
of generating the same style of inequalities on complete subgraph will be discussed.

• Row-lifting (Hoffman and Padberg, 1993): The main idea of the method is start-
ing from a small complete subgraph which can be obtained easily from the con-
straints of the model. Since we want to cut off the current linear relaxation point
x∗, only fractional variables of the constraint will be used for the starting set.
Then, we try to find other fractional variables into this set. Remember that the
number of fractional variables is not very large with respect to the total number
of variables. Finally, zero-valued variables will be lifted into the set of variables.
Since there are a lot of zero-valued variables, we only choose randomly a small set
of them to be lifted. In computation, the number of randomly chosen variables
is determined based on the difference between the number of rows and the num-
ber of columns of the constraint matrix. Obviously, unless there is no fractional
variable lifted into the set, the final inequality violates x∗.

• Greedy heuristic (Borndörfer, 1998): In this method, the starting variable set
of the valid inequality comprises only one fractional variable. The method will
then try to include other fractional variables into the set. Similar to the row-
lifting, zero-valued variables will be included into the set. However, they are
computed in a different way. We find all variables neighbor to the fractional set.
In order to guarantee that they create a complete subgraph, the set of all these
zero-valued variables will be intersected with the rows to find out the maximum
cardinality set. Finally, they will be inserted into the fractional set to make the
final inequality. As remarked by Borndörfer, the fractional variables which will
be chosen as a seed of the clique is sorted according to their values. This greedy
method does not guarantee the final fractional clique violates x∗. Therefore, an
additional check is needed.

• Recursive Smallest First (Carraghan and Pardalos, 1990): This method aims at
solving the following recursive equation:
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max
Q clique in G

∑

k∈Q

x∗
k = max{ x∗

j + max
Q clique in G[N (j )]

∑

k∈Q x∗
k,

max
Q clique in G−j

∑

k∈Q

x∗
k},

(3.12)

where G[N(j)] is the graph induced from the node set N(j). The efficiency of
solving the equation depends much on the way of choosing the variable j. One
is to choose the variable which has the smallest number of incident edges in the
associated intersection graph. Since it can take an exponential number of steps
to solve 3.12, the motivation of such a choice is to reduce the number of steps.
We must have another mechanism to prevent the algorithm to run very long.
The implementation has two additional parameters α and β. If the number of
vertices of the intersection graph is less than α, a complete enumeration will be
performed. Otherwise, we turn to control the depth of the recursion by β. Note
that we choose the depth first search strategy in solving the recursive equation.
If the results of the left and right branches are the same, we should choose the
clique having a larger number of vertices.

Odd Cycle Inequalities

The inequalities can be separated in polynomial time by an so-called GLS algorithm
(Grötschel et al., 1988). The main idea of the algorithm is to transform the separation
problem to finding the shortest path on a new graph which is generated from the
intersection graph of the fractional variables. Let G = (V, E) be this intersection
graph. We construct the new bipartite graph GB as follows: the node set of GB

consists of two copies V ′ and V ′′ of V ′′; an edge u′v′′ is in GB if uv is in G.

We easily realize that a path Pu from u′ to u′′ in GB corresponds to an odd cycle
Cu in G. The weight wu′v′′ is assigned with 1− x∗

u − x∗
v. By doing so, we have

w(Cu) =
∑

u′v′′∈Pu
(1− x∗

u − x∗
v)

= |Cu| − 2
∑

u∈Cu
x∗u.

Therefore, we have the following equivalences:

w(Cu) < 1⇐⇒ |Cu| − 2
∑

u∈Cu

x∗
u < 1⇐⇒

∑

u∈Cu

x∗
u >
|Cu| − 1

2
.

This proves that an odd cycle having the weight less than 1 corresponds to a violated
odd cycle inequality. The most violated odd cycle can be found by solving the shortest
path problem on the associated graph GB. In the implementation of the algorithm,
when labelling the neighboring nodes, it is only necessary to consider labels whose
distances are less than 1. Note that, with the weight assignment above, 0 < wu′v′′ < 1.
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3.3.5 Primal heuristics

One of the difficult problems associated with the branch-and-bound approach is that
the number of nodes grows significantly. This leads not only to the memory starvation,
but also to a rather time consuming computation. In such a case, a feasible solution
is quite important to fathom nodes which cannot give a better solution. In addition,
a good integer solution can be used to fix and set variables using the reduced cost
fixing mentioned in Section 3.3.2. In the implementation, the information of linear
relaxations in the framework of branch-and-cut is reprocessed further in order to find
feasible solutions. Two LP-based primal heuristics will be discussed in this section and
used in the branch-and-cut code.

Dive-and-fix

The idea of this method is to solve the linear relaxation of an integer problem and
fix some fractional variables to suitable bounds. Certainly, if we fix variables which
are nearer to integer points, there are more possibilities that the remaining problem is
integer feasible. The method is more precisely stated in Algorithm 3.3.2.

Algorithm 3.3.2 Dive-and-fix heuristic
1: i← 1
2: repeat
3: solve the problem (LP) z∗ := min{c>x : Ax = 1, x ≥ 0} to obtain the solution

x∗.
4: if ((LP) is infeasible or unbounded) ∨ (z∗ ≥ z) then
5: break
6: else
7: sort F = {x∗

j : 0 < x∗
j < 1} in ascending order of min{x∗

j , 1− x∗
j}.

8: fix first α variables of F to their nearest integer points.
9: end if

10: i← i + 1.
11: until i > β
12: if (x∗ are integer) ∧ (z∗ < z) then
13: z ← z∗.
14: end if

Since the algorithm can take quite long time for large problems, the algorithm is
permitted to run for β loops. The dive-and-fix heuristic has many variants. A general
discussion of the method can be found in Wolsey (1998).

Near-integer-fix

It can be said that the second heuristic is also a variant of the dive-and-fix heuristic.
Instead of simply fixing fractional variables nearest to integer points, the second method
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employs a more complicated technique of choosing variables to be fixed. A main
difference between these two variants is that the near-integer-fix heuristic will not fix a
given number α of variables. It will fix all fractional variables whose integer distances
fall below a given number. The method is presented in Algorithm 3.3.3.

Algorithm 3.3.3 Near-integer-fix heuristic
1: i← 1
2: repeat
3: solve the problem (LP) z∗ := min{c>x : Ax = 1, x ≥ 0} to obtain the solution

x∗.
4: if ((LP) is infeasible or unbounded) ∨ (z∗ ≥ z) then
5: break
6: else
7: find xmin := min{x∗

j : x∗
j ≥ γ}.

8: find xmax := max{x∗
j : x∗

j ≤ 1− γ}.
9: if |xmin − xmax| ≥ γ then

10: fix {x∗
j : x∗

j < xmin} to 0.
11: fix {x∗

j : x∗
j > xmax} to 1.

12: else
13: fix {x∗

j : xmin ≤ x∗
j ≤ xmax} to 0.

14: end if
15: end if
16: until i > β
17: if (x∗ are integer) ∧ (z∗ < z) then
18: z ← z∗.
19: end if

Another change in the near-integer-fix belongs to lines 12 and 13 of the algorithm.
When the segment [xmin, xmax] is extremely small, all fractional variables which lie
within this segment will be fixed to 0. The method is quite similar to a heuristic
used by Bixby et al. (1995). The main difference between them is that the suggested
algorithm will try to fix all variables falling between [xmin, xmax] (Bixby et al. fix a
variable having the smallest index to 1). By that way of fixing, it is easier to obtain a
feasible solution because fixing a variable to 1 will have a strong propagation on other
variables.

There are still many heuristics suggested for solving set partitioning problems. Some
of them are: dual heuristics of Fisher and Kedia (1990), the dual cost perturbation
heuristic of Wedelin (1995), small set partitioning heuristic mentioned by Linderoth
et al. (2001). More discussions on heuristics used for set covering/partitioning problems
could be found in Nemhauser and Wolsey (1988).
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3.3.6 Computational results

The computing environment is set up as following. A computer with an Intel Pentium
III (Coppermine) 800 MHz processor is supplied with a memory of 500 MB. In addition
to the real memory, the computer is also supported with a swap space of 1 GB hard disk.
The system runs a Linux operating system which is tuned to perform computational
tasks only. This section will show the computational results according to the variants
of algorithmic implementation and parameters.

The most favorite compiler on Linux systems is GCC, which is a GNU compiler.
This compiler is widely used in the open source community. Although it is not opti-
mized well to a specific processor family, it now supports many computing platforms
and is being enhanced to generate better executable codes. The branch-and-cut code
is compiled by the compiler of version 2.95 with an optimization flag “-O2”. The loop
unrolling is disabled because it possibly annoys the computational performance by un-
clear effects. With the support of ABACUS, the code is implemented easily because
the skeleton of a branch-and-cut code has been done by this framework. The linear
solver in our experiment is CLP of the project COIN by IBM (more information can be
found on its web site). This LP solver supports a steepest edge pricing in two simplex
methods. It also provides a barrier method with cross-over. However, all other linear
solvers supported by ABACUS could be used as well. CLP is configured with the full
steepest edge pricing. Most researchers in operations research are quite acquainted
with CPLEX, which is a strong commercial solver for linear relaxation. Nevertheless,
since we would like to parallelize the set partitioning solver, a free linear programming
solver is preferred to CPLEX, which is too expensive to buy a license for a large number
of computers.

We will revisit the computational issues mentioned in the previous sub-sections in
context of solving set partitioning problems which are generated from crew pairing
problems. Obviously, since the thesis does not have enough space to present the com-
putational results of many combinations of the algorithmic and parametric aspects,
only some of the typical ones are taken into account in order to to show important
points of the theory and the implementation.

Three sets of test problems as shown in Table 3.1 are used in computation. The
first set comes from the well-known set published by Hoffman and Padberg (1993), and
used by many researchers to test their algorithms and implementations. They generated
this set from airline crew scheduling problems modelled as set partitioning problems.
Interestingly, many of them can be solved without branching or even cutting plane
generation phase. Since the thesis does not have enough space to present all problems,
we will only focus on some of the most difficult problems. More discussions can be
found in Hoffman and Padberg (1993), Borndörfer (1998).

The second set is produced from timetables of Vietnam Airlines which were intro-
duced in Section 2.4. The schedule table for the second set is a domestic schedule which
was operated in April 20, 2004. The original problems are transformed to set partition-
ing problems by the method presented in Section 3.1.2. There should be a remark on
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Figure 3.5: Decomposing a pairing into 3 sub-pairings

the difference between “vn320r” and “vn320”. Because of the special structure of the
flight network of Airbus 320 (see Figure 2.3(b)), a huge number of generated pairings
can overload the memory of testing computers. Most of them have the form depicted
in Figure 3.5. Also shown in the figure, we can see that the pairing can be decomposed
into 3 feasible sub-pairings whose total cost is worse than the original (because of the
cost structure of Vietnam Airlines). If the original belongs to a feasible solution, the
new solution which replaces it with the three sub-pairings is also feasible. Furthermore,
pairings like the three sub-pairings together can replace a lot of longer pairings. There-
fore, instead of generating all feasible pairings, only non-decomposable sub-pairings
are generated. After having an optimal solution, we can improve the objective cost by
merging sub-pairings. The problem “vn320r” will be used in experiments. The gener-
ation of such a reduced problem consumes more time to decompose the long pairings
and check the existence of their sub-pairings in the current set of pairings. Therefore,
do not be surprised with the higher enumeration time associated with ”vn320r”.

The third set is generated randomly from a network visualized in Figure 3.6. Basing
on the current network of the aircraft ATR 72, some connections are added between
the subsidiary airports which are likely to be opened in future. This will create more
possibilities of next flights for a crew. In order to create more realistic problems, the
data is generated from flight routes, which are paths that aircrafts will take during
a scheduling horizon (for example, day schedule, week schedule). This seems more
reasonable than creating flights randomly in the scheduling period without paying
attention to the flight routes. Observing the activities of Vietnam Airlines, the flight
routes of aircrafts are classified into 2 types: daily route and weekly route. If an
aircraft performs a daily route, it departs from a base and returns to that base the
same day. Moreover, that route is repeated almost every day of a week. Carrying out a
weekly route, an aircraft could stay far a way from its base for several days. This often
happens with long haul flights. In order to guarantee the reality of the test problems,
two types of routes are involved in which the proportion of the number of daily routes
to the number of weekly routes in schedules of Vietnam Airlines is kept unchanged.
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Four timetables generated from that flight network have a prefix “vncpp”, containing
258 flight legs each. Due to the rules and regulations of the airline, there are very
many feasible pairings. Similar to the way of choosing problems in the first test set,
only those which give fractional solutions to first linear relaxation are chosen.

Name m n nnz tenu preprocessing

n−
P1 m−

P2 n−
P2 n−

P3 m−
P4 n−

P4

aa01 823 8904 72965 - 0 206 1217 143 0 0
aa04 426 7195 52121 - 0 83 995 77 0 0
kl02 71 36699 212536 - 20157 0 0 0 0 0
nw04 36 87482 636666 - 41292 0 0 0 0 0
us01 145 1053137 13636541 - 682495 59 19624 0 0 0
*vn320 297 1755057 10137809 0:08:05 7550 0 0 0 0 0
vn320r 297 334407 1796874 0:30:01 7550 0 0 0 0 0
vn321 168 22090 121379 0:00:24 129 0 0 0 0 0
vnAT7 296 739428 4329537 0:09:36 8259 0 0 0 0 0
vncpp1 258 116533 645918 0:00:47 22829 0 0 0 0 0
vncpp2 258 110283 611870 0:00:46 19390 0 0 0 1 1
vncpp3 258 101281 560585 0:00:42 21255 0 0 0 0 0
vncpp4 258 87678 483001 0:00:37 15094 0 0 0 0 0

Table 3.1: Set partitioning test problems solved by the branch-and-cut code

Preprocessing

The preprocessing techniques only consider the set partitioning model and detect vari-
ables and constraints to be removed. However, some of them are basic variables or
nonbasic constraints which should not be removed from the model. This means that
only nonbasic variables which have been detected to be removable will actually be
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removed. For constraints, only basic ones will leave the model. The motivation be-
hind this approach is that we would like to keep the feasible basis of the last linear
relaxation. However, for the root node, the preprocessing techniques are performed
repeatedly until there are no variables or columns for removal. It is quite clear that af-
ter being preprocessed by one technique, the matrix is possibly reduced more by other
techniques. However, we can only do that with the root node (i.e., before using ABA-
CUS). ABACUS does not delete constraints and variables right after the functions
ABA SUB::removeCons() and ABA SUB::removeVars() have been called. Instead, it
performs the removals at the beginning of the next iteration of the cutting plane al-
gorithm. Therefore, the further preprocessing is too complicated to implement. With
the row clique technique, we only start with rows containing more than 1000 nonzero
coefficients. Row singleton and column singleton are not needed to be implemented
separately in user codes. ABACUS supports a function which removes fixed and set
variables.

Columns “n−
P1”, “m−

P2”, “n−
P2”, “n−

P3”, “m−
P4”, and “n−

P4” of Table 3.1 show the
reduction of the constraint matrix size after the preprocessing on the root node. Note
that “m−” stands for the number of rows removed by a method, and “n−” for the
number of columns removed by a method. Their subscripts denote corresponding pre-
processing techniques. For a problem with a large number of columns (e.g., “us01”),
the column duplication removal is quite effective. It helps remove abouthalf the num-
ber of variables. It is also the method of choice for Vietnam Airlines and randomly
generated problems. However, for such cases, the column duplication does not occur
many times although there are large numbers of columns.

In Table 3.3, we will see that the preprocessing techniques are also a little helpful in
reducing the size of the constraint matrix, presented by the columns “n−” and “m−”.
Although the set partitioning preprocessing techniques occupy the second largest per-
centage of the total time (shown in Column ”%Pre”), they do not remove many con-
straints and variables. Most constraints are removed by the row domination and the
reduced cost fixing. Note that variables fixed by the reduced cost fixing are not in-
cluded in the table. There are many removed by this technique, and the result is that
constraints which have been different turn out to be the same or dominate each other.
Then, the row domination will be more effective. The constraint elimination mode of
ABACUS is also turned on in order to keep the computer not running out of memory.

Branch-and-bound

Most branch-and-bound based solvers use a best first search as their default node
selection strategy. It is quite easy to understand because they try to reduce the gap
between global lower and upper bounds. This is also motivated by the purpose of
finding the optimal solution as soon as possible. But this target is not easily satisfied
with highly degenerated integer problems. This can make the best first search fall
into the combinatorial trap. By contrast, a heuristic approach often tends to find a
feasible (not necessarily optimal) solution as quickly as possible. Therefore, it can use
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a depth first search. A new node selection called least fractional first search which aims
at rapidly obtaining a feasible solution is implemented. This results in reducing the
memory consumption, important for dealing with very large set partitioning problems
which require long-run computations.

The least fractional first search is not a new idea. However, one of the difficult
questions associated is how to employ inherent advantages of different enumeration
strategies and how to use them together. It is quite clear that there is a tradeoff
among them. For that purpose, the implementation considers a hybrid approach in
which the least fractional first search will be turned on if the solver cannot find any
feasible solution after a given number of nodes having been solved using the best first
search. Certainly, we count from the last found feasible solution. Right after finding a
feasible solution, we switch back to the best first search. A rising problem is that it is
hard to find a solution when the incumbent is extremely near to the global optimum. If
we use the least fractional first search, we can spend much time to end the computation.
This is because the global lower bound is not improved so much with that search. In
order to overcome this phenomenon, a simple trick is used to switch backward and
forward between two search strategies. A switching is only done if a strategy fails to
find a solution within a controlled number of the main branch-and-bound loop.

Name BestFirst LeastFractionalFirst Hybrid
B&B topt ttotal B&B topt ttotal B&B topt ttotal

aa01 811 1:50:46 1:55:21 685 0:15:58 1:22:08 1285 1:03:11 2:45:44
aa04 2303 3:08:12 3:10:36 3549 1:32:40 2:07:49 2097 0:54:58 2:02:26
kl02 463 0:03:38 0:10:04 1631 0:02:04 0:23:22 533 0:03:40 0:10:47
nw04 405 0:02:45 0:44:32 297 0:02:45 0:31:17 359 0:02:45 0:37:35
us01 15 0:46:05 0:51:14 17 0:44:44 0:46:56 15 0:46:04 0:51:14
vn320r 1 0:14:28 0:14:28 - - - - - -
vn321 1 0:01:07 0:01:07 - - - - - -
vnAT7 1 0:07:43 0:07:43 - - - - - -
vncpp1 101 0:13:53 0:17:05 427 0:04:46 0:50:34 103 0:14:02 0:16:49
vncpp2 25 0:19:37 0:21:45 25 0:19:39 0:21:46 25 0:20:01 0:22:08
vncpp3 229 0:34:54 0:48:38 621 0:48:24 1:04:03 417 0:55:22 1:05:52
vncpp4 715 0:39:53 1:09:17 877 0:04:23 1:11:56 715 0:11:30 1:06:12

Table 3.2: Branch-and-bound enumeration strategies

In Table 3.2, column “B&B” supplies the total numbers of the branch-and-bound
nodes when comparing different kinds of enumerations: best first, least fractional first
and hybrid. The Vietnam Airlines problems are shown once in the table because they
need only one branch-and-bound node to reach optimality. If we drop other parts (e.g.,
heuristics, cutting plane generation) out of the code, the least fractional first search
would give a greatest value of “B&B”, and the best first search a smallest value of
it (as shown in row “aa04”). The most important column is “topt” which shows the
elapsed time to find the optimal solution. As expected, the hybrid approach finds out
the optimal solutions faster than the best first approach does for the first test set. We
can see in column “ttotal” that the hybrid approach delivers a good performance as
a whole. Unfortunately, this does not often happen for the third set. More running
statistics of three enumeration strategies can be found in Table 3.3.
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About the branching strategies discussed before, the Padberg-Rinaldi branching
strategy presents the best performance. This comes from many experimental compu-
tations under a certain number of combinations of node selection strategies, prepro-
cessing heuristics, cutting plane generation, etc. Therefore, this branching strategy is
used for all computations in this chapter. In addition, the strong branching is employed
with 10 variable candidates to be tested. Although CLP supplies a strong branching
function, a general approach supplied by ABACUS is preferred in the implementation.
There are 50 iterations for linear relaxation by a dual simplex method. The candidates
are also selected upon the given branching rule (namely, Padberg-Rinaldi).

Primal heuristics

Since two methods implemented in the branch-and-cut code are based on the dive-
and-fix principle, they are most helpful in the early branch-and-bound nodes which
are still easily feasible if we fix some variables to their bounds. In the near-integer-fix,
we choose γ = 10−2 and the maximum number β of iterations in both methods is set
to 100. Since being long run processes, they are not called regularly for every node.
Instead, they will be called at branch-and-bound nodes whose depth levels are equal
to 1 (mod 4).

Columns “DaF” and “NIT” in Table 3.3 provide us with the numbers of feasible
solutions found by the heuristics: dive-and-fix and near-int-fix, respectively. The first
almost cannot present any solution. However, the second is quite helpful. This is likely
due to the fact that fixing variables within a range is better (more feasible) than fixing
a pre-specified number of variables. In all cases, the heuristics found out a half of the
total number of all feasible solutions which have been found throughout the runs.

Cutting plane generation

In each iteration of the cutting plane phase, many violated inequalities are generated,
but all should not be included into the current model. We choose a logical approach
to select ones which violate the linear relaxation point x∗ mostly. To do that, all
algorithms for generating clique and odd cycle inequalities are performed to create a
set of potential inequalities. Algorithms which can separate many violated inequalities,
such as the row-lifting, greedy and GLS algorithms are controlled to produce a limited
number of inequalities. We set this number to 5 for each separation iteration. Certainly,
for the recursive smallest first algorithm which consumes an exponential computation
time for optimality, we should limit the execution by setting α = 16 and β = 4.
Although the arrangement of generating many cutting planes and choosing only few
of them spend a lot of the CPU time, this way helps generate stronger inequalities.
Furthermore, the pool separation is applied before calling the cutting plane separation.
Note that all used cutting planes are global.

Columns “clique” and “odd cycle” in Table 3.3 give us experimental results obtained
from the execution of the branch-and-cut code using the default strategy. Row-lifting
and greedy algorithms generate many clique inequalities as expected. The numbers
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of the clique inequalities generated by the row-lifting, greedy, and RSF algorithms are
presented in the columns “RF”, “GR” and “RSF” respectively. Only RSF gives a small
number of cutting planes. However, it is quite easy to tune RSF to an exact search
by controlling its two parameters α and β. However, one should remember that large
values for α or β will be computationally expensive. One thing should be commented
on the column “m+” of the table. The implementation mentioned in the previous
paragraph makes it easy to understand why few cutting planes are really added to
the integer models. We only choose most violated inequalities. The separation time
takes only a small part of the total computation time (presented in the column “%Sep”
by percentage). The code only spends much time in the separation step for problem
“kl02”. This is explained by the large number of variables in comparison with the
number of constraints. This will bear strongly on algorithms which try to lift zero-
valued variables into core inequalities (namely, row-lifting and greedy). An opposite
outcome occurs with problems “aa01” and “aa04” which have many constraints but
not such a large number of variables.

The same phenomenon also occurs with Vietnam Airlines test problems and ran-
domly generated problems. Most of computation time is used for the linear relaxation
and preprocessing phases.

Other aspects

An LP-based branch-and-bound code spends much time in computing linear relax-
ations. This also happens in our case in which column “%Lp” of Table 3.3 shows a
large percentage of computation time involved in CLP solver, especially for the prob-
lem “aa01”. Since the thesis does not go into details of linear programming, only
default settings of the linear solver are used. Certainly, ABACUS provides a support
of fast re-optimization (also called “warm start”) and sets the dual simplex method
to the linear solver by default. (Note that the dual simplex is suitable for a branch-
and-cut code.) However, the computation time still depends strongly on the linear
solver itself. It is expected that a commercial LP solver, such as CPLEX, XPRESS
will deliver a much better performance. Another approach to enhance the linear re-
laxation time is to implement a special solver for the linear programming problem of
the set partitioning model. This approach is mentioned by Hu and Johnson (1999)
and implemented in a set partitioning solver of Linderoth et al. (2001). The Volume
algorithm suggested by Barahona and Anbil (2000) is also a choice as a good solver for
this kind of difficulty.

