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1 Introduction

Design optimization deals with the improvement of systems in industry, economy, and
society, due to one or several objectives specified by a systems designer. In the field
of design optimization, computers have become a valuable tool for exploring large and
complex design spaces that can relief the systems designer from tedious computation
tasks so that he/she can concentrate on tasks such as modeling and decision making.

This thesis puts forward the development of computing techniques for design optimiza-
tion. It focuses on the development of robust algorithms for optimization with time-
consuming evaluations. The main working principle of these techniques is to combine spa-
tial interpolation techniques with evolutionary algorithms, which are robust population-
based search techniques. This thesis will deal also with multi-objective problems, where
the focus is on finding compromise solutions and on visualizing trade-offs among various
objectives.

1.1 Computer experiments

Design optimization is often carried out as a process of discovery due to repeated experi-
mentation. It is one of the consequences of the so-called ’digital revolution’ that computer
experiments (CE) have widely replaced physical experiments. They often provide a safe
and/or cheap alternative to physical experiments.

A computer experiment can be specified as a black box procedure that performs a map-
ping from a space of input variables S (design or search space) to a space of output
values Y (response space). Whenever the output values correspond to the objectives of
an optimization problem, the response space will also be termed the decision space.

In this work deterministic computer experiments for continuous domains with fixed car-
dinality will be addressed. Accordingly, the input- output function is considered to be a
mapping Rd → Rny with d input variables and ny output variables. Of course, it is also
possible to have other input spaces, e. g. the space of integer variables or even variable
dimensional input spaces. At the end of this work there will be a brief discussion on how
the techniques developed here could be generalized for such input spaces.

Optimization with computer experiments often works interactively. The user specifies,
executes and analyzes experiments. Based on the analysis the user sets up new experi-
ments and schedules them. He/she repeats the procedure until the result is satisfactory.
Such a manual experimentation can be tedious task. It is often far more effective, that the
human designer specifies the objective and constraints and then starts an optimization
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strategy that automatically searches for feasible solutions that meet the specified objec-
tives. Note, that in practice the specification of a clear problem statement and the right
choice of an optimization strategy can be a difficult task on its own that often involves
the close co-operation between experts in the application domain and experts in the field
of optimization algorithms.

The result of an automatic optimization can be a single solution or, in case of conflicting
objectives, a set of compromise solutions. From the obtained set the systems designer
can then choose a solution that fits his/her expectations, or else restart the optimiza-
tion process with modified objectives or a different choice and parametrization for the
optimization algorithm.

Many design optimization problems can be transformed to the following standard form:

f1(x)→ min, . . . , fnf
(x)→ min (1.1.1)

g1(x) ≥ 0, . . . , gng
(x) ≥ 0 (1.1.2)

x ∈ S ⊆ R
d (1.1.3)

Here fi : Rd → Rnf , i = 1, . . . , nf denotes objective functions that are to be minimized,
while gi : Rd → Rng , i = 1, . . . , ng denotes constraint functions that have to be kept
higher than zero. It is a common practice to restrict the search space by means of
variable bounds S := [xmin,xmax], where xmin ∈ Rd and xmax ∈ Rd are user defined lower
and upper bounds for the design variable x. Note, that many optimization algorithms
do not demand for such bounds and can also deal with unconstrained search spaces like
for example R

d.

The objective and constraint functions are typically computed from the output values y

of the black box analysis tool by means of simple transformations. For the sake of trans-
parency, we make the default assumption that the output values y directly correspond
to the values of the objective and constraint functions, i. e.:

f1(x) = y1(x), . . . , fnf
(x) = ynf

(x), g1(x) = ynf+1(x), . . . , gng
(x) = ynf+ng

(x) (1.1.4)

However, it has to be noted that it sometimes can be important to take a closer look
at the mapping between the actual output values of a computer experiment and the
constraint and objective function values, e. g. in order to exploit simple dependencies
among different objectives and constraints.

The context in which optimization methods are used can be very important, since the
desirable characteristics of a method strongly depend on it. This work was motivated by
problems that actually were encountered in industrial design optimization.

Looking at many examples from industrial optimization and also studying the applica-
tions that motivated this work [EGN05, EGÖ+02, EJ03, ESB02, ESGG00], an important
class of industrial design optimization problems can be obtained, where the number of
variables ranges from 1 to 20 and a small number of objectives and constraints � 10
is given. Furthermore, computer experiments are often based on simulation tools, uti-
lizing solvers for nonlinear (differential) equation system. This means that the time of
one evaluation ranges from several minutes up to hours and thus only a few hundred
objective function evaluations (100 – 1000) can be spend for the purpose of optimization.
However, for medium-sized research enterprizes it is often possible to run a small num-
ber (≈ 10) of experiments in parallel. With regard to the black box function topology,
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another assumption that will be made is that there is some continuity in the output of
the computer experiment, meaning that similar input values are likely to result in similar
output function values.

During the course of an optimization study, optimization methods are often further re-
fined in order to better tackle the problem at hand. Therefore, the systems designer wants
to understand the basic search principles of the search method. Many optimization tech-
niques are very complex since they are designed to have some kind of optimal behavior
on certain types of function classes, like for example quadratic functions. However, in
a black box scenario it is often questionable whether the true structure of a black box
function corresponds to the assumed class of functions and thus the complexity of the
optimization method might be unjustified. In such cases transparent and flexible methods
should be preferred, which are open to the integration of further domain specific knowl-
edge. Furthermore, methods should be robust, meaning that they work also in cases when
the behavior of the black box functions deviates from the model assumptions.

