2,691 research outputs found

    Shape Optimization of Busemann-Type Biplane Airfoil for Drag Reduction under Nonlifting and Lifting Conditions Using Genetic Algorithms

    Get PDF
    The focus of this thesis is on the shape optimization of the Busemann-type biplane airfoil for drag reduction under both nonlifting and lifting conditions using genetic algorithms. The concept of the Busemann-type biplane airfoil was first introduced by Adolf Busemann in 1935. Under its design condition at a specific supersonic flow speed, the Busemann biplane airfoil eliminates all wave drag due to its symmetrical biplane configuration; however it produces zero lift. Previous research has shown that the original Busemann biplane airfoil design has a poor performance under off-design conditions as well. In order to solve this problem of zero lift and to improve the off-design-condition performance of the biplane airfoil, shape optimization of the asymmetric biplane airfoil is performed to minimize the drag while maximizing the lift. In this thesis, the commercially available CFD solver ANSYS FLUENT is employed for computing the inviscid flow past the biplane airfoil. An unstructured mesh is generated using ICEM software. A second-order accurate steady density-based solver is employed to compute the supersonic flow field. A single-objective genetic algorithm (SOGA) is employed to optimize the Busemann biplane airfoil shape under nonlifting condition to minimize the drag coefficient and a multi-objective genetic algorithm (MOGA) is employed to optimize the Busemann biplane airfoil shape under lifting condition to maximize both the lift coefficient and the lift to drag ratio simultaneously. Both results obtained by using SOGA and MOGA show significant improvement in the design and off-design-condition performance of the optimized Busemann biplane airfoil compared to the original one

    Shape Optimization of Busemann-Type Biplane Airfoil for Drag Reduction Under Non-Lifting and Lifting Conditions Using Genetic Algorithms

    Get PDF
    The focus of this chapter is on the shape optimization of the Busemann-type biplane airfoil for drag reduction under both non-lifting and lifting conditions using genetic algorithms. The concept of biplane airfoil was first introduced by Adolf Busemann in 1935. Under design conditions at a specific supersonic flow speed, the Busemann biplane airfoil eliminates all wave drag due to its symmetrical biplane configuration; however, it produces zero lift. Previous research has shown that the original Busemann biplane airfoil shows a poor performance under off-design conditions. In order to address this problem of zero lift and to improve the off-design-condition performance, shape optimization of an asymmetric biplane airfoil is performed. The commercially available computational fluid dynamics (CFD) solver ANSYS FLUENT is employed for computing the inviscid supersonic flow past the biplane airfoil. A single-objective genetic algorithm (SOGA) is employed for shape optimization under the non-lifting condition to minimize the drag, and a multi-objective genetic algorithm (MOGA) is used for shape optimization under the lifting condition to maximize both the lift and the lift-to-drag ratio. The results obtained from both SOGA and MOGA show a significant improvement in the design and off-design-condition performance of the optimized Busemann biplane airfoil compared to the original airfoil

    State of the Art in the Optimisation of Wind Turbine Performance Using CFD

    Get PDF
    Wind energy has received increasing attention in recent years due to its sustainability and geographically wide availability. The efficiency of wind energy utilisation highly depends on the performance of wind turbines, which convert the kinetic energy in wind into electrical energy. In order to optimise wind turbine performance and reduce the cost of next-generation wind turbines, it is crucial to have a view of the state of the art in the key aspects on the performance optimisation of wind turbines using Computational Fluid Dynamics (CFD), which has attracted enormous interest in the development of next-generation wind turbines in recent years. This paper presents a comprehensive review of the state-of-the-art progress on optimisation of wind turbine performance using CFD, reviewing the objective functions to judge the performance of wind turbine, CFD approaches applied in the simulation of wind turbines and optimisation algorithms for wind turbine performance. This paper has been written for both researchers new to this research area by summarising underlying theory whilst presenting a comprehensive review on the up-to-date studies, and experts in the field of study by collecting a comprehensive list of related references where the details of computational methods that have been employed lately can be obtained

    An Airfoil Shape Optimization Technique coupling PARSEC Parameterization and Evolutionary Algorithm

    Get PDF
    In this work an innovative optimization process for airfoil geometry design is introduced. This procedure is based on the coupling of a PARSEC parameterization for airfoil shape and a genetic algorithms (GA) optimization method to find Nash equilibria (NE). While the PARSEC airfoil parameterization method has the capability to faithfully describe an airfoil geometry using typical engineering parameters, on the other hand the Nash game theoretical approach allows each player to decide, with a more physical correspondence between geometric parameters and objective function, in which direction the airfoil shape should be modified. As a matter of fact the optimization under NE solutions would be more attractive to use when a well posed distinction between players variables exists

    Study of the development and verification of an integrated code for UAV design

    Get PDF
    L'objectiu d'aquest estudi és desenvolupar una eina de disseny d'aeronaus utilitzant algoritmes d'optimització per a facilitar el procés. Es pretén incorporar el codi d'estudi i simulació de les actuacions d'un UAV desenvolupat per l'equip Trencalòs Team en un software de disseny aerodinàmic ja existent, ja sigui XFLR5 o AVL. Les funcions objectiu incorporades seran les que l'equip considera per a la participació en el concurs internacional Air Cargo Challenge, amb la intenció de desenvolupar una eina de treball per a Trencalòs que permeti fer un disseny òptim dins del marc de la competició. El treball es dividirà en tres etapes: 1. Incorporació del codi desenvolupat per Trencalòs al software de disseny aerodinàmic2. Fer ús dels algoritmes d'optimització de funcions objectiu per a facilitar el procés de disseny3. Verificació els resultats obtinguts.

    Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm

    Get PDF
    The Mars Helicopter (MH) will be flying on the NASA Mars 2020 rover mission scheduled to launch in July of 2020. Research is being performed at the Jet Propulsion Laboratory (JPL) and NASA Ames Research Center to extend the current capabilities and develop the Mars Science Helicopter (MSH) as the next possible step for Martian rotorcraft. The low atmospheric density and the relatively small-scale rotors result in very low chord-based Reynolds number flows over the rotor airfoils. The low Reynolds number regime results in rapid performance degradation for conventional airfoils due to laminar separation without reattachment. Unconventional airfoil shapes with sharp leading edges are explored and optimized for aerodynamic performance at representative Reynolds-Mach combinations for a concept rotor. Sharp leading edges initiate immediate flow separation, and the occurrence of large-scale vortex shedding is found to contribute to the relative performance increase of the optimized airfoils, compared to conventional airfoil shapes. The oscillations are shown to occur independent from laminar-turbulent transition and therefore result in sustainable performance at lower Reynolds numbers. Comparisons are presented to conventional airfoil shapes and peak lift-to-drag ratio increases between 17% and 41% are observed for similar section lift

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners
    corecore