Note that, the linear programming time shown by ABACUS is not only due to the
linear relaxation, but also the time required to set up linear programming problems.
The sparse constraint matrix is not stored directly in a data structure which is preferred
by the LP solver. It is built from the set of active variables and constraints as governed
by ABACUS. Moreover as mentioned in the data structure section, we must store the
matrix in a sparse format to save memory. ABACUS will restore its format before
transferring the data to a linear solver. Due to the design which supports several
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solvers, ABACUS spends much time to do such a task. A special design for a specific
solver could improve much computation time (Borndörfer, 1998, Part II). The time
for the linear initialization is quite high with large size test problems, such as “nw04”,
“us01”, and Vietnam Airlines test problems. In such cases, it takes about half of
“%Lp”. (Note that the linear relaxation time and linear initialization time are not
shown separately in the table.)

Another overhead is due to other auxiliary parts of the branch-and-cut code. It can
cost from 10 to 20 percent of the total computation time. With test problems having
a large number of variables, this miscellaneous time increases noticeably. Below is the
list of important parameters which are set to ABACUS.

branching padberg-rinaldi (α = 0.25)
NBranchingVariableCandidates 10
pool separation yes
MaxConAdd 1
MaxIterations 20
TailOffNLps 5
FixSetByRedCost yes
VariableEliminationMode ReducedCost

ConstraintEliminationMode yes
EliminateFixedSet yes
EliminateFixedSet yes

One unsolved big problem relates to memory capacity. If we increase the number
of flight legs to more than 300, the branch-and-cut code will overload the available
computer memory. If we want to solve a bigger crew pairing problem, we should
consider a new effective storage method (e.g., to compress the data). One solution for
this problem is to use a heuristic approach mentioned in Section 2.3.1. If we understand
more about the characteristics of a specific crew pairing problem, it is easier to create
a heuristic to replace current pairings by new ones to avoid local optima. Another way
is to use a different approach which will be discussed in the next chapters. However,
the branch-and-cut approach is quite helpful to solve small and medium crew pairing
problems to optimality. Using a general framework, the set partitioning solver with
the selected good algorithmic features can give a quite good performance.
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Name z B&B Lp clique odd m+ n− m− heuristics time
RL GR RSF cycle DaF NIF %Pre %Sep %Heu %Bra %Lp ttotal

aa01 56137 143 686 673 561 5 640 549 603 413 0 3 8.33 1.13 18.67 1.60 70.34 0:17:13
aa04 26374 303 1180 801 655 24 839 955 844 408 0 3 10.49 1.91 13.95 2.07 71.63 0:16:59
kl02 219 21 73 223 84 19 248 62 0 0 1 1 41.85 1.22 5.44 1.54 46.53 0:03:41
nw04 16862 105 446 969 577 162 76 341 0 3 1 1 25.26 26.86 5.68 0.55 31.97 0:12:29
us01 10036 9 65 300 167 49 157 60 0 0 0 0 13.40 4.46 5.87 0.90 59.97 1:10:12
*vn320r 66700 1 1 0 0 0 0 0 0 0 0 0 17.15 0.00 0.00 0.00 67.17 0:14:28
vn321 38870 1 1 0 0 0 0 0 0 0 0 0 77.38 0.00 0.00 0.00 13.41 0:01:09
vnAT7 22260 1 1 0 0 0 0 0 0 0 0 0 11.04 0.00 0.00 0.00 67.56 0:18:59
vncpp1 500943 17 44 132 68 9 179 35 0 0 0 0 35.29 1.21 2.38 1.23 53.69 0:10:00
vncpp2 697445 3 20 61 57 0 84 17 5 39 0 1 23.77 0.86 23.57 0.29 42.70 0:06:26
vncpp3 494154 13 39 149 57 0 165 30 392 60 0 1 35.77 1.11 3.48 0.94 51.83 0:08:03
vncpp4 506006 101 323 276 208 15 257 224 7328 983 0 3 12.60 0.77 14.49 2.08 67.49 0:39:06

aa01 56137 157 834 659 624 26 585 677 267 145 0 1 6.75 1.58 11.03 1.83 78.37 0:12:48
aa04 26374 691 3025 1998 1159 22 2332 2336 742 415 0 3 8.62 3.41 10.76 2.14 74.01 0:25:16
kl02 219 11 38 131 55 7 159 29 466 10 0 0 46.11 1.24 2.85 1.14 40.66 0:01:52
nw04 16862 223 1163 2870 1685 479 94 940 95 5 1 1 16.18 45.03 4.71 0.30 23.80 0:23:42
us01 10036 13 90 357 183 58 223 77 362 5 0 1 13.14 5.61 6.04 0.74 58.47 1:12:26
vncpp1 500943 31 69 201 116 15 260 52 280 170 0 2 20.71 1.36 20.42 1.32 51.27 0:13:49
vncpp2 697445 3 20 61 57 0 84 17 5 39 0 1 19.57 0.71 33.54 0.33 38.57 0:07:47
vncpp3 494154 31 77 187 86 9 193 50 1238 381 0 3 16.12 0.87 16.02 1.89 61.23 0:13:55
vncpp4 506006 165 451 276 221 20 248 286 3005 971 0 0 3.98 0.67 9.06 2.42 81.33 0:43:42

aa01 56137 157 834 659 624 26 585 677 267 145 0 1 6.81 1.56 10.98 1.84 78.36 0:12:43
aa04 26374 691 3025 1998 1159 22 2332 2336 742 415 0 3 8.67 3.40 10.67 2.14 74.07 0:25:09
kl02 219 11 38 131 55 7 159 29 466 10 0 0 46.11 1.24 2.83 1.18 40.79 0:01:52
nw04 16862 223 1163 2870 1685 479 94 940 95 5 1 1 16.27 44.99 4.70 0.30 23.77 0:23:35
us01 10036 13 90 357 183 58 223 77 362 5 0 1 13.07 5.65 6.11 0.74 58.44 1:12:34
vncpp1 500943 17 43 181 117 12 190 34 70 16 0 2 27.65 1.16 19.50 1.02 45.36 0:11:34
vncpp2 697445 3 20 61 57 0 84 17 5 39 0 1 19.68 0.71 33.32 0.32 38.66 0:07:44
vncpp3 494154 19 50 194 98 3 178 40 0 0 0 1 24.37 1.06 8.78 1.89 60.20 0:11:42
vncpp4 506006 101 324 276 208 15 257 225 7328 983 0 3 12.59 0.76 14.47 2.09 67.81 0:39:08

Table 3.3: Computational results of the branch-and-cut code with default strategy
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Chapter 4

A Branch-and-Price Approach

In the previous chapter, we have been faced with the difficulty of having a very large
number of variables. Although the integer programs (set partitioning problems in this
case) can be solved with a few number of branch-and-cut nodes, it is not efficient to
keep all variables in memory. In this chapter, we will consider a different approach
which is based on a method that generates dynamically variables as needed. The
method is called column generation. As implied in its name, the method deals with
linear programming problems in which a large number of columns are listed implicitly
and are generated on demand.

Column generation was originally suggested by Ford and Fulkerson (1958) for the
multi-commodity flow problem. In 1960, Dantzig and Wolfe applied it to problems
which are decomposed from more difficult integer linear programming problems. If
problems can be partitioned into “hard” and “easy” sets of constraints, Dantzig-Wolfe
decomposition is a suitable solution. Gilmore and Gomory (1961) used a similar idea
to solve the cutting stock problem successfully. In recent decades, column generation is
widely used in combinatorial optimization, especially in routing and scheduling prob-
lems which often have a huge number of variables in practical applications. Desrosiers
et al. (1984) combined branch-and-bound and column generation to solve the vehicle
routing problem with time windows. The combination is called branch-and-price by
Savelsberg. Barnhart et al. (1998) give us a good introduction on branch-and-price and
its techniques to deal with integer programs. Another survey is presented by Desrosiers
et al. (1995) in which they focus on methods for solving the subproblems which are
decomposed from the main problem.

4.1 Column Generation Method

Many combinatorial optimization problems can be easily transformed to integer linear
programs which consist of a large number of variables. The set partitioning and set
covering models can be the result of those transformations mentioned in Chapter 3.
Dantzig-Wolfe decomposition also results in problems containing a large number of
variables which is proven to give a stronger bound than the original model. This is

64



quite important to use within a branch-and-bound framework because the increase
of dual bounds (in minimization problems) is accelerated. Another possible reason
for using such models is that they can break the symmetry which often happens in
compact formulations, and is an origin of the poor performance of numerical algorithms.
Working directly with a large set of variables is not, in many cases, a clever approach.
Instead, the column generation phase is only performed when needed. This reduces the
memory usage in order to solve very large problems. A column generation approach
decomposes the problem into a master problem and a pricing subproblem. In many
cases, the pricing subproblem turns out to be easily solved due to its special structure.
For example, the subproblem of the cutting stock problem is the famous knapsack
problem. Any additional set of complex constraints from real world applications can be
embedded easily. This will be seen in the process of solving the crew pairing problem
discussed later. Moreover, it is more convenient to attack a separate pricing subproblem
by different methods or techniques.

4.1.1 Column generation for linear programs

Consider the linear programming problem

z∗MP = min c>x
s.t. Ax = b

x ≥ 0,
(4.1)(MP)

which shall be called the master problem. Similar to notations in Chapter 1, let M
and N be the index set of constraints and variables, respectively. In our context, we
assume that N is so large that it needs to be handled by column generation. At iterate
k, column generation works only on a subset of variables (also called “active” set of
variables). We denote its index set by N k ⊆ N . The linear programming problem
associated with this subset is called the restricted master problem as following

z∗kRMP = min c>NkxNk

s.t. ANkxNk = b
xNk ≥ 0.

(4.2)(RMP)k

It can be thought as derived by setting the other variables of (MP) to zero. In
the revised simplex method, at each iteration, the method tries to find a variable to
enter the current basis. In a similar behavior, a column generation method prices out
a variable with a negative reduced cost. The only difference of column generation is
that the pricing step is now modelled as an optimization problem:

rk = arg min cj − u∗k>A.j,
j ∈ N

(4.3)(PR)k

where u∗k is the solution of the associated dual program of (RMP)k. Rather than
examining each index j separately, we can treat all indices in N implicitly if (PR) can
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be modelled as a special problem. It is quite obvious that the optimal primal basis of
the restricted problem is also primal feasible to the master problem. Therefore, after
adding the new variable r into (RMP), we can continue to solve it quickly by a primal
simplex method. Remember that the “warm start” technique depends strongly on a
real implementation of the simplex method. A standard column generation method is
outlined in Algorithm 4.1.1.

Algorithm 4.1.1 A standard column generation method

1: Find an initial index column set N 0 for the restricted master problem which must
be feasible.
k ← 0.

2: Solve the (RMP)k.
3: Solve the pricing subproblem (PR)k.

4: if c̄rk = crk − u∗k>A.rk < 0 then
5: Nk+1 ← Nk ∪ {rk}.
6: k ← k + 1. Then go to 2.
7: end if

The finite termination of the algorithm is easily seen due to the finite set N of
variables and the finite termination in solving (RMP)k. The column generation method
will stop if it guarantees that all columns have been priced out correctly. This means
that there is no variable having negative reduced cost (in a minimization problem).
When this criterion is satisfied, the final dual solution u∗ is also the dual solution of
the master problem. Then, (x∗, u∗) is also the optimal solution of the master problem.

4.1.2 Dantzig-Wolfe decomposition principle

Matrices of large scale problems often show some special structures. For example,
their sub-matrices possibly correspond to particular problems which are easier to solve.
They are the target of decomposition methods which often try to decouple constraints
or fix variables in order to obtain independent problems that can be dealt by certain
specialized algorithms. Dantzig-Wolfe (1960) suggested a method to decompose the
original problem in primal form.

Consider a (IP) as defined in Chapter 1 in which fractional variables are dropped
out of the model. Suppose that the set of constraints of the problem can be split into
2 groups: one of “easy” constraints and one of “hard” constraints as follows:

zIP = min c>x
s.t. A1x = b1

A2x = b2

x ∈ � n
+.

(4.4)(IP)

Note that the easiness of these constraints means that a problem with only these
constraints can be solved easily due to its special structure. Assume A1 = b1 are “easy”
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constraints, and A2x = b2 are “hard” constraints. Let W = � n
+∩{x : A2x = b2}. Then

we can rewrite (4.4) as

min c>x
s.t. A1x = b1

x ∈ W.
(4.5)

If W is bounded, we can easily seen that W can be represented by a finite set of
points, say W = {xl : l ∈ L}. This is the basic idea of Dantzig-Wolfe decomposition. If
W is unbounded, a result of Minkowski and Weyl (see Nemhauser and Wolsey (1988))
says that conv(W ) is a polyhedron presented by a convex combination of a finite set of
points and a linear combination of a finite set of rays. Therefore, a column generation
form is still possible even if W is unbounded. More details can be found in Vanderbeck
(1994), Goldfarb and Todd (1989). For simplicity, we only consider a bounded and
nonempty W because this is the case in crew pairing problems. Then, any point
x ∈ W can be represented by a convex combination of {xl} as

x =
∑

l∈L

αlx
l,

such that
∑

l∈L αl = 1 and
αl ∈ {0, 1}, l ∈ L

Dantzig-Wolfe decomposition applies this transformation to the program (4.5) to
form the problem

min c>(
∑

l∈L αlx
l)

s.t. A1(
∑

l∈L αlx
l) = b1

∑

l∈L αl = 1
αl ∈ {0, 1}, l ∈ L

(4.6)

Problem (4.6) is also called the column generation form of the master problem (IP).
In the new problem, the “hard” constraints have been removed. However, this way of
decomposition presents the problem with a huge number of variables since the polytope
W can have a lot of points. After dropping the integrality condition of (4.6), we
obtain its linear relaxation which is preferably solved by a column generation method.
Let u be dual variables associated with the matrix A1, v be the dual variable of the
convexity constraint. After solving the associated restricted master problem of (4.6),
the corresponding pricing subproblem of finding the least reduced cost in the column
generation framework is

r = arg min c>xl − (u∗>A1xl + v∗).
l ∈ L

(4.7)

For a dual solution (u∗, v∗), a column of the form

(

Axr

1

)

which has a negative

reduced cost will be added to the restricted master problem.
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In a branch-and-bound framework, we often pay attention to the relaxation of
integer programs. In our case, instead of working directly with W , we often study its
convex hull conv(W ). Therefore, another relaxation of (4.4) is as follows:

z∗DZLP = min c>x
s.t. A1x = b1

x ∈ conv(W ).
(4.8)(DZLP)

Denote the optimal value of a linear problem obtained from (4.4) by dropping all
integral conditions by z∗LP. It is easily seen that

zIP ≤ z∗DZLP ≤ z∗LP.

This is due to the increasing feasible region size of the corresponding problems from
left to right. This conclusion was presented by Geoffrion (1974) and also reclaims the
reason why sometimes models with a large number of variables are preferred.

4.1.3 Branching

The idea of branch-and-price is complementary to that of branch-and-cut. Instead
of generating rows to tighten a linear programming mode, branch-and-price produces
columns to cut off the current optimal point of the restricted master problem. It
easily happens that the feasible solution of the last relaxation is not feasible to the
original integer programming problem. Therefore, when the optimum of the linear
programming relaxation is reached, a further branching is possibly required for integer
variables. The main difficulty lies in the branching phase. Other computational issues
are discussed in more details in the work of Barnhart et al. (1998). In this thesis, they
will be presented in the implementation.

Assume the column generation step has finished with a solution x∗ to the relaxation
of (4.4). A variable branching strategy will choose a variable, say xi, to be branched
to two branch-and-bound nodes:

xi ≤ bx∗
i c and xi ≥ dx∗

i e.

The branching constraints must be moved into the pricing subproblem. For exam-
ple, the pricing subproblem for the left node is:

min c>xl − (u∗>A1xl + v∗).
s.t. l ∈ L

xl
i ≤ bx∗

i c.
(4.9)

Another approach is to branch a variable of the column generation formulation of
the integer program. That means we force a fractional αl to be an integer (0 or 1).
However, with any kind of branching mentioned above, the structure of the pricing
subproblem is broken. Remember that the pricing subproblem of most optimization
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problems using column generation often is a network problem. Fixing a variable is not
easily translated into the network.

Theorem 3.3.1 gives a solution to the rising problem above. Although the theorem
was suggested in the context of set partitioning problems, it turns out to be effective
in this area, especially for optimization problems which can be either formulated as or
decomposed to a set partitioning problem. Remember the pair of branching constraints:

∑

j:Ai′j=1,Ai′′j=1

xj = 0 and
∑

j:Ai′j=1,Ai′′j=1

xj = 1.

They have a meaning that is quite interesting in the context of column generation.
The main idea behind the branching is a co-relation between two rows i′ and i′′. When
we use the set partitioning formulation to model a problem as mentioned in Chapter 3,
rows correspond to elements of the ground set. In the network form of the pricing
subproblem, the vertex set of its associated graph is also the ground set in the original
model. In this case, a relation between two vertices is more natural and easier to be
embedded into the graph. Now, we will consider in more details two generated branch-
and-bound nodes. On the right node, there are only feasible columns which must have
Ai′j = Ai′′j = 0 or Ai′j = Ai′′j = 1. In other words, two rows i′ and i′′ stay together in
the set partitioning problem of the right node. Meanwhile, the left node only contains
feasible columns which have Ai′j = Ai′′j = 0 or Ai′j = 0, Ai′′j = 1 or Ai′j = 1, Ai′′j = 0.
This means that the two rows are disjoint in the integer program of the left node. We
see that the branching constraints have been embedded reasonably into child branch-
and-bound nodes. This is an advantage of the Ryan-Foster branching method when
being used with column generation.

4.2 Pricing Subproblem in Crew Pairing Problem

In order to solve the crew pairing problem, the branch-and-price approach discussed
in this chapter employs the column generation idea to deal with a large number of
feasible pairings which is a real difficulty to the branch-and-cut approach. To solve the
relaxation of a branch-and-bound node, the branch-and-price approach decomposes
the relaxed master problem into a restricted master problem containing a subset of all
feasible variables

min c>NkxNk

s.t. ANkxNk = e
xNk ≥ 0,

(4.10)

and a pricing subproblem

min cj − u∗k>A.j

s.t. j ∈ N,
(4.11)

Note that the variables in the master problem correspond to pairings and the set
partitioning constraints correspond to flights. The purpose of the pricing step is to

69



find negative reduced cost columns if they exist or to prove that there are no such
columns. In the context of solving the crew pairing problem, it can be modelled as a
shortest path problem with side constraints coming from the rules and regulations of
airlines. Remember that this is true if we assume that the cost function is additive. It
is the case when the cost of pairings is the sum of the non-negative cost of individual
flights and the cost of resting times between flights.

In the case study of Vietnam Airlines, a suitable graph is created as follows. The
vertex set V consists of all flights in the intended scheduling period. Note that, because
the schedule is the same for following periods and the duration of a pairing is limited
within a maximum number of days, additional vertices are needed for several following
periods in order to cover all possible pairings. Two vertices fi′ and fi′′ are connected
if the arrival airport of fi′ is the same as the departure airport of fi′′ and if the take-
off time of fi′′ exceeds the landing time of fi′ by at least a given so-called minimum
ground time. We clearly obtain an acyclic directed graph. Denote the cost between
the two flights by di′i′′ . It is easy to transform the cost of a flight into the cost of its
outgoing arcs in order to consider only arc costs. The cost of an arc (fi′ , fi′′) now is
di′i′′ − u∗k

i′ as depicted in Figure 4.1. Note that the flight fi′ is associated with the
dual variable uk

i′ of the i′-th constraint. We create two additional vertices (called
super source and super target) and then connect all vertices corresponding to flights
departing from a given base to the super source and all vertices of flights arriving at
that base to the super target. All these arcs are assigned costs as shown in the figure.
Then, our pricing problem basically amounts to solving a shortest path problem on the
acyclic graph with side constraints. The time involved in this step almost dominates
the total computation time in many practical experiments. We will see this difficulty
in computational results presented later.

0

super targetsuper source

PSfrag replacements

fi′ fi′′

−u∗
i′′

di′i′′ − u∗k
i′

Figure 4.1: The network model of the pricing subproblem

A method for the pricing subproblem should work efficiently with the set of side
constraints which can be extremely complicated and are changed over time. These
side constraints are presented implicitly by N in (4.11). Widely-used methods which
differ in their way of dealing with side constraints can fall into one of the four general
categories below:

• Resource constrained shortest path problem,

• K shortest paths problem,
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• Constraint programming,

• Hybrid approach.

In the next sub-sections, we will consider each method in order to find out those
suitable for the considered crew pairing problems, especially the Vietnam Airlines case.

4.2.1 The resource constrained shortest path problem

This method is well-known in the context of column generation. It has been used
successfully in solving various routing and scheduling problems. By its name, the
resource constrained shortest path problem is an extension to the traditional shortest
path problem with side constraints attached. From the complexity point of view, the
shortest path problem can be solved in polynomial time, for example by using the
well-known Dijkstra algorithm. But, the resource constrained shortest path problem
is much harder due to the introduction of side constraints. With only one additive
constraint, it turns out to be an NP-complete problem (see Handler and Zang, 1980).

Definition 4.2.1. Given a directed graph G = (V, A), a source node s and a target
node t. A feasible path is constrained by a set of resource limits {U r : r ∈ R}. Each
edge (i, j) has a cost cij and a path passing it uses an amount of resource ur

ij for
the resource r. Cost and resource consumptions are assumed to be non-negative and
additive along paths. The resource constrained shortest path problem is defined to find
a least cost path from s to t obeying the resource constraints.

Time constrained routing and scheduling is one of the special applications of the
resource constraint shortest path problem. In this area, an excellent description of
algorithms and their applications can be found in Desrosiers et al. (1995). Different
approaches towards the problem are also presented in Handler and Zang (1980).

Similar to algorithms for the shortest path problem, those for the resource con-
strained shortest path problem usually apply the idea of labelling (dynamic program-
ming). Moreover, before expanding a path, all given resource constraints are checked
to guarantee validity of the path. Therefore, the algorithm must keep track of resource
usage while creating labels for vertices. Note that there are often many labels from s
to each vertex because there is no guarantee that the best cost label among them will
be feasible at the end. That is the reason why the algorithms sometimes are called
multi-labelling algorithms.

It is obvious that the number of labels grow significantly from vertex to vertex.
Therefore, a mechanism to remove redundant labels should be performed. Consider
two labels l1 and l2 on a vertex v whose usage of resource r are lr1 and lr2, respectively.
Costs for each label are c1 and c2. If c1 ≤ c2, and lr1 ≤ lr2, we say l1 dominates over l2 on
resource r. This means that we can remove dominated labels without impact on the
optimal solution. However, there is a set of resource constraints. Hence, we can only
remove label l2 if c1 ≤ c2 and lr1 ≤ lr2, for all r ∈ R. It can be said that determining
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Algorithm 4.2.1 A simple forward dynamic programming algorithm

1: L1 ← {(0, 0)}.
2: for all i = 2→ |V | do
3: for all (i, j) ∈ A do
4: for all (c, lR) ∈ Li do
5: if ( lR + uR

ij ≤ UR ) ∧
( (c + cij, l

R + uR
ij) not dominated by any label in Lj ) then

6: Remove all labels in Lj dominated by (c + cij, l
R + uR

ij).
7: Lj ← Lj ∪ {(c + cij, l

R + uR
ij)}

8: end if
9: end for

10: end for
11: end for

whether a label is dominated by another label depends strongly on a specific set of side
constraints.

A simple forward recursive algorithm for the resource constrained shortest path
problem is introduced in Algorithm 4.2.1. Assume an acyclic directed graph G = (V, A)
modelling the pricing subproblem of a crew pairing problem. The vertices can be easily
put into a partial order. In the algorithm, we denote by Li the set of labels on vertex
i. A label in Li is a pair of the resource usage vector and the cost from s to i. There
are several techniques to improve the performance of the resource constrained shortest
path algorithm:

• Pulling technique (Desrochers and Soumis, 1988): Because most label algorithms
use a forward recursive procedure such as the one shown in Algorithm 4.2.1, which
updates the label list on the successors of the current vertex. The list will be
modified several times because there are several incoming adjacent vertices. The
pulling technique only updates the list of a vertex once by considering all its
predecessors.