1.2 Objectives of this work

Metamodel-assisted evolutionary algorithms that are studied in this work are well-suited
techniques for tackling the aforementioned kind of problems. They combine robust search
heuristics, namely evolutionary algorithms (EA), with versatile tools for spatial interpo-
lation, namely gaussian random field metamodels (GRFM). Encouraged by some earlier
results [EGÖ+02], the goal of this thesis is to put forward the study of these algorithms
and to extend make them applicable for solving constrained and multi-objective problems.

The following list summarizes the main research problems tackled within this thesis:

• How does different methods for modeling experimental data compare? In particular
we are interested in a comparison between radial basis function networks, regres-
sion models and gaussian random field metamodels, all of them being frequently
proposed for assisting optimization algorithms.

• How can metamodels be integrated into evolutionary algorithms? A focus will be
on techniques, so called filters, that identify promising solutions from a large set
of generated variants by means of the metamodel. Unlike in most of the previous
work in the field, the confidence information of predictions should be considered,
e. g. in order to facilitate the search in less explored regions of the search space.

• Which theoretical properties can be deduced from the algorithmic design of the
metamodel-assisted evolutionary algorithms? Before applying them in practise,
we want to discuss theoretical properties of metamodel-assisted evolutionary algo-
rithms. An important question will be, how different filters relate to each other,
e. g. if certain filters are equivalent under certain parameterizations.

• How to analyze the behavior metamodel-assisted algorithms? First of all, we want
to mark the limits of a analytical study of the metamodel-assisted evolutionary
algorithms and thus motivate the necessity of empirical research. Furthermore, we
look for well-suited experimental analysis methods for these algorithms. Besides
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performance measures, indicators that allow for a deeper understanding of their
working principles are to be found.

• How do metamodel-assisted algorithms perform on different classes of problems?
The aforementioned analysis techniques are to be used to identify the assets and
shortcomings of different MAEA variants. Furthermore, we aim at a deeper under-
standing of the practical working principles of the MAEA.

• How can metamodel-assisted evolutionary algorithms be generalized for constrained
optimization? Here we intend the straightforward generalization of filters for con-
strained optimization, if the evaluation of constraint function is part of the time
consuming computer experiment.

• How can metamodel-assisted evolutionary algorithms be generalized to multi-ob-
jective optimization? The aim is to generalize the filters for Pareto optimization,
where the aim is to find a set of efficient solutions. In order to achieve this aim
a redesign of existing evolutionary multi-objective optimization techniques is re-
quired. Furthermore, new test problems are to be developed that are better suited
than the ones proposed in literature for comparing and understanding the behav-
ior of multi-objective optimization algorithms in the presence of time consuming
evaluations.

• How do metamodel-assisted evolutionary algorithms perform on real-world prob-
lems? Artificial test problems can hardly emulate all characteristics of practical
design optimization problems. Thus, finally, the promising variants of metamodel-
assisted evolutionary algorithms should be tested on optimization problems in in-
dustrial design. We envisage a broad spectrum of application domains, and a com-
parison to state-of-the-art optimization techniques in the particular field.

This thesis is structured as follows: In chapter 2 gaussian random field models are intro-
duced and compared to other interpolation methods. Chapter 3 provides a brief survey
on the state of the art in global optimization methods for single-objective optimization.
In chapter 4 metamodel-assisted evolution strategies for single criterion optimization are
developed and studied. A focus will be on the comparison of different filters used in the
pre-selection. In chapter 5 the proposed algorithms are generalized for the constrained
case. In chapter 6 the problem of multi-objective optimization are discussed and a new
class of evolutionary algorithms for multi-objective optimization that uses the hyper-
volume metric as a selection criterion will be developed and studied. In chapter 7 the
generalization of the EMOA for problems with multiple objectives based on this new
algorithm will be discussed. Finally, case studies on selected applications are presented
in chapter 8. A summary of the work is given in chapter 9. Here, also directions for
future research are envisioned.
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2 Spatial modeling with gaussian
random field models (GRFM)

Models should be used, not believed.
Henri Theil

In this chapter spatial modeling techniques are introduced with a focus on gaussian
random field models (GRFM). The chapter starts with some practical definition of
GRFM viewed as a black box in section 2.1. In section 2.2 the statistical assumptions
of GRFM are discussed. In section 2.3 we proceed with running time complexity of
alternative prediction procedures based on GRFM. In section 2.4 computational efficient
algorithms for the implementation of GRFM are discussed. Then GRFM are related to
regression models in section 2.5. In section 2.6, we relate alternative interpolation models
to GRFM. In particular, we establish a mapping between artificial neural networks with
radial basis functions (RBFN) and GRFM models. The section continuous includes a
comparison of the computational effort for predicting multiple reponses both for the
GRFM and the RBFN. Next, the some general results on the relationship between the
number of evaluated points and the prediction error will be summarized (section 2.7), and
practical methods for determining the prediction error online will be introduced (section
2.8).

2.1 Black box view of gaussian random field models

Let us now assume that we have some evaluated search points

X := [x(1), . . . ,x(m)] ∈ R
d×m (2.1.1)

and corresponding scalar responses

y = [y(1), . . . , y(m)]T ∈ R
m (2.1.2)

with
y(1) := y(x(1)), . . . , y(m) := y(x(m)) (2.1.3)

that have already been calculated by means of (expensive) computer experiments. No
assumption on the regularity of the distribution of x(1), . . . , x(m) in S is made.