• Pre-optimization on resources: the process finds the minimal usage tr
i of resource

r from every vertex i to t. This can be done by solving several shortest path prob-
lems which consider the resource consumption as arc cost. By this way, a label
on vertex i can be removed if lr + tri > U r for some r. The early pruning of labels
can help reduce the memory usage and improve the performance significantly.

A problem that makes the resource constrained shortest path approach too difficult
to apply for the crew pairing problem relates to the requirement of the additive property
of resource consumption. Many resource kinds cannot be presented as or modified to
an additive function. A limiting factor also comes from the fact that the algorithms
for this problem only finds an optimal path. Therefore, if the best path turns out
to be infeasible to non-additive constraints, we will have no information to find other
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alternative paths quickly. The algorithms are only helpful if all side constraints are
additive, which rarely happens.

4.2.2 K shortest paths problem

It is considered as a generalization of the shortest path problem, in which not one but
several paths are generated.

Definition 4.2.2. Given a direct graph G = (V, A), and a given number k. Each arc
(i, j) has a cost cij. Then the k shortest paths problem is to find k shortest paths in
the graph from a source to a target.

Since algorithms for the problem can produce many paths, we have more candidates
for checking the feasibility of a path. If the shortest path is infeasible to some side
constraints, the second, the third, or so forth can be used instead. Therefore the
idea to employ the k shortest paths problem into solving the pricing subproblem is
to temporarily forget side constraints and to find k shortest paths. These paths are
ranked with respect to their costs. After that, all side constraints will be considered to
check the feasibility of the paths. By doing so, we can easily deal with not only non-
additive constraints, which cannot be overcome by the resource constrained shortest
path approach, but also more complicated airlines constraints. One application of
this approach can be found in the Carmen systems. Similar to the shortest path
problem, the k shortest paths problem has also been well studied. One of the recent
breakthroughs in computational complexity was presented by Eppstein (1998). In the
paper, the author also gives a brief description of related works to solve the problem.

The k shortest paths algorithm presented by Jimenéz and Marzal (1999) is used to
find k shortest paths for the side constraint checking. The idea behind the algorithm
is to solve a set of recursive equations, which generalize the Bellman equations for the
single shortest path problem. Denote by Lk(v) the length of the k-th shortest path
from s to v, and by πk(v) the path itself. The notation L(π) means the length of the
path π. The set of equations is presented as follows:

Lk(v) =

{

0 if k = 1 and v = s
minπ∈Ck(v) L(π) otherwise

πk(v) =

{

s if k = 1 and v = s
arg minπ∈Ck(v) L(π) otherwise.

(4.12)

Ck(v) is the set of possible paths for choosing the k-th shortest path from s to v
and is computed as follows:

Ck(v) =

{

{π1(u).v : u ∈ Γ−1(v)} if k = 1, v 6= s or k = 2, v = s
({Ck−1(v) \ {πk′

(u).v}) ∪ {πk′+1(u).v} otherwise (πk−1(v) = πk′
(u).v).

(4.13)
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The so-called recursive enumeration algorithm merely reduces the candidate set
Ck(v) to obtain the set for the (k + 1)-th shortest path. The algorithm, with the
support of special data structures, has the complexity of O(m+kn log(m/n)) after the
shortest path from s to every vertex has been produced.

Although bypassing the obstacle of complex constraints, the k shortest path ap-
proach now faces a different problem. It seems that generally there is no method to
determine which k to guarantee that there exists at least one feasible path in the k
shortest paths that have been found. If one of the k paths is feasible, we make sure
that a shortest feasible path has been found. If not, another exact method must be
applied to determine the shortest feasible path.

4.2.3 Constraint logic programming

As mentioned in Sections 4.2.1, 4.2.2, the main difficulty in airline crew scheduling
problems (crew pairing problem and crew rostering problem) is to deal with a set of
many complicated rules and regulations. In the resource constrained shortest path ap-
proach, we must have additive constraints or must model rules as additive constraints.
Furthermore, embedding rules into flight networks is a hard task in terms of program-
ming and the design of an implementation must be thought about carefully beforehand
in order to avoid the problem of adding new rules. As mentioned in Section 4.3.3, it
is inefficient and hard to bring an ordinary variable branching strategy into a branch-
and-price framework because the variable fixings will break the special structure of the
pricing subproblem. In the k shortest paths approach, we must determine k in order to
include at least one feasible path in a set of k shortest paths. In both cases, these trou-
bles will lead to poor performance or lack of memory. Constraint logic programming
(CLP) comes into play with an ability to present these rules quickly and easily.

Clearly, it is more comfortable to use the declarative programming model of con-
straint programming to represent airline rules, such as one supported in Prolog. Let
Fb be a flight set that is to be scheduled in an intended schedule period. Because the
schedule is the same for next periods and the duration of a pairing is limited within a
maximum number of days, we repeat F b = {f b

1 , . . . , f
b
|Fb|} several next periods so that

all possible pairings will be covered, obtaining a new flight set F = {f1, . . . , f|F|}. This
set will be used as a base domain for flight variables. We use a tuple P = (x1, . . . , x|P |)
to present a pairing variable. In such a case, a flight variable xi ∈ F , except that
x1 ∈ F b because the first flight must be within the schedule period. With these nota-
tions, we can easily present all airline rules. This is also one of the modelling approaches
to apply CLP into solving the pricing subproblem.

For example, in order to represent the rule that the length of a feasible pairing
cannot exceed MaxLegs, the resulting CLP rule in ECLiPSe(a CLP programming en-
vironment) can be as below:

rule_length( P ) if length( P ) < MaxLegs.

The rule to present the consecutiveness of airports in a pairing is:
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rule_connect( [_] ).

rule_connect( [X1,X2|T] ) if

X1.arrivalport = X2.departureport,

rule_connect( [X2|T] ).

The objective function of the pricing subproblem is possibly presented as a CLP
rule in which the reduced cost of a pairing must be less than 0. Certainly, since CLP
is simply an enumeration method, we can obtain many negative reduced cost feasible
columns rather than the most negative cost column. However, it is possible to control
the process of fixing variables in a CLP engine. One problem of CLP is the poor
performance if we do not add any additional constraints to accelerate the propagation
of a variable fixing.

CLP includes propagation mechanisms to exclude impossible alternatives in solution
spaces. The fact of fixing a variable will be propagated to other variables in order to
narrow down the search space. This seems useful for our crew pairing problem in
which variables have finite domains and strong relations. CLP has emerged in recent
years withing the operations research community to provide a powerful tool to solve
combinatorial optimization problems. A large number of users have used CLP to solve
crew scheduling problems. Some of them are Guerinik and Caneghem (1995), Fahle
et al. (1999), Yunes et al. (2000).

4.2.4 Hybrid approach

A hybrid approach, by its name, employs different methods to create a strong solution
for a specific problem. In order to combine some of the previous methods, we need an
exact method for a general crew pairing pricing subproblems as the last resort. The
CLP approach is a solution to a general pricing subproblems. In addition, exhausted
enumeration is always the choice in this case.

Enumeration has been considered as the worst solution to many combinatorial
optimization problems. However, in our case, it has the following advantages:

• An implementation of an enumeration strategy is easily done in a short time. It
is possible to put the rule checking in a separate block. Certainly, simple rules
should be considered in the process of extending a path in enumeration. This
will help delete a lot of candidates without (or with small) impact on the total
performance.

• An implicit enumeration solution like branch-and-bound is possibly preferred to
an explicit enumeration. Because the purpose of the pricing step is not only
to find a negative reduced cost column, but also to prove that no such column
exists. Therefore, with a bounding process in an implicit enumeration, we can
avoid combinatorial explosion. Furthermore, if the implicit enumeration is used
as the second choice after one of the previously mentioned methods fails, we can
re-use information obtained from the first method. For example, after applying
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unsuccessfully a k shortest paths algorithm, the bound given by the k-th shortest
path is used as the lower bound in the branch-and-bound search.

• In a clearly structured algorithm like an implicit enumeration, heuristics can
be embedded with little effort. Problem specific heuristics are quite useful in
solving large optimization problems. However, in this case, the thesis focuses on
considering a general framework which allows more rules to be inserted rather
easily. Thus, only general heuristics will be used in the implementation.

After having an exact method, we can combine all methods to solve the pricing
subproblem. The discussion of the hybrid method is postponed to the computational
part.

4.3 Computational Issues

4.3.1 Test problems

Unfortunately, we cannot use the problem set of Hoffman and Padberg (1993) because
all its problems have been transformed into set partitioning problems. Moreover, if we
had their original flight sets, we would not be able to obtain the airlines rules for them.
Instead, the airlines rules of Vietnam Airlines are used to test the branch-and-price
implementation.

Four sets of crew pairing problems will be used in experiments. The two first sets
have been described in Chapter 3. They are the set of timetables of Vietnam Airlines
and the set of randomly generated timetables operating on an extended network of
Vietnam Airlines. The third set is generated randomly from a flight network depicted
in Figure 4.2. Aircrafts operate among 21 airports of which there are seven home
bases for crews. Four timetables have been generated from the network following the
generation scheme described in the previous chapter. The name of these timetables has
a prefix “vircpp” and each has 284 flights. The characteristics of these crew pairing
problems are also the same as those of the two first sets. The fourth set (having a
prefix “vircppl”) also operates on the same network but with more flights than that of
the third. Since combining 458 flights into pairings creates very large set partitioning
problems which cannot be loaded into the memory of the test computer, we follow the
same idea mentioned in Section 3.3.6 to deal with the problem “‘vn320”. All problems
in Table 4.1 marked with a “*” at the end of the name are processed in this way. In
columns “n” and “nnz” of these problems, there is a pair of values: the first is of the
associated reduced problem and the second is of the original problem.

The problems in the two additional sets are also solved by the branch-and-cut code
with the default settings. The computational results are briefly shown in Table 4.1. It
is transparent that z of the “vircppl” problems only gives us a non-optimal solution.
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Figure 4.2: The flight network for the third set of crew pairing test problems

Name m n nnz tEnu branch-and-cut
z B%B Lp ttotal

vircpp1 284 168542 945118 0:00:47 107429 11 78 0:09:43
vircpp2 284 125012 692533 0:00:36 134421 25 121 0:15:16
vircpp3 284 135601 751801 0:00:40 135116 5 11 0:04:43
vircpp4 284 137885 765612 0:00:39 137165 21 74 0:05:24
vircppl1* 458 338679/967731 1905757/5569753 0:19:35 142116 3 16 0:15:08
vircppl2* 458 265301/723364 1475911/4135015 0:10:30 176721 1 1 0:07:26
vircppl3* 458 286778/792719 1599326/4536834 0:11:29 180468 1 1 0:09:00
vircppl4* 458 294157/837538 1640275/4802571 0:14:23 170023 1 1 0:08:10

Table 4.1: Two additional sets of crew pairing problems, including their computational
results of the branch-and-cut code

4.3.2 Initial solution

In a branch-and-price framework, the restricted master problem must be provided with
an initial solution. How to create it strongly depends on the application. The initial
solution for crew pairing problems in this thesis will be generated by a greedy heuristic
which prefers to connect the nearest flight to an opening pairing. Note that we assume
that the objective function of crew pairing problems is to minimize the total resting
time between consecutive flights. One can also use the heuristics of Baker et al. (1979)
to build up the initial set of pairings.

However, the process of generating pairings is highly constrained by a set of com-
plicated airline rules. Therefore, we cannot easily obtain a feasible solution, which
covers all flights. Furthermore, the pricing subproblem needs a good dual solution as
an input. A common method in this case is to include high cost variables into the
initial model. In this case, for each flight, an artificial pairing which contains only that
flight is included. This idea is quite familiar in the context of simplex algorithms.
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4.3.3 Branching

The implementation will follow the Ryan-Foster idea mentioned in Section 4.1.3. Since
this branching requires a search for 2 flights i′ and i′′ on many possible pairs of them, we
just perform the task on a limited number of pairs. The number is given in a parameter
file under the name MaxNoRFChecked which is 100 by default. If the overhead of the
branching phase is not too high, we can set this number to the maximum (i.e., to search
on all pairs).

In any branch-and-bound based method, an optimal method often applies branching
methods which create rather balanced trees. This also happens here with the Ryan-
Foster branching. The fractional sum

∑

j:Ai′j=1,Ai′′j=1 x∗
j of the relaxation gives us many

possibilities. If we prefer to find the optimal solution, we can choose those pairs of
flights having a sum near to 0.5. Otherwise, if we prefer to find a good feasible solution
early, we can choose those having a sum near to 1. Remember to consider the new
problem with the constraint

∑

j:Ai′j=1,Ai′′j=1

xj = 1

before the problem with the constraint

∑

j:Ai′j=1,Ai′′j=1

xj = 0

because the former is clearly stronger than the latter. In the implementation, the
preferred value for the sum will be supplied by a parameter α.

4.3.4 Pricing subproblem

Solving the pricing subproblem is one of the main focuses in any branch-and-price
based application solvers. In the previous Section 4.2, the thesis has presented a group
of widely used methods for this problem. Since the thesis does not have enough space
to present all computational results for all combinations of algorithms and running
parameters, certain important observations will be shown to choose a suitable method
for the problem.

Resource constrained shortest path problem

The pricing step must generate feasible pairings which start and end at a same home
base. Hence, to be able to apply a resource constrained shortest path algorithm, we
must decompose the problem according to home bases. An acyclic directed graph will
be created for each home base in which flights starting from that base are connected
to the super source, and flights ending at the base are connected to the super target
(see Figure 4.1). Solving a resource constrained shortest path problem on the whole
network covering all flights is not affordable in terms of computer memory for medium-
ranged problems. Therefore, a different way of creating the graphs is used. Each flight
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departing from a base will be used as the super source. This means that we only
generate negative reduced cost pairings starting from that flight. Remember that we
do not have to find the most negative reduced cost. Instead, the pricing step can be
considered as either generating a number of pairings with negative reduced costs or
proving no more such pairings.

Another point to be addressed is from which flight leg the pricing method will start
in the next iteration of the column generation. If we always start from the same flight
leg (e.g., the first flight of the schedule) in every iteration, we possibly only generate
new pairings which are similar in structure to the pairings already contained in the
current restricted master problem. Therefore, they will only slightly improve the integer
programming model. In order to make the search more effective, the implementation
changes the starting flight leg in every iteration. In reality, it starts from the flight leg
right after the one where the previous iteration stopped.

As mentioned before, the resource constrained shortest path algorithms demand
that all resources are additive. This is not satisfied by the test crew pairing problems
which contain several kinds of non-additive resources. They are excluded from the set
of airline rules for a correct comparison.

K shortest paths problem

The k shortest paths algorithm in use also depends on a labelling technique. So it
has similar properties to the previous method. In addition, a feasible pairing cannot
stop over at a home base. This means that we only generate fundamental pairings.
Meanwhile, a long pairing which is combined by fundamental ones could have lower
reduced costs than its elements, although it is infeasible. Thus, applying a k shortest
path algorithm to the whole graph is inefficient. A solution for that is to remove arcs
going out from flights which stop at the currently considered home base. Certainly, the
whole problem is decomposed into small problems in which the super source is assigned
each time to one flight starting from a home base.

Controlling the parameter k is quite crucial in the algorithm to find out pairings
with negative reduced costs. In the implementation, after every iteration, k is increased
in order to raise the possibility to produce a pairing for the restricted master problem.
However, we do not have any conclusion when the k shortest paths algorithm has found
no column. An exact pricing method must be involved to guarantee the optimality of
the column generation method.

If we want to change the branch-and-price implementation to a heuristic, the pricing
subproblem is not necessary to be solved to optimality. In this case, the k shortest
path approach can be used without any further exact pricing method. Another good
point is that we do not have to include airline rules into the graph.

Constraint logic programming

Vietnam airline rules and regulations are expressed quickly using the predicate struc-
ture of the constraint logic programming. Modelling a rule is not only implementing
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an expression to check whether a pairing is feasible, but also improving the expression
to utilize the propagation mechanism of CLP which remove impossible alternatives in
solution spaces as a result of variable fixing. In order to improve the performance of
the algorithm, a constraint is included in order to exclude prematurely pairings which
cannot introduce negative reduced costs finally. The idea behind it is to reduce the
domain of a flight variable of a pairing variable with the help of dual values and the
minimum resting period between flights. In order to make search space quickly smaller,
we use the first-fail search method. This means the flight variable with the smallest
domain size will be instantiated firstly. It is still open to many search methods to be
applied here.

Poor computational performance is a crucial problem of any constraint logic pro-
gramming environment. This also happens with ECLiPSe. In the first attempt, the
task of find negative reduced cost pairings is assigned to CLP. A series of thorough
experiments have been made, but the performance is unacceptable. Therefore, the idea
of applying CLP only for rule checking is chosen. This will be useful in real world crew
pairing problems in which a large set of complicated rules must be modelled and mod-
ified dynamically with little effort. However, the performance of CLP is still extremely
slow in comparison with C++ rule checking (see Hoai et al., 2003). This is also the
reason why the method is not included in this thesis.

Hybrid approach

Section 4.2 presents several possible reasons to use enumeration. The branch-and-price
code considers an exhausted enumeration with additional heuristics. Like previous
methods, the enumeration also iterates through flights in a round robin manner. For
each starting flight, a depth first search is performed. Furthermore, there are the
following additional features.

• If a pairing with negative reduced cost has been found, the method removes all
flights contained in that pairings from the graph. This will reduce the graph
size in future searches for further pairings. This is also reasonable because two
pairings having some flights in common cannot belong to an integer feasible
solution at the same time.

• The depth first search of a path can be stopped early if the path cannot produce
a pairing due to either the non-negativeness or the infeasibility of its final paths.
The idea is quite similar to the pre-optimization technique widely used in the
resource constrained shortest path approach.

The enumeration can be used alone or in a hybrid approach. Generally, we have
two types of pricing methods: inexact and exact. Obviously, the exact pricing method
must be invoked finally in order to prove at least that there is no more pairing with a
negative reduced cost. However, it is not necessary to call exact methods in the early
iterations. A solution to combine these two types together is to employ a two-phase
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approach. A fast inexact method is called first. If it generates certain pairings, the
two-phase pricing method stops immediately. Otherwise, it brings up an exact method.

The code implements a hybrid framework which is simply to combine an inexact
method with an exact one. In this case, the k shortest paths algorithm is used as the
inexact method. The exact method will be selected between the resource constrained
shortest path algorithm and a heuristic enumeration as mentioned above.

Experiments on the test problems have been performed with the different pricing
methods. Since this section just want to find a good pricing method, the experiments
are only executed without branching and their results are shown in Table 4.2. Nota-
tions used in the tables are the same as those used in Chapter 3. The most interesting
column is “ttotal”. The heuristic enumeration delivers the best performance. A com-
bination of the k shortest paths method and the heuristic enumeration also presents
a good performance. Moreover, it needs less average numbers of column generation
iterations (“Lp”) and variables (“n+”). Meanwhile, the resource constrained shortest
path method gives a poor performance. Even working with a reduced set of airline
rules, the method generates a very large number of labels. Vance et al. (1997) consid-
ered this problem and their solution is to change the branch-and-price implementation
into a heuristic. It is clear that the number of iterations of the method is often small
because it finds out the most negative reduced cost in every iteration. The table of
the k shortest paths method only depicts the number of iterations that the method is
still effective. The lower bound of this method cannot be used as that of the root node
because not all pairings have been priced.

4.3.5 Primal heuristics

Reducing the gap between the dual bound and primal bound can be done by heuristics
to find or improve feasible solutions. Obviously, choosing a suitable heuristic and
controlling its running parameters depends strongly on the specific structure of an
application. Three local search heuristics are included in the branch-and-price code to
improve found feasible solutions.

• 2-opt heuristics: Figure 4.3 shows the idea of the 2-opt local heuristics. With the
cost structure of Vietnam Airlines, we can obtain a better solution by replacing
long resting times with shorter ones.

A B B A

BAAB

A B B A

BAAB

Figure 4.3: 2-opt heuristic
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Resource constrained shortest path method

Name z Lp n+ label %Pri %Lp tPri/ite ttotal

vncpp1 500465 117 853 9795097 99.57 0.40 13.37 0:26:11
vncpp2 696546 115 893 5109541 99.19 0.75 7.94 0:15:21
vncpp3 493076 115 915 5082548 99.06 0.88 7.62 0:14:45
vncpp4 503021 150 1006 11292105 99.45 0.51 12.47 0:31:21
vircpp1 106409 109 900 10285642 99.65 0.32 14.75 0:26:53
vircpp2 132909 94 781 5257825 99.51 0.44 9.26 0:14:35
vircpp3 131745 103 863 5357666 99.56 0.39 9.64 0:16:37
vircpp4 136616 107 905 7950447 99.61 0.35 11.92 0:21:20

K shortest paths method

Name z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 645890 61 588 92.03 6.78 0.27 0:00:18
vncpp2 1573940 49 446 94.55 4.68 0.37 0:00:19
vncpp3 644313 47 445 92.60 6.34 0.32 0:00:16
vncpp4 1472880 48 470 93.16 6.01 0.29 0:00:15
vircpp1 338571 57 536 93.24 5.83 0.25 0:00:15
vircpp2 256568 51 478 93.10 6.03 0.29 0:00:16
vircpp3 155786 53 486 94.59 4.51 0.30 0:00:17
vircpp4 1319820 65 638 91.28 7.52 0.21 0:00:15

Heuristic enumeration
Name z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 500465 194 1864 89.34 10.43 0.77 0:02:47
vncpp2 696546 194 1883 89.77 10.01 0.91 0:03:17
vncpp3 493076 196 1899 88.43 11.33 0.73 0:02:41
vncpp4 503021 197 1923 84.98 14.72 0.59 0:02:16
vircpp1 106409 199 1755 97.07 2.83 1.81 0:06:12
vircpp2 132909 159 1541 95.36 4.41 1.00 0:02:46
vircpp3 131745 145 1322 96.24 3.55 1.03 0:02:35
vircpp4 136616 208 1873 96.50 3.39 1.55 0:05:35
vircppl1 138962 328 3196 97.55 2.39 6.05 0:33:54
vircppl2 172947 333 2815 99.07 0.91 13.14 1:13:37
vircppl3 179818 298 2880 97.66 2.27 5.75 0:29:16
vircppl4 169720 356 3228 98.50 1.47 10.83 1:05:15

sum 2807 26179 44.16 3:50:11

K shortest paths method→ Heuristic enumeration

Name z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 500465 147 1099 97.81 2.05 1.94 0:04:52
vncpp2 696546 144 1190 97.42 2.45 1.85 0:04:33
vncpp3 493076 167 1300 98.08 1.85 2.86 0:08:07
vncpp4 503021 167 1373 96.62 3.23 1.68 0:04:51
vircpp1 106409 142 1035 98.66 1.24 2.20 0:05:16
vircpp2 132909 125 988 97.49 2.32 1.26 0:02:42
vircpp3 131745 136 905 98.80 1.12 2.06 0:04:43
vircpp4 136616 202 1424 98.17 1.73 1.96 0:06:44

Table 4.2: Performance of different pricing methods to solve the root node of the crew
pairing problems
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• Scrolling heuristic: since the timetable is duplicated for the next periods, a flight
can shifted and used in either the periods. Figure 4.4 demonstrates the idea of
the heuristic.

B A

A B B A

A B

schedule period

Figure 4.4: Scrolling heuristic

• Merging heuristic: most airlines design an operational network consisting of sev-
eral main airports and many subsidiary ones. An aircraft flying to a subsidiary
airport often returns to the starting main airport right after. This allows to merge
short pairings together as shown in Figure 4.5. Remember that A 6= C because
a valid pairing must end at its starting airport immediately.

A B B A

B A

CB BC

BCCBA B

Figure 4.5: Merging heuristic

The three local improvement techniques above possibly give better feasible solu-
tions, especially in the case of the Vietnam Airlines problems. It is also possible to use
them in a meta-heuristics, such as simulated annealing. However, we should keep in
mind that it is hard to define the neighborhood structure because there are many com-
plicated airline rules. A solution is to relax some difficult rules similar to the ejection
chains technique used by Rego (1998).

4.3.6 Computational results

The machine, the operating system and the compiler used in computation are the same
as those in Chapter 3. ABACUS is still the framework for the branch-and-price code.
Unlike the branch-and-cut approach, the branch-and-price approach does not have
much difficulties with storage. The latter only deals with a small set of variables which
currently belong to the restricted master problem. The variables, which correspond
to pairings, keep the set of flight identifications and the constraints are the flights
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themselves. Remember that the variables are locally valid, and generated dynamically
by a pricing method.

Important running parameters have been set as shown in the table below.

Initial solution greedy heuristic
Pricing method heuristic enumeration
Pool separation yes
MaxVarAdd 10
VariableEliminationMode no
Reduced cost fixing yes
Primal heuristics yes
Branching Ryan-Foster (α = 0.5)
MaxNoRFChecked maximum

The greedy heuristic is chosen to create the initial solution for the restricted master
problem. This choice comes from the cost structure of Vietnam Airlines. As seen in
Section 4.3.4, the heuristic enumeration is the fastest method which is selected as the
pricing method in the next branch-and-price computations. The number of variables
(pairings) generated each time is certainly not necessarily equal to 1. It should be
large enough to utilize the time-consuming pricing step. However, a very large value
of MaxVarAdd is not a good choice either. Doing so can make the whole algorithm gets
stalled inside the pricing step. The pool separation could helpfully share the hard task
imposed on the pricing method. Since the objective is to find the optimal solution, the
parameter α of the Ryan-Foster branching is set to 0.5.

The features of fixing and eliminating variables/constraints of ABACUS are switched
off because they can break the data structure storing the crew pairing problems. How-
ever, the reduced cost fixing is still re-implemented in the application code. Fixing a
variable to 0 is not implemented because it is hard to translate the fixing into the graph
of a pricing method. By contrast, fixing a variable to 1 can be translated efficiently
into the graph. The fixing helps remove flights of the variable out of the graph, leading
to a shorter execution time in the pricing step. In Table 4.3, we can see an extremely
small percentage “%Pre” of computation time involved in this feature. The same situ-
ation also occurs with the local improvement heuristics though they contribute several
enhancements of the primal bound (“heuristics”).

Column generation

In all computations, about 90% of the total time is consumed by the pricing subproblem
(shown in the column “%Pri”). The most important advantage of branch-and-price is
to work only a small set of variables. Column “n+” shows small numbers of variables
added to the restricted master problem in all cases. Remember, that the initial solution
only contains a few variables. Therefore, we do not worry about the memory problem
in the branch-and-price approach. Furthermore, the small size of (RMP) also explains
why the column “%Lp” is quite small in comparison with the branch-and-cut approach.
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Name z B&B Lp n+ n− heuristics time
2-opt scroll merge %Pre %Pri %Heu %Bra %Lp tPri/ite ttotal

vn320 64465 1 103 992 0 5 8 20 0.00 99.84 0.01 0.00 0.13 22.88 0:39:20
vn321 38870 1 26 100 0 0 1 2 0.00 99.12 0.00 0.00 0.64 1.11 0:00:29
vnAT7 22260 1 102 937 0 3 2 2 0.00 99.66 0.01 0.00 0.32 10.11 0:17:15
vncpp1 500943 9 225 1916 0 8 6 5 0.00 89.42 0.02 0.03 7.50 1.28 0:05:23
vncpp2 697445 11 235 1963 0 4 1 5 0.00 91.31 0.01 0.04 5.93 1.85 0:07:55
vncpp3 494154 193 978 4098 16 7 4 4 0.00 88.44 0.00 0.07 5.03 3.61 1:06:30
vncpp4 506006 95 595 2894 2 5 4 5 0.00 87.31 0.00 0.07 5.77 2.92 0:33:11
vircpp1 107429 39 361 2114 0 0 5 8 0.00 92.87 0.00 0.03 2.89 3.25 0:21:03
vircpp2 134421 85 334 1843 0 3 7 2 0.00 86.03 0.00 0.09 2.94 2.96 0:19:10
vircpp3 135116 21 306 1788 0 2 5 6 0.00 94.11 0.01 0.02 2.46 2.33 0:12:39
vircpp4 137165 35 420 2507 0 4 4 6 0.00 93.33 0.00 0.03 3.22 3.02 0:22:38
vircppl1 139344 97 587 3913 0 5 8 8 0.00 94.50 0.00 0.02 1.37 22.82 3:56:17
vircppl2 173538 293 1013 4522 0 5 6 11 0.00 93.00 0.00 0.02 1.07 27.70 8:22:56
vircppl3 179818 1 298 2880 0 7 15 15 0.00 97.61 0.02 0.00 2.32 5.68 0:28:53
vircppl4 169852 7 394 3436 0 0 4 4 0.00 97.88 0.00 0.00 1.43 12.91 1:26:36

Table 4.3: Computational results of the branch-and-price code
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Branching

In spite of searching all pairs of flights for two flights satisfying the Ryan-Foster con-
dition, the branching step needs little time (shown in the column “%Bra”). That is the
reason why the parameter MaxNoRFChecked which could be helpful for huge timetables
will be not used.

Unfortunately, we cannot apply the strong branching idea for the branch-and-price
approach. There is only a small part of all variables in the restricted master problem.
That is the reason why executing a number of simplex iterations cannot tell the possible
improvement of the whole model. Most cases of the branch-and-price executation
require more numbers of branch-and-bound nodes in comparison with the branch-and-
cut code.

Although one only needs one branch-and-bound node for the problem “vn320”, the
branch-and-price code now can solve it to optimality using the same computer and
compiler options. This is also quite useful in the crew pairing phase. Hoffman and
Padberg (1993) present a set of crew pairing problems in which most of them require
only one branch-and-bound node. The optimal solution of all problems obtained from
Vietnam Airlines has been reached without branching. Do not be surprised why many
enumerations have been invoked in the pricing step, but with a small time in comparison
with the unique enumeration of the branch-and-cut code in the beginning. This is
because the pricing subproblem has a dual vector to make the enumerations faster.

Now, we will see how the branch-and-price code works on the randomly generated
test problems. It can be seen in Tables 4.3 and 3.3 that, with the size of all timetables in
the sets “vncpp” and “vircpp”, the branch-and-price approach is outperformed by the
branch-and-cut approach. However, the method presented in this chapter has solved
the problems in the set “vircppl” to optimality without overloading the computer
memory. “vircppl3” and “vircppl4” requires a few branch-and-bound nodes to reach
the optimal solution while “vircppl2” is hard to be solved. Besides the effective usage
of memory, the branch-and-price code also has a stronger ability to determine more
feasible solutions in its optimization process as observed during its running progress.
This can be explained by the fact that working on a small number of variables, the
code is easier to find a feasible solution to cover all flights.

Let’s have a look on the column “Lp” of Tables 4.3 and 4.2. We see that about half
the number of LPs are involved in solving the root node. This will be the topic of the
next section which discusses how to reduce that number.

4.4 Stabilized Column Generation Method

Column generation has been used for solving a variety of scheduling applications be-
cause it is able to deal with problems which are modelled by a huge number of variables.
In this scheme, the solution of the pricing subproblem is an important and difficult is-
sue. In the experiments reported in the previous section, usually the time for pricing
amounts to about 90% of the total computing time. The oscillation of dual points is the
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main reason for instability in the standard implementation of this method, especially
in the root node. One device to deal with the problem is to use the trust-region idea
to stabilize the path of dual points.

The main approaches which stabilize the development of dual variables in order to
accelerate the solution process are listed in the following. The Bundle methods (see
Hiriart-Urruty and Lemaréchal, 1993) create a trust region with penalty to prevent
the next dual point from moving too far. The analytical center cutting plane method
(Goffin and Vial, 1990) takes an analytic center of a region in the dual function instead
of having the optimal dual solution as next iterate. Another idea is the so-called primal-
dual subproblem simplex method of Hu and Johnson (1999). The new dual point used
for constructing subproblems is a convex combination of the previous dual point and
the dual solution of the current subproblem. It also must be a dual feasible solution to
master problem. Barnes et al. (2002) suggest an algorithm to deal with the degeneracy
by finding a strictly improving direction for the current dual problem at the current
dual point by solving a least-squares problem. An old method is the BoxStep method
presented by (Marsten et al., 1975) which restricts the current dual point in a bounded
region. This method has been generalized by a model of du Merle et al. (1999) and
further investigated by Neame (1999), Ben Amor and Desrosiers (2003). The thesis
will apply this idea which was only considered briefly in the study of du Merle et al.
into solving the considered crew pairing problems. Borndörfer et al. (2001) discussed
a similar approach of using the BoxStep model in duty scheduling.

In order to see the need of a stabilizing device, we revisit the standard column
generation method. The dual of the column generation method is sometimes con-
sidered as Kelley’s cutting plane method (see Kelley, 1960, Neame, 1999). Hence we
equivalently speak of cutting planes in the dual space and of columns in the primal
space. Therefore, in dual space, the pricing step is similar to the process of finding
cutting planes that are violated by the current optimal point. The oscillation of dual
points is a characteristic of the standard column generation methods. The instability
which occurs if we do not apply the trust region idea can be seen easily. Because of
not being bounded, u∗k+1 can be far away from the current point u∗k, and also from
the optimal dual solution. We call this behavior unstable. This leads to the possible
poor performance of the standard column generation method with respect to creating
redundant cutting planes (in the dual problem). More details about it can be found
in Hiriart-Urruty and Lemaréchal (1993), Lemaréchal (2001).

In order to overcome this disadvantageous behavior, the possible values of the dual
variables are restricted by defining some box (a trust region) around the current iterate
(as in the BoxStep method) and ensure that the dual variables do not move too far
away. The thesis will discuss the effect of this idea on the number of iterations as well
as on the overall CPU time.
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4.4.1 Generalized stabilized column generation method

In order to describe the approach for controlling the dual variables, we will consider
a primal problem and its dual problem, respectively, in a form suggested by du Merle
et al. (1999):

min c>x− δ>−y− + δ>+y+

s.t. Ax− y− + y+ = e
y− ≤ ε−
y+ ≤ ε+

x, y−, y+ ≥ 0,

(4.14)

max u>e− ε>−v− − ε>+v+

s.t. A>u ≤ c
−u− v− ≤ −δ−

u− v+ ≤ δ+

v−, v+ ≥ 0.

(4.15)

Under the viewpoint of Ben Amor and Desrosiers (2003), the formulation above
corresponds to using a 3-piecewise penalty dual cost function. The dual problem adds
penalty costs on dual variables when they lie outside of the interval [δ−, δ+]. While
du Merle et al. (1999) use a bundle-style algorithm to update the dual center in every
iteration, Ben Amor and Desrosiers follow a different approach using a general proximal
point algorithm where the center is only moved if no column is found. The method
by Ben Amor and Desrosiers (2003) is proved to converge finitely to a dual optimal
solution.

This section focuses on the application of a special variant of the model mentioned
above in which ε− and ε+ are set to infinity. In that case, (4.14) and (4.15) change
to the BoxStep model in which the dual variables are kept in a box. The method will
converge towards a pair of primal and dual optimal solutions. The algorithm will stop
when the current dual point becomes an interior point of the box and all slack and
surplus variables are zero. The size of the box could be fixed in advance or changed
during the algorithm. At the iterate k, the primal and dual of the restricted master
problem in which the box size can be altered are as follows:

min cNk
>xNk − δk

−
>
y− + δk

+
>
y+

s.t. ANkxNk − y− + y+ = e
xNk , y−, y+ ≥ 0

(4.16)

max uk>e
s.t. A>

Nkuk ≤ cNk

δk
− ≤ uk ≤ δk

+.

(4.17)

At the beginning the box size is kept small so that only locally useful columns can
be generated. We will increase the box size gradually in order to satisfy the termination
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condition. The BoxStep model will change to the standard model if the box size goes
to infinity.

We could also control the box center, creating two general types of the BoxStep
method: sliding BoxStep and stationary BoxStep (same terms as used by Neame, 1999).

Sliding BoxStep

At each iteration the box is centered at the current dual point. The box size is fixed
and only increased when the column generation phase stalls. In this case the box size
will be incremented by a given constant δB. Therefore, for each iteration, we have

δk+1
− = u∗k −Bl

δk+1
+ = u∗k + Bl (4.18)

If no column is found, we set

Bl+1 = Bl + δB. (4.19)

Furthermore, if the pricing subproblem stalls in several consecutive iterations, δB
should be increased in order to adapt with the hard steps. In experiments presented
later on, δB will be multiplied by 2 in such a case.

The method belongs to the generalized stabilized column generation algorithm (Al-
gorithm 4.4.1) suggested by Neame (1999). In the so-called null step, the box center is
also moved to the new dual point. In Corollary 4.5.19, the author concludes the finite
convergence of the BoxStep method for any sequence of positive box sizes {B l,i}∞i=0 = 1
such that

∑∞
i=0 Bl,i =∞. Note, that the author denotes by l the null step iterate, i the

serious step iterate. It is also the case in chosen way of updating the box size. Here B l

is the current box size which is initialized to a small value. We will study if there is
any effect of δB on the performance of the method. At the beginning, the box center
(i.e., u∗0) is set to 0.

Another variant of the sliding BoxStep method is to keep the box center unchanged
until no more column has been priced out and the termination condition has not been
met. This can be considered as a mixture of the sliding BoxStep and the station-
ary BoxStep that will be discussed next. Although there only is a small difference
in describing two variants of the sliding BoxStep, they belong to different classes of
stabilizing approaches. The second variant comes from the general proximal trust re-
gion algorithm of Ben Amor and Desrosiers (2003). Readers can find the convergence
analysis of this algorithm for Algorithm A2 in their paper. The only difference is that
the authors apply a 5-piecewise linear dual penalty function, instead of a 3-piecewise
linear function.

Stationary BoxStep

The stationary BoxStep keeps the center unchanged. In more detail, the two parame-
ters δ+ and δ− are controlled directly and independently from the current dual solution.

89



We will consider an update method different from the one used by du Merle et al. (1999)
in which a sequence of δ+ and δ− is chosen in advance.

The initial parameter values will be small but large enough to make sure that the
box can intersect with the initial cutting planes. The δ-update method chosen for the
stationary BoxStep method is:

δk+1
− = δk

− −∆δ−
δk+1
+ = δk

+ + ∆δ+.
(4.20)

The values δ+ and δ− only change when the column generation step is unable to
generate more variables. Although the dual center is not changed in the serious step
like the method of Ben Amor and Desrosiers (2003) does, the finite convergence proof
can be easily seen from the increasing of bounded dual solutions in the serious step,
and the increasing of the box size. The change ∆δ is likely to have an impact on the
BoxStep method. Small values will lead to solving many linear relaxations and pricing
subproblems, and otherwise, large values will quickly turn the BoxStep method into
the standard column generation method that generates many redundant columns. The
idea of increasing ∆δ applied in the previous methods is employed here.

In the crew pairing problem considered here, the reduced cost of a variable is

cj − ukT
A.j. If we keep uk small, then few negative reduced cost pairings will be

priced out. In other words, the pricing step could be faster. In other papers, the
stabilized methods have been discussed with respect to reducing the number of column
generation iterations by limiting the zig-zag movement of dual point. Then, as a result,
the number of generated columns is also reduced. In addition, this section will show
that they can help improve the speed of pricing algorithms considerably.

4.4.2 Computational results

In this section, computational experiments were executed on the same environment
used before. The software framework ABACUS has been modified to embed new rou-
tines. The previous version of ABACUS does not support the change of objective
functions, but this is the case in the stabilized methods. In order to assess the per-
formance of the stabilization methods before applying it to the branch-and-price code,
some options of ABACUS have been deactivated, such as pool separation, branch-and-
bound, primal heuristics. In the computational experiments, we only focus on solving
the root node. Other algorithmic aspects and parameters of the column generation
code are the same as mentioned in the previous section.

Since developments of dual variables are the same for all test problems under an
individual method presented in Section 4.4.1, the graph of problems “vircpp1” and
“vircppl1” is shown in Figures 4.6, 4.7(a), 4.7(b), and 4.9.
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Standard column generation method

The computational results of the heuristic enumeration in Table 4.2 shows the poor
performance of the standard method shown in the number of column generation it-
erations (“Lp”). Note, that the enumeration is used in this section. The unstable
behavior of dual values may result in a large number of iterations needed to solve the
problems. Figure 4.6 visualizes the distance ||u∗k − u∗||2 between the k-th dual value
u∗k and the optimal point u∗. The current dual point seems to move far away from
the optimal solution in the initial iterations. With the given pricing method, we see
that the time needed for the dual variables seems to be more stable lasts until most of
the artificial variables have been priced out of the basis. Unlike some other problem
classes (e.g., multiple depot vehicle scheduling problem), crew pairing problems are
highly constrained by airline rules. It is hard to find an initial feasible solution. There-
fore, the addition of artificial variables is required to guarantee the problem feasibility.
The tailing-off effect contributes much to the bad performance of the method.
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Figure 4.6: Behavior of the dual values in standard method

Sliding BoxStep

As mentioned in Section 4.4.1, B1 is initialized to a suitable small value. Although
the initial bounds of the dual variables could be different, doing such a thing has been
realized to have a small effect on the computational results. The same value is assigned
to all dual components so that the cube |u| ≤ B1 intersects with some of the initial
set of feasible columns. This guarantees that an enlargement of the box size will not
be called right after the first iteration. This idea is applied successfully to solve a
wide range of problem sizes (i.e., number of flights). A similar way of initializing the
box size will be used for the stationary BoxStep method to be considered in the next
sub-section.

Figure 4.7(a) verifies that the aim of stabilizing the dual values has been met. The
first variant of the sliding BoxStep method in which the box center will be moved
in every iteration makes the dual point move smoothly to the optimal point. The
distance ||u∗k− u∗||2 decreases gradually to zero using the stabilized model. Note that

91



the initial and final dual points in the stabilized methods could be different from those
in the standard method due to their different models.

Under the second sliding BoxStep method in which the box center is not moved if
some columns have been generated, the dual point does not move toward the optimal
point as steadily as in the first algorithm. The sudden changes in Figure 4.7(b) match
with the box size updates. However, bounded regions still keep the dual point moving
in a stable manner.
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Figure 4.7: Behavior of the dual values in the sliding BoxStep methods, where δB = 16
for the first variant, and δB = 128 for the second variant

Name nB+ z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 15 500465 146 799 98.81 1.06 2.89 0:07:07
vncpp2 16 696546 112 645 98.86 1.03 2.95 0:05:34
vncpp3 19 493076 138 676 98.68 1.21 2.82 0:06:34
vncpp4 17 503021 143 636 98.83 1.07 3.17 0:07:39
vircpp1 2 106409 73 516 97.37 2.24 1.11 0:01:23
vircpp2 5 132909 100 620 98.34 1.46 1.86 0:03:09
vircpp3 7 131745 107 532 97.95 1.77 1.11 0:02:01
vircpp4 2 136616 89 647 98.08 1.66 1.55 0:02:21
vircppl1 1 138962 155 1397 98.76 1.14 6.06 0:15:51
vircppl2 2 172947 161 1364 99.38 0.56 10.30 0:27:48
vircppl3 2 179818 149 1287 99.19 0.74 7.77 0:19:27
vircppl4 4 169720 241 1948 99.40 0.56 15.42 1:02:18

sum 1614 11067 57.01 2:41:12

Table 4.4: The first variant of the sliding BoxStep method with δB = 16

For comparison, a good δB is chosen and the corresponding results are shown in
Table 4.4. The method of controlling the dual variables in a box is quite useful. Due to
the fact that the path to optimal solutions is more stable, the stabilized method reduces
the number of column generation iterations if we look back to Table 4.2. However, the
method does not present a good performance with the “vncpp” problems. Frequently
the pricing subproblem cannot present any suitable columns (see “nB+”). We can see
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Name nB+ z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 39 500465 131 529 98.86 1.03 3.00 0:06:37
vncpp2 39 696546 129 516 98.79 1.08 2.73 0:05:56
vncpp3 39 493076 126 564 98.57 1.28 2.39 0:05:05
vncpp4 40 503021 133 517 98.97 0.95 2.88 0:06:27
vircpp1 7 106409 78 441 96.24 3.26 0.69 0:00:56
vircpp2 10 132909 87 494 97.80 1.85 1.28 0:01:54
vircpp3 10 131745 83 452 98.00 1.70 1.23 0:01:44
vircpp4 8 136616 85 496 96.83 2.70 0.82 0:01:12
vircppl1 6 138962 119 880 96.93 2.78 1.97 0:04:02
vircppl2 9 172947 131 931 98.94 0.96 5.82 0:12:51
vircppl3 9 179818 141 949 98.54 1.34 4.60 0:10:58
vircppl4 9 169720 153 1002 99.41 0.53 9.93 0:25:28

sum 1396 7771 37.32 1:23:10

Table 4.5: The second variant of the sliding BoxStep method with δB = 128

that the column “tPri/ite” of the table indicates that more time is needed to solve the
pricing subproblem each time.

Running the second sliding BoxStep on all test problems, we also receive a reduction
of iterations (see Table 4.5). The column “Lp” of the table presents half the value in
average in comparison with the values of Table 4.2. As a result, the restricted master
problem is now supplied with a smaller average number of variables. With two problem
sets “vircpp” and “vircppl”, the method works well to improve the performance sig-
nificantly. However, with the set “vncpp”, the total time is quite large due to frequent
enlargements of the box size (“nB+”). Remember that before increasing the box size,
the method has to guarantee there is no column with a negative reduced cost. This
process is computationally rather expensive.
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Figure 4.8: Number of LPs solved with respect to δB in the sliding BoxStep methods

We come to answer the question raised in Section 4.4.1 about a good initial δB. In
Figure 4.8(a), we can see the different behavior of the algorithm according to different
problem sets. With the set “vncpp”, in which some flights cannot be covered, the
change of the number of iterations with respect to δB cannot be seen clearly. By
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contrast, the method shows the clear behavior with the set “vircpp” and “vircppl”. A
small value δB is better than a large one. There are more and more LPs that had to
be solved, shown in Figure 4.8(a), when the box size is increased quickly (i.e., larger
δB). The small box size in the beginning will guarantee only useful cutting planes to
be priced. If we increase this size too fast, the algorithm can return to instability. Note
that the box center is not fixed. Therefore, enlarging the box size unreasonably can
make the dual point go far away from the optimal point. However, a very small δB also
poses a problem by increasing the number of times the box size must be updated. If we
update the box size slowly, nLP will increase due to the difficulty of finding a negatived
reduced cost column. This was explained before about the poor performance of the
method with the problem set “vncpp”. Certainly, a good δB depends on the individual
problem, especially on the particular cost structure. However, some empirical tests
could help us to determine a good δB for the test problems.

Figures 4.8(b) depicts a steady behavior with all problem sets. The box center is
also moved in the second method, but more slowly. This avoids the ability of moving
too far from an optimal solution in case of the first method. As a result, the second
method has a difference range of good δBs. Since the second method updates the
box center more slowly, the box enlargement should be increased in order to get a
good performance. This is seen clearly in the figures which show that a good δB
approximately belongs to the interval [64,1024].

Stationary BoxStep

Figure 4.9 shows that the dual vector is more stable than that of the standard column
generation method. However, its graph does not look as smooth as that of the first
sliding BoxStep method. The sudden changes in the graph correspond to the times
the box size is updated. Similar to the second sliding BoxStep method, the stationary
method needs more numbers of iterations because it only enlarges the box size if the
pricing problem stalls without any columns.
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Figure 4.9: Behavior of the dual values in the stationary BoxStep method with the
initial ∆δ = 512

With a good initial value of ∆δ, this technique has reduced the number of itera-
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tions, shown in Table 4.6. This mainly reduces the total elapsed time. Moreover, the
method also adds a small number of pairings to the restricted master problem. Useful
and strong cutting planes (pairings in the primal problem) have been generated. Ap-
parently, all cutting planes in the dual problem have the form A.j

T u ≤ cj. Therefore,

the distance from that to the origin is cj/
√

A.j
T e (e is a unit vector). If we gradually

enlarge the box centered at the origin, more good planes for the restricted problem are
generated. The rather small number of variables generated helps to reduce the time
needed to solve the relaxation problems.