Our aim is to build a fast prediction tool, capable of approximating the output corre-
sponding to a new point x′ ∈ S, in conformity with the unknown R

d → R mapping, which
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Figure 2.1.1: Understanding the output of GRFM for a problem with a single input
(d = 1) and a single output (ny = 1). With three training patterns x(i),

i = 1, 2, 3 the bold line corresponds to the predicted response ŷ = f̂(x′).
The two thin lines confine the confidence interval of the response, that can
be expressed by adding/substracting an estimated local standard deviation
ŝ(x′). The former is equal to the expected value of the conditional random
variable Fx′|X,y at a new point x′, while the latter is equal to a multitude
of its standard deviation.

is assumed to be continuous. Moreover, if x′ ∈ X, then the known output value shall
be reproduced. Above we addressed the mathematical problem of exact interpolation
for which a variety of methods are available, ranging from radial basis function networks
[Mye92] to splines [FSATV92] and Shepard polynomials [Zup04].

Apart from a predicted approximate response ŷ(x′), an additional information that we
may ask for is a measure of confidence for each prediction. It is straightforward to
assume that the confidence for a prediction might be better, if the density of evaluated
points is very high in the neighborhood of x′. Another relevant piece of information
for its estimation is the standard deviation of the known output values and the average
correlation between responses at neighboring points.

A GRFM can fulfill these requirements by interpolating data values and estimating their
prediction accuracy. Putting things into more concrete terms, the GRFM predicts a
gaussian random field F . A gaussian random field is a function that assigns a one
dimensional gaussian random variable Fx to every position x in the search space Rd.
Each random variable is characterized by its expected (or: mean) value ŷ(x) and its
standard deviation ŝ(x), and it quantifies the probability of presence Pr(Fx = y) for the
unknown precise output. If Pr(Fx = y) takes a high value, the GRFM predicts that y
is more likely the precise result. The statistical motivation of Fx is further explicated
in the next section. For a basic understanding of subsequently introduced algorithmic
approaches it widely suffices to understand the GRFM as a black box model, which
outputs an gaussian distribution that describe the probability of presence for the true
output.

Example: Figure 2.1.1 illustrates an example for the prediction of a result for a new
input x′ in a one dimensional input space. Two important characteristics of ŝ(x′) can
be observed: First, ŝ(x′) = 0 if ŷ(x′) is equal to the known values at the location of
the training patterns x(1), . . . , x(m). Second, the standard deviation ŝ(x′) is zero at the
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known points and it grows with the distance of x′ to these points. �

GRFM allow to predict the output for multivariate output spaces and other metric in-
put spaces. In case of multivariate output spaces GRFM yields the multivariate joint
distribution describing the location of the output vector for each input vector.

2.2 Model assumptions

The basic assumption in output function modeling through GRFM is that the output
function is a realization (sample path) of a gaussian random field F . The latter is a
mapping that assigns a one-dimensional gaussian distributed random variable Fx with
constant mean β := E(Fx) and variance s2 = Var(Fx) to each point x ∈ S of an input
space S that is element of R

d (in case of d = 1 the term gaussian process is also in use).
The theory of gaussian random fields was extensively studied by Adler [Adl81] and it was
applied in several fields of science, like oceanography, neurodynamics, environmetrics and
astrophysics [Adl81].

In contrast to other modeling techniques such as linear regression, a spatial correlation
between the output variables is assumed. For two arbitrary inputs x and x′ such a spatial
correlation can be expressed by a correlation function

c(Fx,Fx′) ≡ c′(x,x′). (2.2.4)

Typically the correlation function is assumed to be stationary, i. e.

c(Fx,Fx′) ≡ c′(x− x′), (2.2.5)

or even isotropic, i. e.

c(Fx,Fx′) = c(Fx′,Fx) ≡ c′(|x− x′|), (2.2.6)

in which case the method depends only on the distance |x− x′| between inputs.

In the literature on design and analysis of computer experiments, the isotropic gaussian
correlation

c(θ) = exp(−θ · |x− x′|) (2.2.7)

and the gaussian product kernel are often used. The latter reads

c(θ1, . . . , θd) =

d∏

i=1

exp(−θi · |xi − x′i|), (2.2.8)

and it allows for independent correlation factors for each coordinate of the search space.
In order to completely specify the GRFM, the parameters of the correlation function
θ1, . . . , θd and the parameters s2 and β of the random field have to be estimated. These
parameters are usually estimated from the sample during a calibration phase (section
2.5).
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Figure 2.2.2: Sample path of a two-dimensional gaussian random field with strong correla-
tion (left) and weak correlation (right) approximated with Krigifier [Pad00].

Example: Two examples of (predicted) sample paths for stationary GRF are given in
figure 2.2.2. They were obtained with the Krigifier software developed by Padula [Pad00].
It becomes clear that for a high correlation of neighboring points (which corresponds to
a low correlation parameter θ) the sample paths are very smooth and they become more
bumpy for low correlation values. Hence, the estimated θ value is also an indicator of the
predictability of a landscape and the amount of information that is needed to model it.

�

After the calibration has been done, the parameters of the GRF are completely specified.
Now, on basis of the calibrated model parameters, predictions can be computed for every
input vector. The predicted distribution is the conditional distribution of Fx, given the
evaluated sites X and y. We will denote the corresponding family of random variables
with

Fx|X,y,x ∈ S (2.2.9)

Hence, the conditional mean reads

∀x ∈ S : ŷ(x) := E(Fx|X,y), (2.2.10)

and the conditional standard deviation reads

∀x ∈ S : ŝ(x) :=
√

Var(Fx|X,y). (2.2.11)

Note that the given information at sites x ∈ X needs not necessarily to be given precisely.
It also suffices to specify mean value and variance of a gaussian distribution here. This
can be helpful in modeling noisy data.