Name nδ+ z Lp n+ %Pri %Lp tPri/ite ttotal

vncpp1 7 500465 119 839 97.31 2.42 1.57 0:03:12
vncpp2 7 696546 125 830 97.87 1.96 2.06 0:04:23
vncpp3 7 493076 142 939 97.47 2.38 2.09 0:05:04
vncpp4 7 503021 116 792 96.58 3.15 1.22 0:02:27
vircpp1 2 106409 101 812 92.43 6.81 0.50 0:00:55
vircpp2 3 132909 109 773 95.48 4.10 0.81 0:01:33
vircpp3 3 131745 98 777 91.79 7.57 0.41 0:00:44
vircpp4 3 136616 114 813 95.10 4.47 0.67 0:01:20
vircppl1 2 138962 154 1375 96.41 3.33 2.35 0:06:16
vircppl2 3 172947 164 1334 98.61 1.29 5.72 0:15:52
vircppl3 3 179818 160 1359 97.93 1.94 4.30 0:11:43
vircppl4 3 169720 198 1588 98.86 1.06 7.65 0:25:32

sum 1600 12231 29.28 1:19:01

Table 4.6: The stationary BoxStep method with the initial ∆δ = 512

One interesting point is that the pricing per iteration is quite small in comparison
with the standard method and other stabilized methods. This means that pricing in
the stationary approach is faster due to the limitation of the box size and the fixing of
the box center, which is verified by the pricing time per iteration in Tables 4.4 and 4.6.
This is explained by recalling the cost structure of the crew pairing problems mentioned
before. With small absolute values of dual variables, the number of possibilities for
appending a flight to a negative reduced cost pairing is reduced as well. This limits the
combinatorial explosion in the pricing problem. We also see a small pricing time per
iteration in the second sliding BoxStep method in Table 4.5 because this method can
be considered as a combination of the first sliding BoxStep and the stationary BoxStep.

The parameter ∆δ plays a very important role in the stabilized technique, as shown
in Figure 4.10. Different ∆δ present different computation performance values. On the
left side of the figure, small values of ∆δ will make the column generation step stall
many times. This leads to the fact that many LP problems and pricing subproblems
have to be solved. The result is possibly a high computation time. Like the previous
BoxStep methods, we do not easily obtain more variables if we allow the dual point
to move within a very small region. The bad performance also occurs in case of large
values of ∆δ, but due to a different reason. When the box size increases quickly, the
stationary BoxStep method soon becomes the standard column generation method.

Choosing a good ∆δ is crucial in reducing the total computation time. In the class
of the Vietnam Airlines crew pairing problems, the cost of a pairing will be less than
10080 (i.e., the number of minutes in a week). Hence the distance from a cutting
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Figure 4.10: Number of LPs with respect to different ∆δ in the stationary BoxStep
method

plane to the origin is less than 10080/
√

2 ' 7128 (a pairing has at least 2 flights).
It is unreasonable to choose ∆δ larger than this number because the dual restriction
mechanism will work inefficiently in that case. The smallest is about 31 with respect to
the considered airline rules. Within the interval [31, 7128], the interval [64,128] seems
to contain the best values. Up to now, any mathematical relationship between the best
∆δ and the properties of the considered crew pairing problem (cost structure, flight
regulations, flight network, etc.) has not been found yet. The best parameters are only
chosen based upon empirical tests.

Branch-and-price with the stabilized methods

In this sub-section, the application of the mentioned stabilized methods in the branch-
and-price code will be presented. Due to performance reasons, only the second variant
of the sliding BoxStep, the stationary BoxStep are implemented into the framework.
The first sliding BoxStep does not work well on the test problems.

Observing the development of dual points in the non-root node, their path is seen
to be quite stable and only a few column generation iterations are needed to reach
optimality. This can be explained by the fact that the current set of pairings is quite
“strong” to present a good initial dual point. However, there are many possible dual
optimal solutions. This means the solution of the stabilized methods is possibly dif-
ferent from that of the standard method. If we use the stabilized model for higher
nodes (e.g., root node) and the standard model for lower nodes (e.g., non-root node),
the lower nodes might need more iterations than usual. This is because starting from
a set of pairings created by a stabilized model it is harder to reach optimality in the
standard model. The first application of the stabilized methods follows the idea of
using them in the root node but with a poor performance.

After that, the stabilized methods is employed in every branch-and-bound nodes.
In implementation, the stabilized variables are included into the model of the root node
and will be kept there for their child nodes. After branching, the associated problem
of a node is likely to be infeasible. Therefore, the artificial variables are always kept
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in the model of every node. Remember that, for the root node, the sliding BoxStep
sets the initial box center to 0. But we can reasonably reuse the final dual solution of
a parent node as the initial dual box center of its child nodes. This is also performed
in case of the stationary BoxStep.

The complete computational results are displayed in Table 4.7. With the sets
“vncpp” and “vircpp”, the code with the sliding BoxStep works well in several cases
and badly in others. It is hard to make any claim on the total number of LPs in
comparison with the standard approach. However, the total number of generated
variables in many cases is declined. This explains why we have a smaller percentage of
time involved in solving linear programs. We receive a similar result with the stationary
BoxStep. Note, that we cannot guarantee that the stabilized methods will improve the
performance of branch-and-price runs in all cases.

In the table, we see there are very few improvements by the local heuristics. Note
that these heuristics depend on the replacement of bad pairings by better ones. But
with the stabilized methods, most of generated pairings are quite good. Another rea-
son for that phenomenon is that the methods have found very few feasible solutions.
Consequently, the same happens with the reduced cost fixing. This is a disadvantage
of the stabilized methods. Due to the existence of the stabilizing variables, it is harder
for the restricted master problem to be integer feasible. Normally, solving only the root
node of a problem, the standard branch-and-price code has introduced several feasible
solutions.

Meanwhile, the methods solve the large problems in the set “vircppl” more quickly.
The stabilized devices have demonstrated their ability to deal with a huge number of
variables in such problems. The stabilized codes now find the optimal solution within
two hours. The branch-and-price with the stabilized column generation methods is
useful for large-scale problems.

Decomposition is a powerful method to solve many classes of combinatorial opti-
mization and column generation is often a choice for linear relaxation. But one of
its main problems is the instability of dual variables. The zig-zag movement of the
dual point leads to a large number of column generation iterations, and consequently,
generates a huge number of variables which could be inactive in the final solution with
a high probability. This also happens in solving crew pairing problems which are of
our interest. With the three stabilizing approaches, we have reported the efficiency
of our implementation in solving certain crew pairing problems. Controlling the dual
vector has been proven helpful to reduce the number of column generation iterations
and variables priced out. The sliding and stationary BoxStep methods make the dual
point move more smoothly to the optimal point, leading to a considerably improved
performance with respect to the standard method. The choice of the parameters δB
and ∆δ turned out to be crucial in the methods. The computation time can be re-
duced by nearly a factor of three with a careful selection of these parameters. There is
still an open question of the relationship between the parameters and our crew pairing
problems.

In the next chapters, the thesis will follow a different direction to use the computing
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Name z B&B Lp n+ n− heuristics time
2-opt scroll merge %Pre %Pri %Heu %Bra %Lp tPri/ite ttotal

The sliding BoxStep (second variant), δB = 128
vn320 64465 1 93 466 0 0 0 0 0.02 99.64 0.00 0.00 0.28 6.71 0:10:26
vn321 38870 1 40 104 0 0 0 0 0.21 94.57 0.00 0.00 4.15 0.21 0:00:09
vnAT7 22260 1 45 272 0 0 0 3 0.27 85.79 0.00 0.00 10.42 0.13 0:00:07
vncpp1 500943 9 163 561 2 0 0 0 0.01 97.61 0.00 0.02 1.03 3.71 0:10:19
vncpp2 697445 9 172 568 9 0 0 0 0.01 97.46 0.00 0.02 1.13 3.51 0:10:19
vncpp3 494154 223 1217 1784 1 0 0 0 0.02 94.37 0.00 0.06 1.51 4.58 1:38:26
vncpp4 506006 163 1073 1517 1 0 0 0 0.01 95.88 0.00 0.04 1.07 5.50 1:42:36
vircpp1 107429 41 282 708 0 0 0 0 0.02 93.48 0.00 0.05 1.42 2.99 0:15:02
vircpp2 134421 443 2065 2759 0 0 0 0 0.02 91.42 0.00 0.06 1.50 3.98 2:29:45
vircpp3 135116 19 313 763 0 0 0 0 0.01 97.63 0.00 0.01 0.76 4.34 0:23:13
vircpp4 137165 31 314 889 0 1 0 0 0.02 95.51 0.00 0.03 1.31 3.17 0:17:21
vircppl1 139344 45 332 1225 0 0 0 0 0.01 94.15 0.00 0.02 1.06 12.55 1:13:46
vircppl2 173538 23 276 1199 0 0 0 0 0.01 97.34 0.00 0.01 0.59 19.72 1:33:12
vircppl3 179818 1 141 949 0 0 0 0 0.03 98.50 0.00 0.00 1.36 4.52 0:10:47
vircppl4 169852 39 197 1062 0 0 0 0 0.00 94.86 0.00 0.01 0.61 19.14 1:06:16

The stationary BoxStep, ∆δ = 64
vn320 64465 1 92 496 0 3 0 3 0.01 99.42 0.00 0.00 0.46 3.87 0:05:58
vn321 38870 1 33 70 0 0 0 3 0.32 93.53 0.00 0.00 4.85 0.17 0:00:06
vnAT7 22260 1 42 242 0 0 0 3 0.08 92.46 0.00 0.00 5.43 0.26 0:00:12
vncpp1 500943 29 151 609 0 0 0 0 0.00 93.74 0.00 0.06 1.34 3.25 0:08:44
vncpp2 697445 9 155 663 9 0 0 0 0.01 96.83 0.00 0.03 1.53 3.37 0:08:59
vncpp3 494154 369 1572 2362 2 0 0 0 0.02 93.50 0.00 0.07 1.63 5.30 2:28:38
vncpp4 506006 297 1566 2180 56 0 0 0 0.05 94.64 0.00 0.05 1.44 5.04 2:18:54
vircpp1 107429 41 259 743 1 0 0 0 0.01 92.16 0.00 0.05 1.87 2.85 0:13:20
vircpp2 134421 209 906 1447 2 0 0 0 0.02 89.81 0.00 0.07 1.99 3.55 0:59:41
vircpp3 135116 13 250 773 0 0 0 0 0.00 96.82 0.00 0.02 1.17 2.95 0:12:41
vircpp4 137165 19 209 767 0 0 0 0 0.00 96.20 0.00 0.03 1.27 3.72 0:13:29
vircppl1 139344 23 282 1349 0 0 0 0 0.00 97.07 0.00 0.01 0.78 17.58 1:25:07
vircppl2 173538 21 267 1303 0 0 0 0 0.02 97.07 0.00 0.01 0.72 17.68 1:21:02
vircppl3 179818 1 135 1045 0 0 0 0 0.00 97.92 0.00 0.00 1.92 3.66 0:08:25
vircppl4 169852 11 184 1171 0 0 0 0 0.01 97.81 0.00 0.01 0.59 15.95 0:50:01

Table 4.7: Computational results of the branch-and-price code with the stabilized methods
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power resource of parallel systems to solve the crew pairing problems. The main
objective is still to speed up the solution process.
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Chapter 5

Parallel ABACUS

5.1 Aspects of Parallelization

It is quite obvious that a parallel approach is a good choice for difficult problems which
cannot be solved in a reasonable computation time by a sequential implementation (see
Chapter 3). This approach especially makes sense in solving combinatorial optimiza-
tion problems, such as our crew pairing problem. In the branch-and-cut approach for
crew pairing problems discussed in Chapter 3, there are difficulties (computation time,
memory) that arise in the process of solving test problems. In order to have a “good”
design of a parallel solver, we will focus on its related issues. Note that, although there
are various aspects of parallelization in general, the thesis mainly aims at reducing
the computation time. Other aspects are less considered. Readers interested in them
are referred to Chen and Ferris (1999), Eckstein et al. (2000), Ralphs et al. (2003) for
related works. Besides contributing parallel implementations, they also give us general
reviews on the design of a parallel branch-and-cut-and-price solver.

5.1.1 Communication library

ABACUS has been parallelized to work on clusters of computers by Böhm (1999).
Distributed memory systems are also the targeted environments. They consist of a
communication network connecting a group of processors having their own and sepa-
rated memory. In the old parallel ABACUS, the communication among processors is
performed by the Adaptive Communication Environment (ACE) library (see Schmidt,
1998) which is a good library in terms of flexibility, portability, and thread-safety. It is
quite good in developing applications on distributed systems because it supplies a diver-
sity of functions and classes for concurrency and synchronization control, interprocess
communication, event de-multiplexing, etc. In other words, the library provides a good
programming environment on the layer of distributed object computing middle-ware.
However, it does not care much on performance issues. The high-overhead TCP/IP
of operating system is its communication sub-layer. Therefore, it should not be used
for highly computing-demanding applications. Moreover, it is not a standard and well-
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supported communication library on many parallel computers nowadays and in future.
Therefore, it will likely be an obstacle on the progress to use parallel ABACUS as a
framework for discrete optimization.

An effort should be made to migrate it to high performance systems using the
message passing as a main communication model. Message Passing Interface (MPI)
(see Message Passing Interface Forum, 1995) will be chosen not only because it is the
most famous message passing standard, but also it is implemented on many parallel
computers. There is another famous message passing library called Parallel Virtual
Machine (PVM) which has been developed at Oak Ridge National Laboratory, USA.
There are many books (e.g., Geist et al. (1994)) about this library and it is also
mentioned within books on parallel computing. However, MPI is preferred to PVM
because MPI often delivers a better communication performance on parallel PC-based
computers.

The design of the ACE-based parallel ABACUS strongly bases on the multi-threading
support of ACE in which each thread is assigned a specific task and is programmed
independently. They run simultaneously to execute the branch-and-cut-and-price ker-
nel, to share bound information, branch-and-bound nodes and other necessary data.
Meanwhile, standard MPI 1.0 has not supported multi-threading yet. Version 2.0 of
MPI overcomes the shortcoming of the predecessor and, furthermore, supplies features
which can be used to modify the ACE-based library without a big change of design.
Nevertheless, none of the implementations of this version are available. A new design of
the communication has to be exploited in order to efficiently use current MPI libraries
and prepare for further extensions.

5.1.2 Task granularity

In this section, we will consider different levels of parallelization in order to get a
good performance. In general, a small unit of work results in much communication
cost. By contrast, a large unit of work presents possible a bad load balancing. In
any branch-and-cut-and-price solver, there are mainly three computationally intensive
parts:

Linear relaxation

As seen in Chapter 3, the sequential program often spends a major portion of time
in this phase for difficult problems (e.g., “aa01”, “aa04”). Therefore, it is a good
target for parallelization. As mentioned in Chapter 1, there are two main methods
in linear programming: the simplex method (including its variants) and interior point
methods. There are some efforts to parallelize them. Since the simplex method is
quite effective in a branch-and-cut framework, we will consider it primarily in the
thesis. Yarmish (2001) investigates many aspects of a distributed implementation of the
simplex method. In his work, readers can easily see a limited number of processors on
which the parallel simplex solver performes best. The simplex method strongly depends

101



on the movement from vertex to vertex. We can only benefit from the parallelization
of each iteration, which is not much useful. Besides that, the experiments in Yarmish’s
work also underline this finding. The limitation is a critical point that has a strong
impact on the extensibility of his parallel solver. More information on the parallel
simplex method can be seen in that thesis.

Coleman et al. (1996) implement a parallel interior point solver for linear program-
ming. The parallel part is mainly for sparse Cholesky factorization. Their solver is
designed to solve very large size Netlib LP test problems. This is due to the fact that
the factored matrix is distributed among processors. The distribution is a good ap-
proach for dense and large matrices which are impossible to be stored on the memory
of one processor. Although interior point methods are of a polynomial computation
time, it is still not easy to “warm start” after violated cutting planes have been added
into model. Therefore, we will not make any further study on this subject.

Moreover, with test crew pairing problems (e.g, “nw04”) which require much of the
separation time, the approach of only parallelizing the linear solver cannot give a good
speedup. Amdahl’s law gives us a formulation to compute the theoretical speedup in
which there is a strict sequential part B (in percentage) of an algorithm. In more
details,

Sp =
p

B × p + 1−B
, (5.1)

where p is the number of processors. For problems involving more than 50 percent of
the total computation time for separation (and/or preprocessing, heuristics), a parallel
linear relaxation is not enough to obtain a good speedup. In other words, the maximum
speedup is limited to 1/B. If we want a good speedup on quite a large number of
processors, we should think about different or at least additional ideas.

Cutting plane separation

All cutting planes which are used in the sequential implementation are globally valid.
Time to separate them is small for most of the test problems. It is not necessary and
effective to parallelize the separation. Fast separation algorithms such as row-lifting,
greedy, GLS, are better to be implemented in sequential. We will see in Chapter 6
the variable pricing is more worthy to be parallelized. One thing which can come
into vision is how to store these global inequalities. Several parallel designs keep the
global objects in a center where they will be delivered to processors on demand. For
example, this approach is used by PICO, FATCOM, COIN/BCP, and SYMPHONY.
This centralized idea is also applied to store open nodes on these parallel framework.
Storing all data on a master makes the design easier to be implemented. However,
there are some problems likely to appear. The first is that a bottleneck can arise at
the master if the number of processors increases, limiting the scalability of the design.
In order to avoid this problem, the idea of worker-hub-manager framework has been
suggested. The pool of processors now will be partitioned into clusters which have a
sufficient number of processors and are controlled by a hub. In this way, there are a
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limited number of processors communicating with their hub which, in turn, exchanges
data with a unique manager. Another problem is that we cannot use the master for
solving nodes if it is idle. Although it is possible to implement that idea, it will turn
to be a complicated task.

Preprocessing, heuristics

Similar to the two aspects above, the parallelization of just these steps is not preferred.
We can solve each part in parallel in order to reduce the effect of Amdahl’s law.
However, time to gather data and transfer data back to computing processors can
dominate the overall computation time. Remember that we aim to design a parallel
solver for a loosely coupled system in which the memory is distributed and the network
connection often has a low bandwidth and a high latency.

Some researchers use a high synchronization approach for parallelization implemen-
tations. This means all processors solve each phase of a typical branch-and-cut code
together. One example of this approach is the work of Linderoth et al. (2001) which also
attacks large scale set partitioning problems as the thesis will show later. The advan-
tage of this approach is that the branch-and-bound tree is the same for both sequential
and parallel runs with a high probability. In that work, the lower communication layer
also uses a library (PVM) for distributed memory systems, and its implementation has
been tested on a MPP (IBM RS/6000 Model 390). In their computational results, the
speedup is not good even with a small number of processors (less than 16 processors).
Time reduction in one phase does not guarantee the reduction of total time. Certainly,
despite the same branch-and-cut settings, any sophisticated branch-and-cut framework
can give different computation times under slightly different environments. Therefore,
it is quite difficult to compare parallel solvers. However, we prefer an implementation
introducing a good speedup even with a quite large number of processors.

With the remarks above, choosing a single branch-and-bound node as a unit of work
is the most suitable for a parallel branch-and-bound solver. We will consider how to
solve branch-and-bound nodes on processors and how to store them across a network.

5.1.3 Pool of nodes and load balancing

Most parallel branch-and-bound solvers employ the idea of storing open nodes in one
(or few) processors. Furthermore, these processors are only responsible for performing
management tasks. The central processor follows a node selection strategy to pick
nodes from the pool and distributes them to computing processors under a job de-
livering strategy. The approach can be seen in many new parallel solvers, such as
SYMPHONY, COIN/BCP, FATCOP.

However, our parallel ABACUS uses a different way of storing open nodes. Every
processor has its own pool of nodes. We can call them local pools. The branch-and-cut
core on a processor will select the next candidate to be processed from its local pool. In
addition to the local pool, processors have a mechanism to share their open nodes with
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others. A good sharing should pay attention to the load balance and other information
closely related to the branch-and-cut solver.

5.1.4 Object oriented design

ABACUS is designed as an object oriented framework which supports developing
branch-and-cut-and-price based applications. It consists of a collection of classes. Most
of them are designed as a black-box which hides the algorithmic structures of a typi-
cal and complicated branch-and-cut-and-price algorithm from the user. Besides that,
ABACUS requires that some of its abstract classes must be derived to create prob-
lem specific classes. They will help ABACUS to know how to build a combinatorial
problem from the user data structure and how to solve that problem under the branch-
and-cut-and-price principle. There is a wide range of classes and their functions which
can be redefined to satisfy a variety of user requirements. A small example as the
TSP solver discussed in the ABACUS guide shows that ABACUS is an easy-to-use
framework. Moreover, with ABACUS, a simple code can be improved to solve difficult
real-world problems. This C++ framework satisfies its own design criteria: flexibility,
extendibility, easy-to-use, functionality and portability. Furthermore, ABACUS also
tries to guarantee the aspect of efficiency by considering carefully its internal design.
Redundant parts are removed as much as possible with the other design criteria above
being only impacted slightly. As as result, ABACUS is widely used in the combinatorial
optimization community. More details can be found in the work of Thienel (1997).

The design of the parallel ABACUS should not break the good properties of the
sequential version. Moreover, the design also aims at users who have little experience
in parallel programming. This means that users will only be required to add few simple
classes and functions to their sequential codes in order to have a parallel version. Most
aspects of parallel programming should be invisible from a user’s viewpoint.

The design of the parallel ABACUS is visualized in Figure 5.1. A class, named
ABA PARMASTER, is added to be responsible for communication among processors. As
mentioned in Section 5.1.3, each processor has its own local pool of open nodes. In
more detail, the pool of the sequential ABACUS is still the pool in the parallel version.
The main difference is that the local pool is accessed not only by the ABACUS kernel
(for computation on the local processor), but also by a balancer which will send open
nodes to other processors as requested. The notification server will share information
with other processors in order to keep the global state information in ABA PARMASTER

up-to-date.

ABA PARMASTER keeps global information of parallel runs. It also responds to noti-
fication messages from other processors, such as bound changes, new numbers of open
nodes, termination checking. ACE provides a capability to implement easily event
handlers for these messages. The sequential ABACUS has been changed to send or
broadcast the notification messages when the state of the ABACUS changes. The bal-
ancer and notify server run concurrently as threads along with the ABACUS kernel.
This will be a painful problem in the process of replacing ACE by MPI. We will solve
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− preprocessing
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PARMASTER

node node

node

node

node

Notification server − dual/primal bounds
− # open nodes
− inequality IDs
− etc.

Termination detector − wave 1 signal
− wave 2 signal

Load Balancer open node

Figure 5.1: Architecture of the parallel ABACUS on a processor

this problem in Section 5.2. Remember that users do not have to pay attention to
three added classes. Users are only required to provide some additional lines of code
described in the next section.

5.1.5 Object serialization

MPI has the ability of using user memory space as communication buffer. This means
it will copy data inside the buffer directly to other processors. By doing so, a lot of
memory copies are reduced. However, this approach presents some difficulties. First
it creates troubles in designing a parallel framework. Users are possibly required to
call communication functions by themselves because the framework cannot know in
advance which specific data is needed to be exchanged among processors. This is in
contrast to one of our design criteria: hiding as many the parallel parts of ABACUS
as possible. Another problem links to the design of communication using MPI. If we
use the user memory for communication, it cannot be released or reused until the
associated communication function is completed. In a single-threaded environment,
this will block other funtions. It is worse if the parallel code is not designed carefully,
leading to deadlocks.

A solution is to copy the user data into a temporary communication space. Such
a process of copying is called serialization. Users have to redefine virtual functions to

105



copy necessary data of a class into a message which will be transferred by the communi-
cation library and to recreate the object from the received data. Classes which possess
such functions are ABA SUB, ABA CONSTRAINT, ABA VARIABLE, and ABA BRANCHRULE.
The function pack() is called to put data members into a message. A message con-
structor will rebuild the object from a message. The real communication is performed
by the parallel ABACUS kernel. To pack and unpack data members, users must call
functions provided by the parallel framework. They are supplied to deal with all prim-
itive data types and arrays of them. Since only users know how to deal with a received
message, they are required to provide an additional function unpackConVar(...,Id)

and unpackSub() to the class ABA MASTER. Id determines which user variable and con-
straint will be recreated. Therefore, it must be unique for each object and returned by
the function classId() of the object. A simple example of how to parallelize a TSP
solver is shown in Böhm (1999).