2.3 Regression and Kriging models

Next, we examine the correspondence between GRFM and regression models and discuss
combinations of both approaches, which are referred to as Kriging.
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When working with Kriging models (a term that is used for GRFM and related techniques
in the geostatistics community) it is common practice to use the GRFM as an offset to
a regression term with regression parameters βi, i = 1, . . . , nr:

Fx =

nr∑

i=1

βi · ri(x)

︸ ︷︷ ︸

Global trend

+ Rx
︸︷︷︸

Local deviation

(2.3.12)

The first part of this expression corresponds to a global regression model that is su-
perposed by a spatially correlated homoscedastic GRFM Rx with mean 0 and variance
s2. The latter corresponds to the noise term in regression. The regression functions
ri : Rd → R, i = 1, . . . , nr are assumed to be deterministic. They are also called trend
functions.

The expression in equation 2.3.12 looks similar to the general functional regression model.
In contrast to the Kriging techniques in regression no spatial correlation is assumed for
the noise term. Uncorrelated noise terms can serve as a good assumption in the presence
of noisy measurements, but in case of continuous deterministic input-output mappings
these assumptions are unreasonable [SWMW00].

Depending on the choice of the trend functions, three types of the Kriging approach are
typically distinguished:

• Simple Kriging: No trend is assumed, i.e. Fx = Rx.

• Ordinary Kriging: A constant trend is assumed, i. e. Fx = β +Rx

• Universal Kriging: A general linear trend function is assumed (expression 2.3.12)

Following a suggestion of Schonlau et al. [JSW98] ordinary Kriging will be used in this
work whenever there is no justification to assume a particular trend function. However,
it shall be noted here that the assumption of non-stationarity sometimes can be useful.
Consider for example a model for rainfall intensity at the slope of a hill. Here, it seems
reasonable to work at least with a linear trend function as a prior assumption, since the
rainfall intensity probably correlates with the height of the hill.

2.4 Calibration and prediction

The parameter(s) θ as well as β and s2 are invariant with respect to F . Their values
can be estimated through a sample by a generalized least squares method; θ is usually
estimated by the maximum likelihood heuristic [SWMW00].

Without knowing the parameters of the random fields, we can express the likelihood of
a sample X,y via the probability density functions (PDF) of Fxi

, i = 1, . . . , m:

PDF(Fx1
= y1 ∧ · · · ∧ Fxm

= ym) = (2.4.13)

1

(2π)m/2 · (ŝ)m/2 ·
√

det(C)
exp

[

−(y − 1β̂)T ·C−1 · (y − 1β̂)

2ŝ

]
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with

C =






cθ(x1,x1) · · · cθ(x1,xm)
...

. . .
...

cθ(xm,x1) · · · cθ(xm,xm)




 , 1 =






1
...
1




 (2.4.14)

using the following generalized least squares estimates [KO96] of β and s2

β̂ =
1T ·C−1 · y
1T ·C−1 · 1 (2.4.15)

ŝ =
(y − 1 · β̂)T ·C−1(y − 1 · β̂)

m
(2.4.16)

For the maximization of the likelihood term (expression 2.4.13) it suffices to minimize
the expression:

m log ŝ(θ) + log det C(θ) (2.4.17)

Proof. The expression is derived as follows: By substituting ŝ (expression 2.4.16) in the
exponential power term of expression 2.4.13 we get:

1

2πm/2 + (ŝ)m/2 · detC(θ)1/2
exp(m/2)→ max (2.4.18)

This can be expressed as the minimization of the reciprocal term:

2πm/2 · (ŝ)m/2 · detC(θ)1/2 · exp(−m/2)→ min (2.4.19)

Finally, through logarithmization and elimination of constant values, the logarithmic
likelihood expression 2.4.17 is obtained. �

The cost of the maximization of the likelihood expression depends on the number of
θ-variables. Generally, due to nonlinearities, it is not always possible to solve this opti-
mization problem in closed form. However, quasi Newton methods (cf. section 3.2) are
often employed for its solutions. Partial derivatives need not to be obtained numerically.
For the likelihood formula (Eq. 2.4.17) they are given in [KO96]. However, since the
problem is multimodal (cf. Mac Kay [Mac98]), it cannot be guaranteed that its precise
solution can be obtained with gradient based optimization. In order to achieve more
robust search characteristics Torczon and Trosset [TT97] suggest to use a multidimen-
sional pattern search algorithm (cf. section 3.3). In this work, we prefer to use a (1 + 1)
evolution strategy with 1/5th success rule for calibrating the model parameters [Sch95],
which is also known as a robust and reasonably fast search heuristic.

Having estimated all parameters of the GRFM, we can calculate the mean and variance
of the conditional gaussian random variable F|X,y at any known and unknown site x ∈ S:

ŷ(x) = β + (y − 1β)TC−1c(x) (2.4.20)

c(x) = [cθ(x,x1), . . . , cθ(x,xm)]T (2.4.21)

The latter equation can be restated in the form of a linear predictor

β +
m∑

i=1

λ(i) · c(x,xi) (2.4.22)
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with
[λ(1), . . . , λ(m)] = (y − 1β) ·C−1 (2.4.23)

Assuming that the value of β is known, the local variance s2(x) = Var(Fx′)|X,y) for this
random variable is given by

s2(x) = s2 · (1− c(x)T ·C−1 · c(x)) (2.4.24)

Whenever the maximum likelihood estimate β̂ is used instead of β, Schonlau et al.
[JSW98] suggest to use instead of s2(x) the more exact expression ŝ(x) defined as

ŝ(x) = s2 ·
[

1− c(x)T ·C−1 · c(x) +
(1− 1T ·C−1 · c(x))2

1T ·C−1 · 1

]

. (2.4.25)

The derivation of these two equations can be found in Sacks et al. [SWMW00]. Schon-
lau et al. [KO96] interpret the term cT (x) · C−1 · c(x) as the reduction in predic-
tion error due to the fact that x is correlated with the sampled points. The term
(1− 1 ·C−1 · c(x))2/(1T ·C−1 · 1) is added, since the true value of β is unknown and
it is estimated only from the sample.
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Figure 2.4.3: Interpolation with GRFM: Original function, approximation and error estimation
for the one-dimensional function sin(2·x) (left) and sin(x) (left). The dashed lines
mark positions that have been precisely evaluated.

Example: As an example for interpolation with GRFM two sinus functions have been
approximated with m = 8 training points. They are depicted in Fig. 2.4.3. The approx-
imation for the more rugged function sin(2x) (left plot) is less precise than that for the
smooth function sin(x) (right plot). This is taken into account by the error predictor ŝ,
which predicts higher deviations of the predicted values ŷ(x) from the true values y(x) for
the first function than for the second function. It can also be observed, that all training
points are precisely interpolated and that the deviation from the precise value of y(x)
grows with the distance from x to its neighboring training points. The error measure
ŝ(x) also grows with this distance and takes the value of zero at known points, which
demonstrates ŝ(x) is a measure for the degree of exploration for a region in the search
space. �

Now, the model assumptions of GRFM have been clarified. Furthermore, we have outlined
the methods for calibrating the metamodel and predicting output values by means of it.
The time consumption of the different stages of computation can be significant, as will
be revealed in the next section.

20



2.5 Computational efficiency of GRFM

Next, a detailed discussion of the time and space complexity for the Kriging method is
given. It will turn out that the time complexity grows rapidly with the number of points
in the database. In order to limit calculation time, training point selection methods will
be suggested that reduce the number of training points, yielding in so called local GRFM
metamodels.

The prediction of a new point with the Kriging methods can be subdivided into three
phases:

1. Calibration phase: Estimation of the GRFM parameters, comprising the correlation
parameter(s) θ, global variance s2 and regression term parameter(s) β1, . . . , βnr

2. Training phase: Determination of the weights of the linear predictor (expression
2.4.22).

3. Prediction phase: Calculation of ŷ(x) and – optionally – of ŝ(x)

Before starting with the complexity analysis for the calibration phase some notes shall be
given on the algebraic time complexity of matrix operations that play an important role in
the procedures for prediction with GRFM. It has been found that the algebraic complexity
of matrix multiplication, matrix inversion and the determination of the determinant are
essentially of the same order of magnitude [JGV03]. It has been recently obtained that
a lower bound for the three operations on m ×m real valued matrices can be given by
Ω(m2 · logm) (cf. [Tve03], [Ran03]). An upper bound of the algebraic time complexity
for the matrix operations is O(m3), which is a rough estimation that stems from the time
complexity of gaussian elimination. A well known result on a tighter bound for matrix
inversion of O(mlog 7) has been published by Strassen [Str69]. More recently, tighter
upper bounds for matrix inversion have been obtained with O(m2.376) [CW90]. However,
due to numerical instabilities it is not recommended to use Strassen’s algorithm and its
follow-ups [Wei04]. However, in the forthcoming analysis we will replace the precise value
for the exponent by a variable w, noting that for practical implementations for m < 50
the value w = 3 is a good guess. In particular, we can exploit the symmetry of the
correlation matrix and use LU factorization for determining its inverse [Pad00].

Next, the different phases of the Kriging algorithm shall be studied in more detail. The
calibration phase is the most time consuming part of the three phases. For all consid-
erations we assume an isotropic correlation function (equation 2.2.7) and alternatively
an stationary correlation function with individual correlation parameters for the design
variables (equation 2.2.8).

Corrolar 1. Suppose that X,y comprises m data sets and Nopt evaluations of the max-
imum likelihood term are spent for the optimization of the GRF parameters. Then an
upper bound for the operational time complexity of the calibration step of the Kriging
algorithm is O(d ·m2+Nmax ·mw). A lower bound is given by Ω(d ·m2+Nmax ·m2 · logm).

Proof. The first term d ·m2 originates from the time needed to calculate the entries of
the distance matrix 2.4.14 for all m · (m−1) distinct pairs of points by means of equation
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2.2.8. The second factor Nmax · mw of the expression bounds the time needed for the
calculation of det(C).

If we are given a fully parameterized GRFM, we can use the training data in order to
estimate the weights of the linear predictor.

Corrolar 2. The operational time complexity of the training phase is upper bounded
with O(d ·m2 +mw) and lower bounded with Ω(d ·m2 +m2 · logm).

Proof. Again, the first factor stems from the determination of the correlation matrix. The
second factor in the sum originates from the bounds for matrix inversion in 2.4.23.

Note that, if the training phase follows directly after the calibration phase, its cost re-
duces, since the distance matrix and the inverse matrix have already been calculated in
the calibration and can be transferred from there. Hence, we get the new upper bound
O(m2) for the training step, which stems from the calculation of the matrix operations
in Eq. 2.4.23.