5.2 New Communication Design

The ACE-based parallel ABACUS is not designed as a master/slave architecture to
avoid bottlenecks. Instead, it performs a branch-and-bound tree decomposition in
parallel. Each processor runs a sequential ABACUS kernel to solve its list of open
nodes. The main difference between the sequential and parallel libraries relates to the
sharing of crucial data of the branch-and-bound framework. To do the sharing, the
library employs ACE to create several threads running concurrently. These threads
access the ABACUS kernel to get data, and exchange those data with corresponding
threads on remote processors which, in turn, put the data to the ABACUS kernel
on the remote sides. On one processor, if a thread is suspended by the operating
system, there is no influence on the progress of other threads. This means that the
blocking communication operations in ACE library are used with a small effect on the
performance of the kernel.

As discussed in Section 5.1.1, a new design of the communication is required for
the current MPI standards which support only one thread. The data exchanges will be
performed by periodically calling certain communication functions. The idea is quite
similar to PICO. However, it is not necessary to design a virtual thread scheduling
layer as in PICO. Instead, the new design will put those functions directly into the
sequential ABACUS code. This is also different from the ACE-based design due to
the single thread nature. It is critical to decide where to put those functions in the
branch-and-bound framework. In order to get a good performance for the new library,
we have to consider carefully the following two main factors:

(i) the time between two consecutive communication calls,

(ii) the time for a communication call.

There are several kinds of data to be exchanged among processors and their rates
of changes are certainly different. The position of their update functions within the
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ABACUS code are hence decided individually. This is also the answer to the factor
(i). For (ii), the blocking communication cannot be used because the communication
time will have a strong impact on computational performance. This is obvious when
a receive side is waiting for an incoming message, and all other computations and
communications will be suspended. An alternative mechanism is to use nonblocking
communication which often leads to better performance by overlapping communica-
tion and computation. It is also a basic communication mode not only supported
by all message passing standards, but also implemented in all MPI libraries. Using
nonblocking functions, we can obtain advantage from some lower level communication
networks which can exchange data without any impact on the computing power of
processors. In summary, the asynchronous message passing approach by nonblocking
functions avoids inherent synchronization issues, which can create long delays in a
multiprocessor environment. However, it is hard to design a system using nonblocking
communication and one needs much tuning in order to get a good performance. After
launching a nonblocking communication, the flow of execution must decide when to
check its completion while not breaking the main computation into fragments. In order
to apply this mechanism, we implement two functions for each kind of exchanged data:
one for the send side and another for the receive side. Their structures are shown in
Functions 5.2.2 and 5.2.1.

Function 5.2.1 Nonblocking receive function

1: if (flag[p] == true) then
2: <probe any incoming message from p>
3: if (there is a message) then
4: <start a nonblocking receive>
5: flag[p]← false

6: end if
7: else
8: <check the completion of the nonblocking receive>
9: if (the receive is completed) then

10: <call a corresponding unpacking function>
11: <transfer received data into ABACUS kernel>
12: flag[p]← true

13: end if
14: end if

Remember that p is a remote processor. And the broadcast will be performed by
a loop through all processors, except the local one. In Function 5.2.1, the variable
flag[p] operates as a state variable for receiving messages from a given processor i. If
it is true it means that no nonblocking receive for p has been submitted. If so, the
receive function probes for any incoming message and launches a nonblocking receive
if some exists. Right after launching, the state variable flag[p] will be changed to
false in order to guide the function to check the completion of the receive. Then,
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a corresponding unpacking task is performed depending on the kind of received data.
Two phases in the receive function are also essential in order to adapt to different
message sizes.

Function 5.2.2 Nonblocking send function

1: <check the completion of the previous send to p>
2: if (the previous send is completed) then
3: <pack the data to be sent into a message>
4: <start a nonblocking send of the message>
5: end if

The send function is more simple than the receive one. In a similar way, an MPI
nonblocking function is also used. Another important point is that the previous send
must finished before the next one can be started. This is reasonable with all kinds
of data though it may delay the information update to remote processors. However,
for certain important information which must be up-to-date, cancelling a sending can
cause the whole parallel search to show strange phenomena. For example, the lack of
updating the dual bound of other processors makes the local processor give a wrong
decision on load balancing. Therefore, in the real implementation we use a more
complicated flowchart for those kind of data to guarantee that all necessary messages
will be sent. In broadcasting such a kind of data, the loop through all remote processors
will be stopped immediately if a send cannot be performed. Then, a flag is set in order
to restore the function from the stopping point.

In the ACE design, mutex operations must be used to solve conflicts on accessing
objects shared among threads (e.g., the list of open nodes, constraint/variable pools).
Therefore, besides the communication time, the overhead of the ACE-based library is
mainly from those operations and thread switching. It is quite clear that the perfor-
mance of the new MPI design will be affected by the polling for completions of the
nonblocking operations. In the case no communication is needed, the performance ex-
pense of the functions is quite small, only coming from conditional statements. The
position of update functions for each kind of data will be discussed separately in order
to reduce the overhead of the functions.

Before going further, readers should remember that generally there are two main
loops in the branch-and-cut-and-price framework. ABA MASTER controls the outer loop
(see Algorithm 5.2.3) of the branch-and-bound algorithm which selects nodes one-by-
one and optimizes them with a cutting plane or column generation algorithm. That is
the inner loop (see Algorithm 5.2.4) which belongs to ABA SUB. Since nonblocking send
and receive functions will be inserted directly into the code, blocks in Figure 5.1 do
not mean independent threads any more. Instead, they can be thought of as functional
blocks. The block NOTIFYSERVER is dropped out of the new design because notification
events will be handled by PARMASTER.
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Algorithm 5.2.3 Branch-and-bound loop with communication functions

1: while (true) do
2: s← next open node
3: if ( s != NULL) then
4: <optimize s>
5: if (there is an error) then
6: break

7: end if
8: if (s is fathomed) then
9: <delete s>

10: end if
11: else
12: <start the termination check>
13: if (termination condition is satisfied) then
14: break

15: end if
16: <update the global dual bound>
17: <update the sets of constraint/variable IDs>
18: end if
19: <update the global primal bound>
20: <update new numbers of open nodes>
21: <call a function to balance the number of open nodes>
22: end while

Bounds and number of nodes

Functions exchanging primal bounds could be inserted into the outer loop (line 19
of Algorithm 5.2.3). However, the primal bound receive function is coded within the
inner loop at line 4 of Algorithm 5.2.4 in order to get the current node fathomed as
quickly as possible. Obviously, if a new primal bound is found by a processor, it will be
sent immediately to other processors. Hence, the function to send the bound is called
immediately after the discovery. A new dual bound on a processor is broadcasted as
soon as the those functions for primal bound is finished. However, the update of the
dual bound among processors should be performed more regularly. It is the reason why
its update functions are placed within the cutting loop. However, the functions are
also called when the processor is idle (line 16 of Algorithm 5.2.3). Normally, the global
dual bound should be better (e.g., increasing in a minimization problem). However,
in parallel runs, the global best dual bound can get worse. This does not happen in a
sequential execution but could occur in parallel. When a processor has finished sending
a node and its corresponding remote processor has not received the node, the ABACUS
layer has no information on the node. Thus, the bound of this node is not known by
any processor, possibly leading to a better global dual bound. After receiving the node,
the global dual bound will be updated back to the worse value (i.e., the dual bound of
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Algorithm 5.2.4 Cutting and pricing loop with communication functions

1: while (true) do
2: <update the global dual bound>
3: <update the sets of constraint/variable IDs>
4: <update the global primal bound>
5: <call the cutting plane phase of the sequential ABACUS>
6: end while

the node just received).
Two functions for the number of open nodes are placed within the outer loop

because this counter only changes in this level (see Algorithm 5.2.3). Whenever a node
is removed from the local pool, the processor will broadcast its new state to all others.
The number of open nodes must be sent successfully, especially when there is no open
node. This is important for load balancing.

Open branch-and-bound nodes

Different from the bound exchanges, if the node send function finds out that the previ-
ous send has not been completed yet, it will not discard the send. Instead, it puts the
node back to the local pool. We will see more details in Section 5.3 which will discuss
a new load balancing mechanism.

Similar to the ACE-based library, the new library sends only identification num-
bers (IDs) of constraints and variables. Each processor has a database storing sets
of identifications of constraints and variables which are currently available on other
processors. Using this database, a sender could decide which constraints and variables
should be delivered along with the node. Note, that constraints/variables of original
integer formulations certainly do not have to be sent because they always exist on
every processor during the optimization startup. Since those identification databases
sometimes are not synchronized correctly among processors, it is possible that a sender
can send more objects than needed. In such a case, there occurs no error to the node
which is recreated on the receiver because the receiver will discard redundant objects.

In order to reduce the number of redundant constraints or variables sent, it is
essential to update the identification databases. A broadcast of newly generated iden-
tification numbers is executed at the end of a separation or pricing. Since in each
separation or pricing there is a number of new constraints or variables, they are col-
lected into a package to be sent together. The receive function of identification numbers
is presented in both Algorithms 5.2.3 and 5.2.4 because the identification databases
should be up-to-date.

5.2.1 Termination detection

It is clear that the execution cannot quit the branch-and-bound loop although there
is no open node in the local pool. The processor must wait for unsolved nodes from

110



other processors or a termination signal emitted from a given processor. Moreover, it
is possible that all processors are idle but some messages have not been delivered yet.
They can cause certain processors to restart computation. Therefore, we need a stable
algorithm to detect the termination condition when all processors are idle and there
is no more message in transit. The termination detection is performed by the four
counter method (see Mattern, 1987) as following.

Let sp(t) and rp(t) be the numbers of messages sent and received respectively by
the processor p at the global time instant t. The total numbers of messages sent and
received at the global time instant t are

S(t) =
∑

p sp(t)
R(t) =

∑

p rp(t).
(5.2)

Unfortunately, the global time instant t cannot be obtained. Instead, we can only
have values:

S∗ =
∑

i si(ti)
R∗ =

∑

i ri(ti).
(5.3)

In order to terminate the global computation safely, all processors are idle and
S(t) = R(t) (i.e, all sent messages have been received). To ensure that, the four
counter method implements counters sp(t) and rp(t) on each processor. One dedicated
idle processor starts a control wave to collect these counters from all others. If it sees
S∗ = R∗ (we denote them by S∗

1 , R∗
1), it will start the second wave also to obtain values

of the counters. We denote the new sums by S∗
2 and R∗

2. If four numbers are equal,
the computation is terminated.

Let t1 be the time the initiator starts the first wave, t2 be the time it receives
the counters, t3 be the time it starts the second wave, and t4 the time it receives the
counters of the second wave. We the have the following remarks:

(i) if t ≤ t′, si(t) ≤ si(t
′), and ri(t) ≤ ri(t

′).

(ii) if t ≤ t′, S(t) ≤ S(t′) and R(t) ≤ R(t′) (due to (i)).

(iii) Because we can only accumulate counters at different time instants, we should
find a relation between S and S∗, R and R∗. Since the counters on processors
can increase after replying to the initiator, we have S∗

1 ≤ S(t2), and R∗
1 ≤ R(t2).

Deducing in a same way, S(t3) ≤ S∗
2 , and R(t3) ≤ R∗

2.

We have

R∗
1 = S∗

2 ⇒ R(t2) ≥ S(t3) (iii)
⇒ R(t2) ≥ S(t2) (ii)
⇒ R(t2) = S(t2) (due to R(t) ≤ S(t))

Therefore, the termination has been reached at t2. Although any processor can be
the initiator, our implementation chooses Processor 0 to do that job. When seeing no
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open node, it will launch a termination detection. Other processors passively reply
and wait for command messages from it. The outer loop is quit if the termination
condition is reached. To avoid deadlock, nonblocking communication is also used in
the termination detection.

5.3 New Load Balancing

The balancer in the old library is quite simple and called through the function
ABA OPENSUB::select() three times before going to a normal selection. The old bal-
ancer actively sends a request for an open node from other processors. If there is
a suitable node, the processor will be paused in order to wait for it. This possibly
contributes much overhead to the total performance. Furthermore, the old design of
the balancer is supposed to sticks firmly to the ABACUS kernel, reducing the flexi-
bility in designing new load balancing strategies. The balancing layer should be quite
independent from the computing kernel, especially in exploiting large search trees in
combinatorial optimization.

A new load balancer will run independently with the kernel by being called in the
branch-and-bound loop (line 21 of Algorithm 5.2.3). It can be viewed as a virtual
thread which sends or receives nodes through the network and gets or puts them in or
out the list of open nodes. This approach hence helps developers to easily add new load
balancing methods into the parallel library. In the new parallel ABACUS, the function
select() is similar to that of the sequential version and is only used by the ABACUS
kernel. A different function named ABA OPENSUB::select4Remote() is dedicated to
the load balancer. Although it uses the same enumeration strategy as select() does,
it will not return a node if the pool has only very few open nodes. It could be that
the time for a node reaching a remote processor is longer than the time to solve it
locally. That point makes me consider the idea not to choose the first open node in
pool. Instead, a node whose position corresponds to the proportion between “time to
send” and “time to solve” will be picked out. The proportion is measured within the
branch-and-bound loop.

After sending an open node to another, the state of a processor changes, especially in
terms of bounds, and the number of open nodes. However, if the processor considers all
those factors for each remote processor immediately, this consumes much time because
several state updates could be performed in one round of sharing. Moreover, some
of such global state updates are unnecessary. Therefore, the new library chooses a
different choice to ask a load balancing strategy to specify which node will be sent
to each remote processor beforehand. Then, the parallel ABACUS does the actual
sharing. If the previous sending to a remote processor has not been finished yet, the
corresponding node is put back to the pool. By doing so, ABACUS developers are
free to implement new load balancing methods. They only have to write new code to
specify which processors will receive nodes under a new balancing strategy. The parallel
ABACUS will perform the actual sending. Note, that some methods require additional
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global information. In such a case, the developers should programme more functions
which exchange the necessary information of the method using the mechanism of the
two nonblocking functions mentioned in Section 5.2.

There are two load balancing strategies implemented in the new library:

• Idle: if a processor sees another idle, it will send a node to that processor
immediately. Note that the sender will not send any if there is only one left in
its list.

• BestFirst: this method also sends a node to idle processors right away. Fur-
thermore, if not, it will check the dual bound of remote processors. If the re-
mote bounds are much better (e.g., higher in an optimization problem) in com-
parison with the local bound, the local processor will send suitable nodes to
the remote processors. Denote by z local, zremote, and z the dual bound of the
local processor, the remote processor and the global best dual bound respec-
tively. The tolerance ∆z is given by a ABACUS parameter file under the variable
ParallelBestFirstTolerance. If |z local − z| < |zremote − z| × ∆z, a new node
with the dual bound better than zremote will be sent to the remote processor. The
smaller ∆z, the less nodes will be transferred between processors.

In the beginning, only Processor 0 is busy to solve the root node, and all others are
idle. One idea comes to force an end to the separation phase in order to generate child
nodes for other idle processors. This is quite meaningful to reduce the idle time. We
call it the early branching technique. The new parallel ABACUS supplies a parameter
nIterationsBeforeIdleCheck to specify the number of separation iterations before
checking whether to perform the early branching or not. The default value is -1 (i.e.,
the separation will work as the sequential ABACUS does). The condition to stop
separation is when the global number of open nodes is smaller than the number of
idle processors. It is reasonable not to branch early if other processors can supply
enough problems for idle processors. Note that this approach can lead to a larger
branch-and-bound tree. This will be shown in computational results.

5.4 Parallel Set Partitioning Solver

5.4.1 Parallelizing the sequential code

Issues concerning the sequential set partitioning solver were described in Chapter 3.
Very specific points will not be presented in implementation which can distract the
attention of readers. Moreover the process of parallelizing a sequential code is quite
simple. All constraint and variable classes of the sequential version are added with the
required pack and unpack functions. They are also implemented within new branch-
ing rule classes for the set partitioning problem. The derived class of ABA MASTER

has three member functions used to recreate constraints, variables (unpackConVar()),
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nodes (unpackSub()), and branching rules (unpackBranchrule()). Following the in-
structions in this thesis and the report of Böhm (1999), we transform a sequential code
to a parallel version with little effort.

Using a variable branching method of ABACUS, we have only two child nodes. If
many processors are exploited for computation, most of them are idle waiting for few
ones finishing certain separation steps or at least the first linear relaxation. In order
to reduce the idle time, therefore, we apply a so-called multi-branching method. The
number of nodes to be generated is decided based on the number of idle processors.
For example, assume we have two zero-one variables xf

1 , x
f
2 whose relaxation values are

not integers. We can then generate the four following branching rules:

xf
1 = 0 and xf

2 = 0,

xf
1 = 0 and xf

2 = 1,

xf
1 = 1 and xf

2 = 0,

xf
1 = 1 and xf

2 = 1.

With k variables, we can create 2k branching rules. We also use the default ABACUS
criteria to choose good branching variables. In addition, chosen variables will be sorted
with respect to those criteria in order to get a needed number of best variables. The
multi-branching technique is only activated if the global number of open nodes is small
(similar to the idea of the early branching). Using many processors possibly prevents
statistical information to be up-to-date. This possibly leads to wrong branching deci-
sions. In such a case, many processors will simultaneously perform the multi-branching,
generating more than the needed number of open nodes. Therefore, if we need m prob-
lems, and p processors have problems to be branched, the multi-branching on each
processor only generates k child problems with k < log2(m/n). With this branching
method, we hope to utilize idle processors as much as possible. Remember that it is
not guaranteed that a better performance will be obtained. The tree search direction
will be changed much.

Finally, after being compiled and linked with the parallel ABACUS library on a
parallel computer supporting MPI, a parallel executable is ready to perform computa-
tions. It is an advantage of the parallel ABACUS. The expense of designing a parallel
code from a sequential one is quite small. Furthermore, the resulting code can be used
on many parallel computers. The computational results of the parallel set partitioning
solver will be viewed in the next section.

5.4.2 Computational results

In order to test the new MPI-based parallel ABACUS, we use the sequential branch-
and-cut code discussed in Chapter 3. Readers can see more details of the sequential
implementation in that chapter. We reuse the default settings for the sequential runs
as following:

• Linear relaxation: CLP solver,
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• Cutting plane generation: cliques and odd cycle inequalities,

• Branching: Padberg-Rinaldi with α = 0.25; strong branching whose the number
of candidates is 10,

• Node selection strategy: best first search,

• Preprocessing: all methods supported by the sequential runs,

• Heuristics: dive-and-fix and near-int-fix.

We can test with many variants of algorithms and parameters, but, in this chapter,
we focus on the performance of the parallel solver which employs the new parallel
ABACUS. A good combination of algorithms and parameters for the sequential tests
will be used in this chapter. The parallel system for our computation is a cluster of 26
dual processor computers which are connected by a Myrinet network 1.2 Gbps. The
processor type is Intel Pentium III 800 MHz. Each computer has 512 Mbyte RAM.
The cluster now is integrated into HELICS which is a high performance PC cluster
at the Interdisciplinary Center for Scientific Computing (IWR) of the University of
Heidelberg.

Test problems have been described in Section 3.3.6. They are difficult test problems
generated from crew pairing problems. As designed, the parallel ABACUS library is
only helpful if the branching step is needed. Moreover, it could be a good choice for
problems which have a large number of branch-and-bound nodes in sequential runs.
Since different runs often give different performance results, several runs will be per-
formed for each test problem. One run will be chosen so that it has computational
statistics near the average of those of all runs.

Firstly, the performance aspects of interest should be mentioned. Tables in this re-
port have the following format: The name of test problems is in Column 1 which is fol-
lowed by the column “proc” showing the number of processors involved in computation.
Columns “B&B” and “B&B exch.” show the total number of branch-and-bound nodes
and the number of nodes exchanged among processors, respectively. Due to anoma-
lies in parallel search, these numbers can change significantly with different numbers
of processors involved. The next “Lp” is the column of number of linear relaxations
(also meaning the number of calls to cutting generation methods). The following five
columns present changes of the constraint matrix in both constraint and variable di-
mensions. Note that columns “m−” and “n−” do not take into account constraints and
variables removed in the preprocessing of root nodes. The next column “heu” presents
how many times the heuristics find a better feasible solution. Certainly, in any parallel
design, the efficiency is the most important factor to be considered. The remaining
columns are dedicated to the execution time for main tasks of the parallel branch-and-
bound solver. They are “%Pre” the set partitioning preprocessing time, “%Sep” the
separation time, “%Heu” the primal heuristics time, “%Bra” the branching time, “%Lp”
the linear relaxation time, “%Par” the parallel library time, “%Idle” the idle time, and
“%Cpu” the CPU time of parallel computation. There should be a remark here on how
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to collect these times. The measurement is only started after an integer formulation
has been read into memory. Another comment is that all those times will not be shown
in any time unit. Alternatively, they are viewed as a percentage of the total compu-
tation time which is shown in the column “ttotal”. Due to this way of presentation, it
will be clearer to see how the parallel solver acts in a global view. The overhead of
the library is quite interesting to observe, especially with the help of columns “%Par”
and “%Idle”. It is quite obvious that when the idle time increases, the number of calls
to communication functions also increases. This leads to a high CPU time within the
parallel library. However, the overall computation time will not be influenced. The
reason for it is straightforward because the communication time increases significantly
when there is no open node for computation. The last two columns help readers to get
a feeling on how much communication is active among processors.

In the default settings for parallel execution, nIterationsBeforeIdleCheck=-1,
the multi-branching is switched off, and ∆z = 5.0%. With these default settings, we
obtain the computational results in Tables 5.1 and 5.2. A quite good performance
is obtained. The most important target of the design has been achieved concerning
the improvement of the computation time in most cases. With a sufficient number of
processors, the total computation time is reduced for all test problems, except “us01”.
If the idle percentage is not so high, the speedup is quite good. However, the efficiency
of the parallel solver is strongly negatively affected if there are few branch-and-bound
nodes, such as in “us01”, “vncpp1”, “vncpp2”, and “vncpp3”. Although there are
time reductions, the speedup of the parallelization is not high. Problem “us01” also
has an additional reason. Since this problem possesses a very large matrix, it is easy
to understand that we cannot easily obtain a faster computation with this way of
parallelization in which the smallest processing unit is a branch-and-bound node (see
more in Section 5.1.2). With problems which have a very large constraint matrix and
need few branch-and-bound nodes, the matrix decomposition is a better parallelization
approach.

In order to consider the performance of the parallel ABACUS, a branch-and-bound
setting is used. The primal heuristics are also excluded to guarantee as little effects of
randomness as possible during long computations. The number of candidates for the
strong branching is reduced to 2. With those settings, sequential runs take quite a long
time to obtain an optimal solution. A speedup for each test problem is visualized in
Figure 5.2. Note, that the problem “us01” is not our concern due to the small number
of nodes. Then, we receive quite good speedups for time-consuming computations,
such as “aa01”, “aa04”. The super-linear speedup in case of “aa04” is not within the
expectation, but it happens sometimes. The thesis wants to emphasize an interesting
point concerning the idle percentage visualized in the right picture. If there are still
enough open nodes to supply for idle processors, we still have a performance improve-
ment (“aa04”). The parallel version of ABACUS library demonstrates its efficiency
through the set partitioning solver.