Corrolar 3. The operational time complexity of the prediction of ŷ for q new points
x′
i ∈ R, i = 1, . . . , q is Θ(q · d ·m).

Proof. Once the training phase has been done, the linear predictor (Eq. 2.4.22) can be
applied in order to estimate all new points.

Corrolar 4. The operational time complexity of the prediction of ŝ for q new points
x′
i ∈ R, i = 1, . . . , q is Θ(q · d ·m2).

Proof. For the matrix multiplications in 2.4.25 the algorithm needs m2 · d steps. These
multiplications need to be performed anew for each input vector. The inverse matrix does
not have to be obtained anymore, since it can be transferred from the training phase.

Putting these results together we get the following theorem:

Theorem 1. Let m denote the number of input points, Nopt denote the number of steps
in the calibration, d denote the number of search space dimensions, and q the number
of points that are to be predicted. Then the operational time complexity for the whole
calibration and the prediction of the mean values (ŷ) and standard deviations (ŝ) for q
new input vectors is bounded by

O(d ·m2 +Nopt ·mw + q · d ·m2) (2.5.26)

and

O(d ·m2 +Nopt ·mw + q · d ·m), (2.5.27)

if only mean values are to be computed. The corresponding lower bounds are Ω(d ·m2 +
Nopt ·m2 · logm+ q · d ·m2) and Ω(d ·m2 +Nopt ·m2 · logm+ q · d ·m), respectively.
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It becomes apparent that the number of training points has the most significant effect on
the cost of the training phase, and not the dimension of the search space, as one might
have assumed before. Thus, for large databases of evaluations we suggest to use only a
subset of the total number of points available in the database for the metamodel training.
A simple heuristic that proved to work well in empirical studies [EGN05], is to choose the
k-nearest neighbors of a point x for training the metamodel and train a new metamodel
at each point. Such a strategy would be called local metamodeling in contrast to global
metamodeling, for which all evaluated points in the search space are used in order to build
the model. In order to measure at least the impact of each variable it is recommended to
choose m at least proportional to d.

Proposition 1. If k is chosen proportional to d, the time complexity for approximately
evaluating q points is bounded by O(q · (m · d + m · logm + Nopt · dw)), both for pre-
diction of mean values only and prediction for standard deviations and mean values. A
corresponding lower bound would be Ω(q · (m · d+m · logm+Nopt · d2 log d).

Proof. First, we determine the distance of the new point to all other points in the data-
base. The effort for this grows asymptotically with O(m · d). Next, they are sorted with
some efficient sorting algorithm. The time for sorting is estimated as O(m logm).

This is considerably faster, whenever d� m. In this work we will focus on search spaces
with low or medium dimension.

However, local metamodels can be implemented more efficiently using for example a
spatial database for storing the evaluated points. However, for the studies performed
in this work, a straightforward implementation suffices to obtain predictions within a
reasonable time, that is still orders of magnitudes lower than a precise evaluations.

Note, that GRFM can also be used for the prediction of multiple output values. Assuming
independent response functions, this can be simply achieved by maintaining separate
models for the different responses.

Artificial neural networks, that can have multiple outputs, might provide an alternative
technique. Next, a detailed conceptual comparison of both approaches, shall reveal their
essential difference.

2.6 Comparison to radial basis function networks

Frequently used techniques for nonlinear function approximation are artificial neural net-
works (ANN) [BL88]. An ANN is defined as a data processing system consisting of a
large number of simple, interconnected processing units. The architecture of ANN has
been inspired by information processing structures found in the multilayered cerebral
cortex of the human brain. Besides multilayered perceptrons, radial basis function net-
works (RBFN) are the most common ANN used for the approximation of functions. In
particular the latter are typically used for interpolation.

Radial basis function networks [Gia02, BL88] are three layer fully connected feedforward
networks (cf. Figure 2.6.4). They perform a nonlinear mapping (Rd → R

m) from the d
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Figure 2.6.4: Visualization of a RBFN with single (left) and multiple (right) outputs.

inputs to the m hidden units followed by a linear mapping (Rm → Rl) from the hidden
units to the l outputs. For reasons of simplicity the typical case of l = 1 will be first
considered and the multivariate case (l > 1) will be discussed later.

When applied for function approximation the neural network is trained in a training phase
with data from known function evaluations. The weights of the linear function from the
hidden layer to the output are adapted in a way that the deviations between the known
output values to the predicted output values are minimized. Then, in the prediction
phase, a point x ∈ Rd is presented to the neural network and the neural network predicts
the response.

Giannakoglou [Gia02] introduced a straightforward approach on how to employ RBF
networks for function interpolation in the sense that results for points in the training
set shall be reproduced exactly. It will be demonstrated that this kind of RBFN leads
essentially to the same equations as they are used in the prediction step of Simple Kriging.

Its architecture is described as follows: Let again x(1), . . . ,x(m) denote the evaluated
points of the database, and y(1) = y(x(1)), . . . , y(m) = y(x(m)). Then define for each
evaluated point x(i) a RBF center:

b(i) := x(i), i = 1, . . . , m (2.6.28)

Let |.| : Rd → R
+
0 denote a norm on R and r : R

+
0 → R

+
0 a positive definite function on

R
+
0 , then we define the activation function of the hidden layer via:

h(x,b(i)) := r(|x− b(i)|), i = 1, . . . , m (2.6.29)

The activation function based on r is called a radial basis function because it depends
on the distance to the RBF center. For r : R → R Giannakoglou [Gia02] suggests the
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function
r(x) = exp(−|x− x′|q), with q = 2 (2.6.30)

As an alternative, a weighted distance measure |x − x′|θ =
∑d

i=1 ·θi · |xi − x′i| for some
θi provided by the user or derived from local gradients of f estimated by the RBFN,
whether the RBFN becomes repeatedly trained [Gia02].

The function from the output values of the hidden layer to the output value of the RBFN
is defined as a linear function with a-priori unknown weights:

ŷ(h(1), . . . , h(m)) =

m∑

i=1

ψ(i)h(x,b(i)) (2.6.31)

The values of ψ(i) need to be adapted in the training phase. The output values of the
training points have to be reproduced by the neural network, whenever we demand for
exact interpolation of the results. This is expressed by the system of equations:

m∑

i=1

ψ(i)h(x(j),x(i))
!
= y(j), j = 1, . . . , n (2.6.32)

Rewritten in matrix form this reads:





h(x(1),b(1)) · · · h(x(1),b(m))
...

. . .
...

h(x(m),b(1)) · · · h(x(m),b(m))






︸ ︷︷ ︸

H






ψ(1)

...
ψ(n)






︸ ︷︷ ︸

ψ

!
=






y(1)

...
y(m)






︸ ︷︷ ︸

y

(2.6.33)

Note that H is a symmetric m × m matrix. The symmetry of the matrix H follows
immediately from the equivalence of the RBF centers b(i), i = 1, . . . , m with the input
patterns x(i), i = 1, . . . , m and the symmetry of the distance measure.

Assuming that there are no equal points in the database and that the RBF is positive
definite, the weights ψ(i), i = 1, . . . , m are given by the solution of this system, i.e.

ψ = H−1y (2.6.34)

The correspondence of this approach to Simple Kriging is established, if we replace the
correlation function c of the GRFM (Eq. 2.4.14) by the activation functions h in the
RBFN. Under this condition we find H=̂C and ψ=̂λ. As stated before, the special case
of Kriging with an a priori given value of β is called Simple Kriging. Thus we can conclude
that the prediction with the RBFN type introduced here is equivalent to the prediction
of the mean value of the conditional distribution with Simple Kriging.

It might be claimed that the ANN approach has the advantage of multiple outputs and
that all output values can be obtained within one training phase. Thus, we shall have a
closer look at modeling multiple responses (cf. Figure 2.6.4) with the RBFN approach
and with GRFM. Let

y(i) = y(x(i)) := [y1(x
(i)), . . . , yl(x

(i))]T (2.6.35)
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denote the vector of responses for a single evaluation of x(i), i = 1, . . . , m. Moreover, let
us define the m× l result matrix Y and the a priori unknown m× l weight matrix Ψ via

Y =






y
(1)
1 · · · y

(1)
l

...
. . .

...

y
(m)
1 · · · y

(m)
l




 Ψ =






ψ
(1)
1 · · · ψ

(1)
l

...
. . .

...

ψ
(m)
1 · · · ψ

(m)
l




 (2.6.36)

such that H · Ψ = Y. Analogously to the single output case Ψ = H−1 · Y de-
scribes the solution of this system, provided that the inverse exists, and via ŷ = Ψ ·
[h(x,x(1)), . . . , h(x,x(m))]T predictions for y(x) ∈ R

l can be obtained.

This algorithm is not equivalent to the prediction step of the simple co-Kriging algorithm
[Mye92], since correlations between the output values are not considered. In fact it
corresponds to the repeated prediction of different output values with the same correlation
parameters and thus the same inverse correlation matrix C−1 in simple Kriging.

In conclusion, the RBF approach safes time, since the calibration phase is omitted. On
the other hand we may loose accuracy, since the parameters of the activation function
are not estimated from the sample. Over and above, standard implementations of the
RBF do not provide us with any confidence information along with the prediction.

2.7 Prediction error

It would be interesting to know, which accuracy can be expected from a GRFM. In order
to specify the maximal prediction error it makes sense to restrict the search space to an
interval box of finite size, e.g. by S = [a,b]d and define the error as et = maxx∈S(|y(x)−
ŷt(x)|), whereas ŷt is the prediction based on t evaluations that are optimally placed in
the search space, with regard to error minimization.

The so-called ’curse of dimension’ states that in order to keep the error constant the
number of sample points has to grow exponentially with dimension. As we will see, this
general statement holds only, if certain assumptions about the function to be approxi-
mated are given.

The relationship between smoothness, dimension and approximation error can be studied
for deterministic function classes, modeled by GRFM. A very general result is stated in
Koehler et al. [KO96] and will be discussed next.

The Hölder class of functions with parameters k and α is defined as

F = {f : [a, b]d → R| |Drf(x)−Drf(y)| = ||x− y||α},
∀r with |r| = k, 0 < α ≤ 1. (2.7.37)

Here we use here the notation of Schwartz for partial derivatives ([Joh81], pp. 54):
r = (r1, . . . , rd) is a n-tuple of non-negative integers with |r| = r1 + · · ·+ rd. The general
partial differential monomial Dr is then defined as

Dα :=
∂|r|

∂xr11 . . . ∂xrdd
. (2.7.38)
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For the Hölder class of functions it is possible to prove the lower bound for the maximal
error et that we have to expect for an approximation based on t evaluated points in an
search space [0, 1]d:

et ≥ cn−(k+α)/d (2.7.39)

Accordingly, the prediction quality of the metamodel not only depends on the dimension
but also on the smoothness of the functions. Provided the parameters α and k are
constant, the number of points that we need to guarantee a certain value of et growth
exponentially with d.