Now, we will try to investigate in more details why the poor performance happens
when using many processors. Since the parallel design is based on the idea of polling
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Name proc B&B Lp clique odd m+ n− m− heu time traffic
total exch. cycle %Pre %Sep %Heu %Bra %Lp %Par %Idle %Cpu ttotal #msg MB

aa01 1 143 0 686 1239 640 549 603 413 3 8.43 1.20 18.62 1.58 69.98 0.00 0.00 99.59 0:17:32 0 0.00
aa01 2 192 29 738 1790 867 587 676 497 3 7.74 1.20 16.23 1.40 65.86 3.03 7.22 97.98 0:14:30 360 9.47
aa01 4 199 52 764 1877 926 624 361 265 1 5.39 1.36 7.35 1.15 52.69 18.11 31.47 95.29 0:05:57 956 16.99
aa01 8 249 90 780 2102 1046 623 300 247 1 3.15 0.84 5.36 0.69 32.03 39.89 57.32 93.99 0:05:30 2762 29.58
aa01 16 214 75 694 2855 1445 557 294 236 1 1.52 0.51 2.72 0.32 15.00 63.35 79.74 95.08 0:05:23 6410 25.47
aa01 32 217 84 843 4167 2238 713 337 319 1 0.78 0.42 1.35 0.16 7.61 77.02 89.48 96.73 0:05:16 13440 32.65
aa04 1 303 0 1180 1480 839 955 844 408 3 10.46 2.04 13.76 2.06 71.18 0.00 0.00 99.55 0:17:15 0 0.00
aa04 2 374 61 1087 1452 931 902 1078 476 5 10.86 1.93 16.40 2.11 64.04 2.08 4.27 98.54 0:12:09 583 15.99
aa04 4 508 93 1578 1963 1189 1290 1037 555 4 12.24 1.24 16.88 1.92 59.27 5.01 8.36 98.28 0:11:08 1936 24.50
aa04 8 509 150 1517 3526 2162 1263 690 454 7 7.40 2.19 12.76 1.47 45.27 21.34 30.21 96.65 0:04:33 4019 39.70
aa04 16 707 318 1951 4813 3223 1596 740 546 6 4.45 1.43 6.78 0.78 26.70 47.76 59.14 96.21 0:04:12 13422 86.28
aa04 32 634 259 1846 6584 4212 1503 781 562 6 2.43 0.90 3.69 0.42 13.85 68.30 78.36 97.12 0:03:53 28874 79.56
kl02 1 21 0 73 326 248 62 0 0 2 43.05 1.38 5.64 1.59 47.77 0.00 0.00 99.60 0:03:37 0 0.00
kl02 2 17 4 54 266 220 43 466 8 0 38.76 1.11 1.51 0.97 31.21 9.56 25.17 95.01 0:01:47 38 2.79
kl02 4 25 8 71 316 269 58 0 0 0 25.45 0.73 0.75 0.68 21.18 26.99 50.28 93.44 0:01:47 165 5.58
kl02 8 25 8 71 316 269 58 0 0 0 12.59 0.37 0.37 0.34 10.51 48.82 75.12 92.66 0:01:47 423 5.59
kl02 16 25 8 71 316 269 58 0 0 0 6.05 0.17 0.18 0.16 5.01 62.85 87.89 95.12 0:01:53 911 5.62
kl02 32 33 12 67 235 257 50 20 10 0 2.73 0.06 0.10 0.08 2.43 73.53 94.29 96.92 0:02:05 2551 8.61
nw04 1 177 0 900 4203 96 723 68 11 4 21.77 38.02 4.90 0.41 26.45 0.00 0.00 99.92 0:20:22 0 0.00
nw04 2 148 31 623 2868 67 506 262 19 3 9.95 28.35 3.82 0.46 26.07 11.85 23.18 94.86 0:09:46 351 62.70
nw04 4 165 58 611 3059 74 506 819 9 2 8.76 15.44 2.17 0.30 15.13 33.04 53.35 92.11 0:08:37 1304 118.72
nw04 8 188 65 819 4697 144 696 70 7 2 3.95 10.06 1.15 0.15 8.03 53.00 73.73 92.43 0:08:22 3612 137.35
nw04 16 326 113 1443 8370 196 1232 0 4 2 2.39 7.62 0.65 0.07 4.14 66.58 83.03 94.78 0:10:42 12589 250.81
nw04 32 243 86 1190 7589 222 1034 0 4 2 1.18 2.36 0.25 0.04 1.79 80.46 93.56 96.68 0:10:42 19575 193.59
us01 1 9 0 65 516 157 60 0 0 0 12.84 5.04 6.52 0.98 64.60 0.00 0.00 91.14 1:06:41 0 0.00
us01 2 20 5 105 663 221 96 0 0 0 9.44 3.38 3.04 0.64 40.73 16.47 36.46 88.41 1:08:47 52 75.15
us01 4 19 6 121 822 269 111 0 0 0 5.54 2.14 1.63 0.33 21.49 33.37 65.35 86.82 1:03:19 156 91.95
us01 8 19 6 118 817 257 108 0 0 0 2.65 0.99 0.79 0.16 10.24 51.20 82.86 88.26 1:06:05 380 91.97
us01 16 13 4 79 543 155 72 0 0 0 1.07 0.34 0.42 0.05 4.30 65.40 92.43 91.56 1:03:35 601 61.26
us01 25 10 3 71 505 155 65 0 0 0 0.62 0.20 0.26 0.03 2.57 70.18 95.10 93.61 1:03:42 763 46.07

Table 5.1: Computational results of the parallel set partitioning solver with the default settings
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Name proc B&B Lp clique odd m+ n− m− heu time traffic
total exch. cycle %Pre %Sep %Heu %Bra %Lp %Par %Idle %Cpu ttotal #msg MB

vncpp1 1 19 0 44 209 179 35 0 0 2 37.28 1.36 3.96 1.38 54.30 0.00 0.00 99.77 0:10:35 0 0.00
vncpp1 2 35 6 76 496 321 60 173 76 2 19.92 1.35 8.60 1.15 43.32 10.60 23.18 95.23 0:11:01 50 23.63
vncpp1 4 57 20 98 451 418 77 156 94 6 18.69 0.91 2.97 0.86 31.89 24.44 41.78 94.23 0:09:13 327 78.76
vncpp1 8 69 26 113 564 488 89 222 137 8 9.18 0.50 2.22 0.47 17.39 46.93 68.46 93.37 0:09:21 956 102.42
vncpp1 16 61 22 95 475 403 74 0 0 7 5.77 0.24 0.96 0.25 8.21 60.67 83.46 95.24 0:08:39 1902 86.74
vncpp1 32 55 20 96 450 387 75 159 96 5 2.33 0.10 0.33 0.10 3.84 72.57 92.69 96.95 0:09:16 3466 79.19
vncpp2 1 3 0 20 118 84 17 5 39 1 26.37 1.07 24.85 0.33 45.76 0.00 0.00 99.79 0:05:51 0 0.00
vncpp2 2 4 1 22 133 96 19 0 0 1 16.40 0.60 12.41 0.16 23.21 17.16 45.96 91.62 0:05:58 16 3.83
vncpp2 4 4 1 22 133 96 19 0 0 1 8.06 0.30 6.25 0.08 11.44 37.07 73.05 90.74 0:05:59 46 3.83
vncpp2 8 4 1 22 133 96 19 0 0 1 3.93 0.15 3.03 0.04 5.76 53.12 86.55 92.56 0:06:07 106 3.83
vncpp2 16 4 1 22 133 96 19 0 0 1 1.84 0.07 1.45 0.02 2.68 61.09 93.31 95.20 0:06:33 212 3.84
vncpp2 32 4 1 22 133 96 19 0 0 1 0.89 0.03 0.68 0.01 1.32 66.99 96.66 97.19 0:06:48 406 3.87
vncpp3 1 13 0 39 206 165 30 392 60 1 37.52 1.34 3.73 0.98 54.41 0.00 0.00 99.74 0:07:45 0 0.00
vncpp3 2 16 3 35 174 135 24 163 67 1 24.48 0.74 2.23 0.58 34.23 15.68 35.87 92.45 0:06:27 37 10.09
vncpp3 4 19 6 38 202 153 27 94 152 1 12.51 0.48 1.29 0.35 20.58 35.20 63.09 90.82 0:05:29 166 20.19
vncpp3 8 19 6 38 202 153 27 94 152 1 6.11 0.23 0.63 0.17 10.11 54.75 81.72 91.98 0:05:35 388 20.20
vncpp3 16 19 6 38 202 153 27 94 152 1 2.87 0.11 0.31 0.08 4.76 64.92 91.02 94.70 0:05:55 826 20.21
vncpp3 32 19 6 38 202 153 27 94 152 1 1.40 0.05 0.15 0.04 2.33 72.17 95.54 96.91 0:06:06 1582 20.28
vncpp4 1 93 0 330 782 448 244 1134 286 2 5.72 2.46 5.65 2.44 80.17 0.00 0.00 99.56 0:22:31 0 0.00
vncpp4 2 45 6 113 517 268 74 571 256 1 9.10 1.61 3.73 1.63 59.79 9.24 20.74 95.73 0:08:00 74 18.31
vncpp4 4 77 26 148 510 315 97 554 248 1 4.73 0.88 2.32 0.98 34.10 31.64 53.71 92.11 0:07:46 571 79.27
vncpp4 8 155 54 336 1100 634 235 652 298 1 2.13 0.69 1.26 0.71 27.58 45.61 64.88 93.55 0:09:39 2307 164.67
vncpp4 16 145 50 298 1125 659 203 602 306 1 0.93 0.29 0.74 0.29 10.39 66.10 86.09 94.74 0:10:36 5435 152.94
vncpp4 32 80 27 184 970 526 131 558 282 1 0.56 0.15 0.32 0.11 4.14 75.41 94.12 96.90 0:08:14 6413 83.28

Table 5.2: Computational results for randomly generated test problems
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Figure 5.2: The speedups and %Idle of the parallel set partitioning solver in branch-
and-bound mode

through MPI communication objects to check their completions, the overhead of the
parallel ABACUS library naturally increases if there are very few open nodes globally
which are not satisfied by many idle processors. This often occurs in the beginning or
at the end of a run. Moreover, in a branch-and-bound search, there are possibly points
of time when only very few open nodes exist. This also reduces much the utilization of
all processors. Columns “%Par” and “%Idle” show the increase of the parallel overhead
and the idle time corresponding to the increase of the number of processors. From the
table, we imply that most of the parallel overhead is due to the idleness of processors.
The table also shows that if we use more processors, the idleness increases and it has a
strong impact on the speedup. With such problems, one way to improve performance
even further is to use a different approach of parallelization. Being different from a
simple branch-and-bound (without cutting plane generation), the time for each node
in the set partitioning solver is longer. Therefore, the idleness is also larger as a result.
The tree search for the problem “nw04” is visualized in Figure 5.3.a as an example.
Without any load balancing mechanism, we easily see in the figure that the processors
often wait for receiving an open node, especially at the end. The figure depicts that
processor 0 has no jobs for a long time. Furthermore, the search tree is narrow in width.
Although all the processors want to join into the computation, there is no problem to
supply them with. As mentioned before, the speedup cannot be improved if we use
more processors. The situation also occurs with the randomly generated test problems.

However, with the use of nonblocking communication, the library can spend much
of computing power for solving problems. The column “%Cpu” indicates that a quite
small part of the total time is used for operating system. Moreover, the overhead of
the parallel library is mainly due to using too many processors inappropriately. An
interesting point concerns the traffic exchanged among processors. We see that the
maximum volume of exchanged data is about 250MB. Certainly, with a high speed
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Figure 5.3: Search trees of “nw04” using 8 processors

network like Myrinet, transferring such volume takes a small time (about 2 seconds in
a global view). If we use a network of 100Mbps which is quite popular nowadays for
cluster systems, the needed time is also small in comparison with the total computation
time. This proves the efficiency of the parallel design.

In other computations, we will see the effect of the load balancing techniques men-
tioned before. The first technique is the early branching which forces a processor to
stop its separation immediately when realizing there are not enough nodes for idle
processors. As seen in the computation using the default settings, processors are of-
ten idle because there are not enough problems for them. It is expected that the
early branching technique will do a better job in the same situation. The parameter
nIterationBeforeIdleCheck is used to control the length of idleness. We should be
careful with this parameter. Stopping the cutting plane generation very early is pos-
sibly not a good choice because doing that makes a branch-and-cut code only execute
a simple branch-and-bound algorithm. But we can receive a benefit by reducing the
idle time of processors. Computational results in Table 5.3 are obtained with the de-
fault settings, except that nIterationBeforeIdleCheck=0. There are 2 interesting
columns: “B&B” and “%Idle”. There are usually more numbers of branch-and-bound
nodes in comparison with the default computation before. This is within the expecta-
tion because the branching will be performed earlier. Another different point relates
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to the reduction of the idle time. These two factors often have a tradeoff relationship
and both affect the total computation time. But the total computation time is smaller
in most cases. Figure 5.3.b shows a search tree of “nw04” which is quite different
to Figure 5.3.b . Processors are involved more often in any level of the tree. The
early branching works effectively with the test problems. There is quite an interesting
point on the cutting plane separation for “kl02”, “nw04” and “us01” when using more
processors than needed. Although certain clique and odd cycle violated inequalities
have been generated, they are not so much necessary for the solver to find the optimal
solution.

Another balancing method in examination is the multi-branching method which
will generate enough nodes for idle processors. The third tree in Figure 5.3 shows all
processors are to be utilized at any stage of the computation. Even though there are
very few open nodes at some time, the multi-branching method also prefers to creating
jobs for idle processors. Remember that, if we branch on many variables at a time,
the feasible region of the child nodes is stricter in comparison with branching on one
variable only. The reason is quite obvious as we fix many variables at a time. Then, the
multi-branching helps to reduce the tree depth a lot (e.g., the depth of the third tree
is half of that of the first tree for “nw04”). The number of branch-and-bound nodes is
usually increased this much according to the number of processors, as shown by Column
“B&B” in Table 5.4. Not as the default settings, the multi-branching method makes
processor more busy (Column “%Idle”). Although there are more branch-and-bound
nodes, the time for each node is likely to be smaller because the feasible region of a
problem is smaller and the separation for violated global inequalities often stops earlier.
Unfortunately, the multi-branching is not very helpful in the experiments. We see that
ttotal is smaller for some tests, but larger in others. Logically, the multi-branching would
be only effective in the case of narrow branch-and-bound trees. This just happens
sometimes in the test set (e.g., “nw04”). Moreover, solving an “easy” problem by
linear relaxation and cutting plane separation is possibly faster than branching it and
sending its children to other processors for solving. Working with problems of a large-
sized matrix, the multi-branching can also make computers run out of memory very
quickly. Therefore, one should be careful when using this technique.

The performance in Tables 5.3 and 5.4 demonstrates that the design expectations
for most of the test problems have been fulfilled partly, especially the early branching.
The smaller idle time of processors is followed by a better performance. Although
the anomalies in a parallel search is inherent to tree search, two recommended load
balancing techniques are little effective for the parallel set partitioning solver. They
need more testings, not only for other classes of problems, but also for set partitioning
problems (possibly not from the crew pairing problem).

Along with the change of the communication library from ACE to MPI, the new
parallel ABACUS has proven its effectiveness in parallelizing a sequential code. With
little knowledge on parallel programming, users can perform a big computation on
parallel computers. The new design of the library employs nonblocking communica-
tion which increases the overlap between computation and communication. Each kind
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Name proc B&B Lp clique odd m+ n− m− heu time traffic
total exch. cycle %Pre %Sep %Heu %Bra %Lp %Par %Idle %Cpu ttotal #msg MB

aa01 1 143 0 686 1239 640 549 603 413 3 8.50 1.22 18.60 1.58 69.91 0.00 0.00 99.59 0:17:21 0 0.00
aa01 2 174 23 664 1365 680 529 550 317 4 6.92 1.18 15.51 1.46 67.44 3.06 7.19 98.07 0:12:44 318 7.50
aa01 4 218 59 637 1940 1002 495 295 235 2 4.84 1.19 7.99 1.12 57.19 15.54 27.14 95.98 0:06:28 955 19.25
aa01 8 356 139 946 2772 1516 755 660 465 2 4.48 0.88 7.37 0.95 41.33 30.95 44.48 95.50 0:05:46 3194 45.45
aa01 16 387 146 458 1933 928 230 465 395 3 1.98 0.27 3.81 0.47 19.08 58.66 74.13 95.40 0:05:06 7731 47.90
aa01 32 415 154 283 455 228 39 488 421 2 1.08 0.03 1.97 0.25 9.60 74.76 86.94 96.93 0:05:03 16202 50.23
aa04 1 303 0 1180 1480 839 955 844 408 3 10.54 2.03 13.88 2.04 71.02 0.00 0.00 99.55 0:17:08 0 0.00
aa04 2 387 58 1328 1769 984 1077 921 452 1 12.05 1.24 16.12 2.09 65.99 1.20 2.39 99.03 0:15:26 636 15.22
aa04 4 497 92 1518 2614 1618 1241 931 559 5 10.01 2.28 11.25 2.05 65.44 5.05 8.41 98.39 0:07:22 1842 24.22
aa04 8 508 157 1477 4455 2628 1210 848 416 5 7.56 2.17 9.97 1.60 49.88 19.99 28.18 96.90 0:04:22 4049 41.54
aa04 16 916 427 1817 5341 3345 1403 1112 623 4 4.66 1.62 5.63 1.03 34.19 41.44 51.60 96.73 0:03:16 13141 114.54
aa04 32 696 277 934 4226 2341 545 1115 566 1 2.57 0.54 2.80 0.52 16.03 66.24 77.13 97.19 0:02:48 23942 75.81
kl02 1 21 0 73 326 248 62 0 0 2 43.39 1.38 5.60 1.57 47.56 0.01 0.00 99.67 0:03:36 0 0.00
kl02 2 18 5 26 76 89 15 910 18 1 32.53 0.62 2.16 0.75 30.24 11.43 31.39 94.79 0:01:01 38 3.46
kl02 4 25 8 71 316 269 58 0 0 0 25.41 0.73 0.77 0.69 21.25 26.63 50.26 93.41 0:01:47 165 5.58
kl02 8 43 14 24 0 0 0 1237 22 1 8.57 0.00 0.68 0.22 8.21 49.79 81.04 92.89 0:01:06 584 9.63
kl02 16 40 13 23 0 0 0 1127 21 1 3.91 0.00 0.31 0.10 3.81 59.57 90.93 95.40 0:01:10 1224 8.95
kl02 32 43 14 24 0 0 0 1237 22 1 1.89 0.00 0.14 0.05 1.73 66.04 95.42 96.98 0:01:13 2074 9.64
nw04 1 177 0 900 4203 96 723 68 11 4 21.85 38.04 4.91 0.41 26.32 0.00 0.00 99.91 0:20:23 0 0.00
nw04 2 200 35 586 2778 120 421 23 8 2 17.64 20.36 4.33 0.34 24.48 12.33 22.82 94.90 0:09:29 413 69.72
nw04 4 317 110 381 1413 80 175 81 18 3 15.64 5.93 3.64 0.30 19.70 30.87 44.36 93.76 0:06:04 1887 216.48
nw04 8 174 61 122 79 8 8 73 10 4 9.82 0.16 1.56 0.20 10.06 52.86 74.47 92.71 0:04:06 2408 118.90
nw04 16 231 80 152 0 0 0 70 6 5 5.47 0.00 0.84 0.11 5.58 64.13 85.30 95.08 0:04:03 6554 155.18
nw04 32 251 92 159 0 0 0 0 4 6 2.53 0.00 0.39 0.05 2.51 74.91 93.11 96.92 0:04:35 12663 178.51
us01 1 9 0 65 516 157 60 0 0 0 13.03 5.15 6.55 0.98 65.46 0.00 0.00 92.35 1:05:12 0 0.00
us01 2 12 3 48 334 73 40 0 0 0 9.17 1.48 9.09 0.31 31.49 18.46 43.16 87.66 0:58:58 34 45.15
us01 4 16 5 19 87 21 9 0 0 0 5.96 0.19 4.48 0.18 16.15 35.21 69.69 86.18 0:58:48 118 73.57
us01 8 25 8 13 0 0 0 0 0 0 2.75 0.00 2.12 0.13 8.53 51.66 84.21 88.08 1:03:28 394 117.71
us01 16 22 7 13 0 0 0 0 0 0 1.47 0.00 1.07 0.06 4.18 64.81 91.77 91.65 1:01:34 805 103.00
us01 25 25 8 14 0 0 0 0 0 0 0.85 0.00 0.57 0.04 2.40 71.30 94.45 93.19 1:13:27 1311 117.72

Table 5.3: Computational results of the parallel set partitioning solver with early branching
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Name proc B&B Lp clique odd m+ n− m− heu time traffic
total exch. cycle %Pre %Sep %Heu %Bra %Lp %Par %Idle %Cpu ttotal #msg MB

aa01 1 143 0 686 1239 640 549 603 413 3 8.43 1.21 18.62 1.58 69.97 0.00 0.00 99.60 0:17:32 0 0.00
aa01 2 193 34 702 1743 839 557 634 512 3 7.88 1.13 16.48 1.46 64.85 3.43 7.94 97.85 0:14:07 353 11.10
aa01 4 212 55 799 2037 1002 648 363 273 1 5.39 1.41 7.37 1.15 52.71 18.07 31.30 95.09 0:06:08 984 17.98
aa01 8 299 136 819 2705 1406 687 415 319 2 3.76 1.15 4.19 0.70 38.88 35.39 50.56 94.81 0:04:54 2747 44.67
aa01 16 540 259 1141 2383 1242 871 1321 1116 1 4.16 0.57 1.42 0.52 31.54 47.72 60.99 96.24 0:04:14 10561 86.21
aa01 32 1557 932 2984 4214 1861 2435 2151 3241 2 4.53 0.53 0.76 0.52 33.23 50.29 59.21 97.85 0:04:34 34091 324.54
aa04 1 303 0 1180 1480 839 955 844 408 3 10.45 2.01 13.89 2.05 71.17 0.00 0.00 99.58 0:17:16 0 0.00
aa04 2 303 46 965 1352 843 772 998 506 4 11.59 1.81 17.22 2.00 62.70 2.08 4.43 98.49 0:11:47 481 12.08
aa04 4 518 103 1691 2134 1306 1421 675 673 6 12.98 1.34 16.57 1.97 58.84 5.05 8.31 98.41 0:10:55 1989 27.14
aa04 8 854 207 2912 4257 2534 2354 1698 1191 7 9.73 1.94 11.09 1.78 58.70 11.46 15.97 97.99 0:06:42 6378 54.81
aa04 16 1905 978 4788 5914 3671 4022 1817 1243 3 8.38 2.39 4.40 1.51 53.14 23.37 28.10 97.88 0:04:47 22832 260.75
aa04 32 4461 3008 8151 9755 5798 7007 3723 3356 4 10.33 2.02 3.37 1.36 50.13 27.78 30.46 98.63 0:05:07 73300 839.25
kl02 1 21 0 73 326 248 62 0 0 2 42.99 1.36 5.54 1.59 47.83 0.00 0.00 99.48 0:03:37 0 0.00
kl02 2 17 4 54 266 220 43 466 8 0 38.28 1.10 1.51 0.99 30.70 9.99 25.13 93.94 0:01:47 38 2.79
kl02 4 25 8 71 316 269 58 0 0 0 25.34 0.73 0.76 0.68 21.26 26.87 50.30 92.91 0:01:47 167 5.58
kl02 8 101 42 196 779 655 140 1224 62 0 19.36 0.89 0.76 0.36 14.22 40.34 62.48 94.23 0:01:43 1500 29.16
kl02 16 254 121 305 858 926 193 2518 180 0 21.10 0.49 0.24 0.35 12.06 45.03 63.76 96.44 0:02:07 5109 84.63
kl02 32 426 191 484 1073 1366 283 6656 302 0 8.03 0.54 0.25 0.13 6.62 57.01 81.91 97.59 0:01:21 16714 134.73
nw04 1 177 0 900 4203 96 723 68 11 4 21.82 38.08 4.89 0.41 26.29 0.00 0.00 99.89 0:20:19 0 0.00
nw04 2 138 29 713 3547 91 604 312 23 3 12.45 28.48 3.44 0.42 22.54 12.72 25.59 94.23 0:11:34 349 58.81
nw04 4 193 70 755 3766 149 633 813 7 2 8.42 19.23 2.06 0.27 14.23 31.78 50.44 92.41 0:09:48 1453 142.33
nw04 8 293 118 864 4544 173 698 49 20 2 5.35 12.51 1.06 0.21 11.72 47.68 64.51 93.46 0:07:29 4333 247.39
nw04 16 392 177 630 3105 83 435 0 28 2 3.85 3.87 0.53 0.07 6.16 65.70 82.52 94.97 0:06:42 11032 375.81
nw04 32 832 389 1015 4765 92 646 0 64 2 2.48 2.95 0.27 0.03 3.47 75.13 88.20 96.93 0:07:14 41792 823.30
us01 1 9 0 65 516 157 60 0 0 0 13.09 5.18 6.55 1.00 65.89 0.00 0.00 92.89 1:04:46 0 0.00
us01 2 20 5 105 663 221 96 0 0 0 9.26 3.28 2.98 0.62 39.65 16.67 36.70 87.09 1:10:25 52 75.15
us01 4 19 6 120 820 263 110 0 0 0 5.23 2.02 1.55 0.32 20.49 33.86 65.58 85.26 1:06:13 155 91.95
us01 8 15 6 50 408 57 41 0 0 0 2.04 0.57 1.00 0.04 8.25 52.69 85.95 88.06 0:52:38 265 94.23
us01 16 22 9 74 514 150 61 0 0 0 1.41 0.34 0.46 0.04 4.39 65.14 90.93 91.10 0:58:09 800 140.67
us01 25 66 31 87 545 120 61 0 0 0 0.75 0.07 0.10 0.01 1.12 77.80 92.98 89.91 2:51:48 2899 492.78

Table 5.4: Computational results of the parallel set partitioning solver with multi-branching
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of data exchanged between processors has been considered appropriately in order to
reduce the library overhead. The MPI design also facilitates extensions to include
more complicated communication data. Certainly, aspects of performance cannot be
forgotten. We observed the performance of the new library by parallelizing quickly
a sequential set partitioning solver. With a suitable number of processors, solving a
set of well-known test problems in parallel, the library brings down significantly the
running time of all hard problems with the default settings. Good speedups could be
obtained with problems having a large branch-and-bound tree. There are two more
load balancing techniques added, one to the parallel library, and another to the appli-
cation code. The latter is possibly embedded into the ABACUS library. They help to
reduce the idle time of processors, and, hence, improve the performance of the parallel
runs.

There are still some limits in capability. However, the library can be enhanced and
more features can be added easily. We encourage users to test our new MPI-based
parallel library in order to get feedback on design and possible bugs.
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Chapter 6

A Parallel Pricing for the Branch
and Price Approach

When solving crew scheduling problems by column generation, the main task is to solve
the pricing problem in order to introduce new columns. This problem is NP-hard and
usually requires more than 90% of the overall computation time in all of our experiments
performed in Chapter 4 as well as in experiments reported in the literature. Therefore it
is critical to achieve good performance in this step. Moreover, after reading Chapter 5,
one can see that the parallelization on the level of branch-and-bound is only useful with
problems having a large number of unsolved nodes at a time. This does not seem to
happen often in case of the considered crew pairing problems. The parallel ABACUS
has not supported yet the local variables/constraints. Therefore, this chapter discusses
an approach of using a cluster of computers to solve the pricing problem. Several
aspects of parallelizing the pricing step are investigated and computational results are
reported. The parallel algorithms will be designed in such a way that they facilitate
extensions and generalizations. More details can be found in Hoai et al. (2003).

6.1 Parallelizing Sequential Pricing Algorithms

Many algorithms have been suggested to solve the pricing problem to optimality.
Desrosiers et al. (1995) discuss many aspects of using resource constrained shortest
path algorithms. Another way is to use k shortest path algorithms to find the k most
negative reduced cost variables. After ranking paths between two given nodes by k
shortest paths algorithms, a rule and regulation checking procedure will eliminate in-
feasible pairings. An application of a k shortest paths algorithm is developed by the
CARMEN systems to solve the crew scheduling problem (see Gustafsson, 1999). Con-
straint logic programming prevails with the ability to model these rules quickly and
easily. General approaches are discussed in Guerinik and Caneghem (1995) and there
are many papers concerning the use of CLP in crew management operations. In Chap-
ter 4, you can find more information about working on the pricing step of the crew
pairing problem.

125



There have already been efforts to use parallel computers for solving crew schedul-
ing problems. In PAROS (Alefragis et al., 1998), the parallelization is not implemented
in the process of solving the linear relaxation problem of the master problem. Instead,
PAROS distributes the enumeration of pairings over the processors and their outputs
will be fed into a set covering optimizer which is an iterative Lagrangian heuristic.
The set covering optimizer was also parallelized, but not as successful in terms of ef-
ficiency as the enumeration phase. The parallel algorithm shows good performance
when solving some real world problems of Lufthansa. Another system employing par-
allel computing is RALPH of Marsten (1997), but, unfortunately, there is no published
report available. A further idea for using parallel computers was suggested in Klabjan
and Schwan (1999). Here the huge number of feasible pairings is generated in parallel
and then used to construct constraint matrices of set partitioning problems. These
problems are then solved by branch-and-cut approaches. Finally, Chapters 3 and 5 of
this thesis present an approach to solve large scale set partitioning problems coming
from crew pairing problems by high performance facility.

Now we will revisit several sequential pricing algorithms in order to determine
the ones suitable for parallelization. Methods for solving the pricing problem can be
classified into the categories (as presented in Chapter 4):

• resource constrained shortest path problem,

• k shortest paths problem,

• constraint logic programming,

• hybrid approach.

The two first methods are based on graph algorithms. Although much work has
been done in the area of parallel shortest paths, the theoretical worst case execution
times of these parallel algorithms have the same bounds as those of the sequential ones
(see Awerbach and Gallager, 1985). These algorithms only work well on sparse or regu-
lar graphs which are efficiently partitioned into subgraphs having few boundary nodes.
Unfortunately, this is not the case for the flight graphs of crew pairing problems. More-
over, there has been little effort for parallelizing resource constrained shortest paths
and k-shortest paths algorithms on distributed memory machines. Most of them are
concerned with shared memory systems. For example, Ruppert (2000) suggests an
algorithm with the theoretical concurrent-read exclusive-write PRAM model. This is
mainly due to the fact that these algorithms have a strong data dependency among
computing nodes which is only inefficiently implemented on distributed memory paral-
lel computers. Another disadvantage of these methods is that they are not well suited
for extensions. Since airlines rules must be embedded into graphs, including a new
rule requires the reconsideration of the graph structure and algorithms as well. This
difficulty also occurs in sequential algorithms.

Surprisingly, enumeration turned out to be a good choice for parallelization although
it is the worst solution to many combinatorial optimization problems. Enumeration
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is parallelized in a straightforward way in which the rule checking can be treated
separately as a black box. The single jobs are independent, whether we use implicit
(like constraint programming) or explicit (like exhaustive enumerating) approaches.
They can be shared among processors of a cluster without any data dependency. The
most effective parallel model for our problem is the master-slave model. In addition to
the divide-and-conquer framework, we also use a bounding technique which is helpful to
reduce the search region if we prefer to find the most negative reduced cost. Moreover,
the thesis will present a framework which can be used to embed different categories of
pricing methods, provided that the pricing subproblem is decomposed into small ones.

6.2 Aspects of Implementation

For easy scalability, in our master-slave model, we dedicate processor 0 to be only
responsible for distributing jobs, waiting for results and running the branch-and-cut
kernel based on the framework ABACUS. Note that the job of a slave in this approach
consists of finding negative reduced cost pairings starting from a given flight. Certainly,
a unit job is large enough with respect to communication.

With enough input parameters, a slave can use any sequential pricing method to
solve its problem. A general algorithm for the master is designed to work with any
pricing method. Choosing the pricing method on slaves freely is helpful for further
extensions. If we need to find the most negative reduced cost in each iteration, we can
also easily apply a bounding technique due to the centralized control. Remember that,
in this case, the initial lower bound is zero because we only find negative reduced cost
pairings.

In the enumeration scheme, the idea, mentioned in Section 4.3.4, of restarting the
process from the flight leg right after the one where the previous iteration stopped is
re-used. There is a difference in how to deal with flights belonging to the found pairings
on the search process. As soon as a pairing is found, the sequential algorithms remove
flights of that pairing from the search domain. The parallel version does the same in
the master-slave model by sending flight identifications of found pairings to slaves in
order not to consider them anymore. However, the order of found pairings will not be
the same as that of the sequential algorithms.

Since the computation time of each job is nondeterministic, we can experience
an unfortunate behavior of the slaves. Namely, it can happen that, although the
termination condition has been reached (e.g., enough new pairings have been generated
or there is no more flight leg to be sent to slaves), the master still must wait for the
completion of all slaves in a column generation iteration. If a slave has been assigned
a difficult task, then the master also must suspend its further activities. This does
not have much impact on the performance in the beginning when it is quite easy to
find enough negative reduced cost pairings. However, in the middle and final stages of
column generation, much of overhead is induced by this phenomenon. Stopping early
enough the waiting process of the master could be a solution. However, it should be
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carefully implemented to guarantee the correctness of a used technique and enhance
the performance.

A numbering technique is employed and Algorithm 6.2.1 shows its outline. Its
aim is to reduce the idle times of slaves between the solution of the current linear
programming relaxation and the pricing step. The main idea of the technique is to
early stop long waiting periods of the master and to use sequence numbers to keep
track of valid results. Each computing job sent to slaves is accompanied by a sequence
number smaster. The slave must keep this number and will send back its number to the
master. The received sequence number is stored in sslave. This number is compared with
the current sequence number on the master (line 18). If they match, the received result
is valid for the current iteration, otherwise, we discard the result. The code segment
of lines 10–15 has the consequence, that if tfree (i.e., the duration between the time
when the termination condition was reached and the current time) is large, then the
algorithm will stop waiting and go immediately to the linear programming relaxation.
The length of that period is controlled by the ratio IdleRatio. This ratio should
be kept small (e.g., 0.1%). Note that the variable smaster must be a global variable
because its value will be used in the next iteration of the outer column generation
method. Certainly, we must increase smaster after quitting the loop.

Figure 6.1 visualizes the states of 9 processors involved in solving the problem
“vircpp1”. The figure only shows a column generation iteration in which the master
does not wait for the completion of several processors. While the master is computing
the new LP relaxation, the slaves still perform their old pricing subproblems. Note, that
the time periods which are not mentioned by any color in the legend are LP relaxations
on the master, or waiting phases on the slaves.We will see later this behavior reduces
the idle time of slaves.

send job receivejob send result

receive result wait result compute

0
1
2
3

5
6
7

8

4

Figure 6.1: Performance visualization of the sequence numbering technique, using 9
processors to solve “vircpp1”

The algorithm tells that a received result will be removed if it does not match the
current sequence number. However, in order to save them, the master possibly reuses
those having a negative reduced cost in the new dual solution. This is accomplished
in the implementation. Besides, parallelizing the sequential heuristic enumeration, we
also have to take care of the preprocessing process (e.g., pre-optimization) on slaves in
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Algorithm 6.2.1 Sequence numbering technique
1: tbusy ←− ∞.
2: Start timer.
3: while ( ¬( terminate condition reached )∨( some processor p busy ) ) do
4: for all idle processor p do
5: if ( ¬( terminate condition reached ) ) then
6: Send smaster to p.
7: Send a job to p.
8: end if
9: end for

10: if ( ( some slave idle )∧( #pairing found > 0 ) ) then
11: tfree ←− current time
12: if ( tfree/tbusy ≥ IdleRatio ) then
13: Stop timer and quit the loop.
14: end if
15: end if
16: if ( There is an incoming result from p ) then
17: Receive sslave from p
18: if ( smaster 6= sslave ) then
19: Receive the result from p.
20: if ( terminate condition reached ) then
21: tbusy ←− current time.
22: Reset timer.
23: end if
24: end if
25: end if
26: end while
27: smaster = smaster + 1.

each column generation iteration. Now, if a slave realizes that a new request belongs to
a new iteration or new branch-and-bound node, it must re-execute the preprocessing.

6.3 Computational Results

The testing environment is still the same one used in the previous chapters. Due to
lack of space, Only the results for 2 test sets (“vncpp” and “vircppl”) are presented.
Vietnam Airlines problems are quite small and require no branching. The “vircpp” set
has a similar structure as that of the “vircppl” set.

In Figure 6.2, we can see the speedup obtained from the computation of the branch-
and-price code implemented in Chapter 4. But now, the parallel pricing module is used
to solve the pricing subproblem. The domination of the pricing time in the sequential
runs becomes a good target for parallelization. The speedup is quite high, even using
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up to 32 slaves. The parallel pricing with many slaves is applicable for larger problems.
Although we cannot obtain an ideal speedup, the parallel pricing helps a lot to reduce
the computation time which can be seen in the last column of Table 6.1. Test problems
which took several hours to be solved (see Chapter 4) are proven optimal within 20
minutes by the same branch-and-price code, but with the parallel pricing.
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Figure 6.2: The speedups of the branch-and-price code with the standard column
generation method

In order to examine the performance in more detail, the column “∆tSlavePri” of the
table shows the maximum difference of the pricing time among slaves, but in percent of
the average slave pricing time. With 32 slaves, this number is quite high which means
the load has not been well balanced. This is mainly due to the fact that the size of the
problems is quite small compared to the number of processors in use. We also see the
large idle time of slaves in the column “%SlavePri”. This column denotes the average
percentage of pricing time on all slaves. However, the values in this column decline
approximately along with those in the column “%tPri”. In other words, the parallel
pricing has been working efficiently. Sometimes, we can have %SlavePri > %tPri (e.g.,
“vircppl3”). This is explained by the early stopping technique mentioned before.

However, the early stopping technique is not very helpful in the early column genera-
tion iterations when it is extremely easy to find desired pairings. In the early iterations,
a preprocessing step (e.g., constructing the network, setting weight values to the edges)
is time consuming in comparison with the fast time to generate pairings. Moreover,
the preprocessing has to called repeatedly. At the intermediate or final iterations, the
waiting time of the master and the computing time of slaves dominate the performance
(see Figure 6.1). The fast communication of HELICS introduces little overhead on the
overall performance.

Likewise, the parallel pricing module is applied to the branch-and-price implemen-
tations with the stabilized column generation methods. The speedups presented in
Figure 6.3 prove that the pricing method is also helpful. In Table 6.1, readers can see
“ttotal” is small in many cases. However, in comparison with the standard method,
we cannot obtain a good performance. The table shows us low values of “%SlavePri”.
Observing the progress of a parallel run, one sees that the low performance relates to
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Name z B&B Lp n+ n− Heu time
%Pre %Pri %Heu %Bra %Lp tPri/ite %SlavePri ∆tSlavePri ttotal

Branch-and-price with the standard column generation
vncpp1 500943 19 231 1856 4 22 0.01 25.10 0.07 0.35 34.74 0.08 21.98 20.57 0:01:12
vncpp2 697445 9 220 1746 0 10 0.00 37.66 0.05 0.18 43.59 0.09 36.18 11.90 0:00:54
vncpp3 494154 239 889 3332 0 32 0.00 22.62 0.01 0.45 21.61 0.18 21.45 4.57 0:11:52
vncpp4 506006 147 913 3110 7 18 0.00 28.91 0.01 0.33 26.47 0.18 26.94 4.80 0:09:18
vircppl1 139344 27 426 3137 0 8 0.00 60.18 0.02 0.10 14.39 0.83 56.31 4.09 0:09:48
vircppl2 173538 25 481 3101 0 12 0.00 58.07 0.02 0.08 13.39 0.77 51.43 4.27 0:10:41
vircppl3 179818 1 264 2513 0 39 0.00 64.47 0.27 0.00 34.46 0.23 67.64 18.73 0:01:35
vircppl4 169852 21 433 3305 0 14 0.00 53.15 0.04 0.10 19.77 0.52 52.74 5.30 0:07:07

Branch-and-price with the second sliding BoxStep, δB = 128
vncpp1 500943 9 177 537 2 0 0.40 68.03 0.00 0.17 13.78 0.18 53.91 16.40 0:00:47
vncpp2 697445 11 227 586 0 0 0.22 68.15 0.00 0.28 12.49 0.20 59.18 10.78 0:01:08
vncpp3 494154 415 1973 2638 0 0 0.20 46.38 0.00 0.53 12.07 0.26 38.19 5.88 0:18:06
vncpp4 506006 65 601 963 0 0 0.20 49.02 0.00 0.39 14.39 0.20 39.18 5.26 0:04:08
vircppl1 139344 29 319 1239 0 0 0.10 59.89 0.00 0.15 8.28 0.79 44.14 4.93 0:06:59
vircppl2 173538 27 317 1104 0 0 0.08 63.36 0.00 0.09 6.63 1.15 50.19 3.59 0:09:34
vircppl3 179818 1 146 947 0 0 0.33 81.20 0.00 0.00 17.28 0.31 59.88 10.13 0:00:56
vircppl4 169852 15 165 910 0 0 0.13 62.49 0.00 0.11 5.99 0.77 44.81 11.72 0:03:24

Branch-and-price with the stationary BoxStep, ∆δ = 64
vncpp1 500943 21 173 623 0 0 0.17 53.02 0.00 0.47 13.71 0.18 44.54 6.10 0:01:00
vncpp2 697445 17 215 649 0 0 0.23 59.48 0.00 0.36 14.83 0.19 52.69 4.18 0:01:09
vncpp3 494154 633 3228 4713 5 0 0.16 42.33 0.00 0.47 11.60 0.25 35.92 5.75 0:31:56
vncpp4 506006 163 1140 1502 3 0 0.22 50.06 0.00 0.46 14.76 0.23 39.42 9.19 0:08:44
vircppl1 139344 51 537 1796 0 0 0.07 69.44 0.00 0.13 8.20 1.44 56.73 2.96 0:18:31
vircppl2 173538 33 331 1232 0 0 0.08 62.36 0.00 0.13 8.71 1.12 48.08 5.58 0:09:54
vircppl3 179818 3 124 966 0 0 0.46 61.08 0.00 0.08 17.66 0.24 38.07 13.52 0:00:48
vircppl4 169852 11 176 1116 0 0 0.11 61.70 0.00 0.11 9.81 0.59 47.06 7.04 0:02:48

Table 6.1: The branch-and-price code with the parallel pricing, using 32 slaves
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the number of times a BoxStep method cannot find any desired pairing. At that time,
the stabilized methods change the model and this results in the fast computation of
pairings which has been discussed in the previous paragraph.
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(a) Sliding BoxStep
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Figure 6.3: The speedups of the branch-and-price code with the stabilized column
generation methods

Although there exist several problems which still need improving, the implemented
parallel pricing shows to be applicable to real world large scale crew pairing problems.
Furthermore, due to its design, we can easily embed a user-designed pricing method
which solves a unit pricing subproblem. If one is interested in using constraint logic
programming to deal with complicated rules, but afraid of the poor performance of
CLP engines, the parallel pricing framework is helpful (see Hoai et al., 2003).
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Chapter 7

Conclusions

The thesis presents an intensive work on the crew pairing problem. The philosophy of
the thesis revolves around the application of sophisticated and new methods into the
process of investigating the problem. There are many research directions in this area,
but the work is only dedicated to considering branch-and-bound based methods and
related algorithms and techniques.

Although having been attacked over several decades, the problem is still challenging
researchers. The thesis has considered the difficulties of the problem by carefully
investigating its characteristics. Despite of looking like an assignment problem, the
crew pairing problem has an inherent non-linear cost structure and is constrained
by non-linear airlines rules. The well-known approach for this kind of difficulty is to
transfer the problem to the set partitioning model. All non-linearities have been relaxed
by the enumeration. The widely-used methods are reviewed in the contexts of research
and practice. As mentioned before, it can be seen that the branch-and-bound based
methods are more widely used in this area. That is the reason why this work follows
this approach. In order to test the application of the methods, the thesis includes a
case study which would be the main problem to be attacked by implementations. Since
Vietnam Airline problems of the case study are quite small, the additional problems
have been randomly generated using the same properties of the case study. This is also
the reason why the approaches in the thesis were preferred not to be problem-specific.

Starting the methodological parts, a typical branch-and-cut was considered, using
the well-known theory in solving set partitioning problems. The thesis only focuses on
points which were implemented in the implementation. They are chosen due to their
effectiveness to deal with large scale set partitioning problems. Then, the code was used
to solve several sets of test problems, including a well-known set (in OR community)
of set partitioning problems, the set of Vietnam Airlines problems, and the set of
randomly generated problems. Although there are not many new things presented in
this chapter, it was helpful to show the disadvantage of the approach to deal with
large scale crew pairing problems which are transferred to huge constraint matrices.
This explains why the approach is only applied to small crew pairing problems or
used as a solver in a heuristic method which generates only partial subproblems for
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the solver. Besides the cutting generation phase, the computational difficulties of the
preprocessing and linear relaxation steps are also mentioned. It is an open problem to
consider other storing or solving methods in these steps. However, the branch-and-cut
implementation is implemented carefully in order to use in other parts of the thesis.
All the well-known test problems are solved in a reasonable computation time.

Knowing the problem in the previous chapter, the branch-and-price approach sep-
arates the master problem into two subproblems which are both solvable by computer
and storable in computer memory. The whole constraint matrix is not generated in
the beginning. Instead, its columns are priced out on demand from a so-called pricing
subproblem. The work focuses on many methods solving this subproblem which often
involves more than 90 percent of total computation time. The thesis has considered all
categories of methods for it in order to choose a good one to solve the considered crew
pairing problems. Note that, in a particular case, other methods could be better. How-
ever, the chosen pricing method is useful in terms of performance and extension. Then,
the branch-and-price implementation solves all test problems to optimality using the
same computing environment as before. This could not be done by the branch-and-cut
code.

Cutting plane generation in branch-and-cut is considered dual to the process of gen-
erating columns in branch-and-price. Observing the process of producing columns, the
oscillation in movement of the dual point to move to final position has been experienced.
This is an inherent property of column generation methods. Stabilized column gener-
ation methods are used as a device to overcome the zig-zag movement. Although the
stabilized devices have been presented in some other researches, they were considered
briefly in the context of the crew pairing problem. The thesis discussed many aspects
of the stabilized methods, especially the parameter control. The work also shows that,
with good values of the parameters, the methods help to significantly reduce the com-
putation time involved in solving the root node of a branch-and-bound tree. They are
brought into solving the crew pairing problems. The obtained performance shows that
the stabilized methods are promising to very large problems. However, it should be nice
if we can find mathematical formulations to control the parameters of the methods.

The next two chapters of the thesis follow a different approach which uses the
computing power resource of parallel systems. In the previous chapters, readers can
see that solving the large scale test problems is very time-consuming. This is an
obstacle to apply the implemented methods to real world applications. Since the airline
industry is more and more dynamic, the solution of crew pairing problems should be
computed more quickly. Therefore, the old parallel ABACUS is redesigned to employ
a new and widely-used communication technology. Non-blocking communication is
the main idea to reduce the overhead of the parallel framework. With the MPI-based
parallel ABACUS, users can easily export their sequential branch-and-cut codes to
parallel ones and run them on many parallel computers. To underline that, the thesis
presents a process of parallelizing the sequential set partitioning solver of Chapter 3.
The performance of the parallel solver proves a good design and implementation of the
parallel ABACUS. The parallel set partitioning solver has good speedups in solving
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large problems, especially in the branch-and-bound mode. Because it is a general
framework, there are still many interesting open problems to be investigated, such as
load balancing, processor grouping, local constraints/variables.

Although being parallelized, the branch-and-cut still did not overcome its main
problem of memory. It is only useful with hard problems having a sufficiently small
constraint matrix to be kept in computer memory. The last attempt of the thesis
describes a method to parallelize the chosen pricing algorithm. With a large portion
of the computation time involved in the pricing subproblem, one can expect a good
speedup in parallel. With advanced techniques in parallel computing, the final code
shows us a good speedup, and at the same time, solves all test problems within a small
computation time. The parallel pricing is implemented in a way that facilitate future
extensions and generalizations.

Finally, the thesis has performed a study on the crew pairing problem and its well-
known methods. New techniques have been employed to speedup the solution process,
that is the most important objective of the thesis. At the end, the implementations can
solve the large crew pairing problems within minutes. A new parallel ABACUS library
has been written to support the research in combinatorial optimization. The different
considered methods can be combined in a heuristic to solve real-world crew pairing
problems. More future research in this direction will be considered. An application
of the methods to large problems of an airline also is an interesting problem in future
research.
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E. Balas, S. Ceria, and G. Cornuéjols. A Lift-and-Project Cutting Plane Algorithm for
Mixed Zero-One Programs. Mathematical Programming, 58:295–324, 1993.
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