If we stick more closely to the model assumptions of GRFM, and consider the function to
be indeed a realization of a gaussian random field, the maximum of the error prediction
ŝ(x) for all x ∈ S provides us with an upper confidence bound for et. Since the GRFM is
assumed to be homoscedastic, the error variance is always limited by the global variance
s2. For highly correlated functions the distance of new points to known points governs the
approximation error. Recall, that the correlation decreases exponentially with distance
(expression 2.2.8). As with the same number of sample points the maximal distance be-
tween sample points and prediction points grows with the square root of the search space
dimension d, also the correlation between the corresponding random variables decreases
exponentially.

Recently, Büche et al. [BSK05] tested the effect of sampling size of metamodels in the
context of metamodel-assisted evolutionary algorithms for optimization problems in the
search space Rd. They used local metamodels and recommended sample sizes ranging
from 2d sampling points, for simple quadratic test problems, up to 8d sampling points,
for some difficult multi-modal test problems. By these sampling sizes they achieved
approximations that have a sufficiently good quality for providing predictions of satis-
factory quality within the context of metamodel-assisted evolutionary algorithms. These
recommendations were derived on typical test functions in the domain of evolutionary
algorithms. All tests that led to these recommendations were carried out in 2–32 dimen-
sions.

In conclusion, the results of this brief discussion shall highlight that the ’curse of dimen-
sion’ can limit the use of approximation techniques to low dimensional spaces. However,
the impact of the curse of dimensions can be weakened, if the functions considered are
either very smooth or if the function value depends mainly on a small subset of active
variables. Also, practical results on typical test problems may be taken into account, in
order to find out about the sample size needed to achieve sufficiently well approximations.

2.8 Metamodel validation and diagnostics

Validation techniques can be used to assess the quality of a metamodel that has been
trained on a given sample of points. In particular, the consistency of the given data with
the model assumptions is verified.

For validating metamodels, we partition the set of known function evaluations X,y into
a training set and into a validation set. Then the metamodel is trained on the training
set and predictions for points in the validation set are checked with the known results
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from the validation set. A problem with this technique is that extra function evaluations
are needed to form the validation set.

A technique that does not need extra function evaluations for checking the model is
leave-one-out cross-validation. Let X−i,y−i describe the training data set for which the
i-th evaluation has been removed. This data set is used to train the metamodel. The
predicted mean will be denoted with ŷ−i(x) and the predicted variance with ŝ−i(x), for
any x ∈ S. Now, we compare the predicted mean ŷ−i(x) with ŷ(x). This is done for any
i = 1, . . . , m.

Now, we can apply different plots in order to check the validity of the predictions.

First, we may ask, if the metamodel provides accurate estimations. Schonlau et al.
[JSW98] suggest to use y ∼ ŷ plots for this purpose, plotting the predicted y values
against the true y values. If the accuracy of predictions is good then all points in the
y ∼ y plot are close to the bi-sector.

εi =
m∑

i=1

(ŷ−i − yi)2 (2.8.40)

However, a low accuracy does not suggest that the model assumptions are wrong and have
to be revised. It might also indicate the general difficulty of approximating a function
due to low correlated data. It is thus also important to look for the self-assessment
capabilities of the GRFM.

For the purpose of model validation it has to be tested, whether the errors are normally
distributed with the predicted variance ŝ(x). This can be done with the normal proba-
bility plot, which should be used to check the normal distribution hypothesis for the data
set {δ1, . . . , δm} with

δi =
ŷ−i(xi)− y(xi)

ŝ−i(xi)
, i ∈ 1, . . . , m. (2.8.41)

It will turn out throughout this thesis that the error measure is often used to estimate
the range for possible outputs for a given input. For checking, whether ŷ−i(x)±ω · ŝ−i(x)
is a good confidence range for the true output or not, we can simply apply the y ∼ lbω
diagram and the y ∼ ûbω diagram. Within these diagrams we plot all true values against
the predicted lower bounds (or the predicted upper bounds in case of the y ∼ ûbω
plot). This shows us, whether the confidence bounds are valid with the confidence level,
depending on ω.

2.9 Conclusions

GRFM metamodels have been introduced in this chapter. It has been shown how these
models can be used for the prediction of single and multiple outputs. The runtime
complexity of different procedures (calibration, training, prediction) has been investigated
in detail. The main factor in the running time of Kriging is the number of training points.
The results suggest that for large numbers of evaluations it is important to reduce the
number of samples, before constructing the metamodel. This can be done, for example,
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by only considering neighboring solutions of the search point that has to be predicted.
Such techniques were termed local metamodels.

Moreover, the relationship between the GRFM approach and the RBFN approach for
metamodeling has been explicated. It turned out that the commonly applied RBFN
approach, which sets the RBF centers equal to the training patterns, can be mapped
to the ’simple Kriging’ approach by replacing the radial basis functions by correlation
functions of GRFM and omitting the calibration step in the Kriging algorithm. Because
of this formal equivalence, empirical comparisons of both approaches are dispensable.
However, if we want to make use of the calibration of correlation parameters of GRFM,
we need to compute more than one matrix inversion for building the GRFM. In this case
we spend more time for building the model than in the case of simple RBFN and – in
case of multiple outputs – also the time for training increases.

Finally, we reported on some results on the estimation of the prediction error and pointed
out that besides the problem dimension also its smoothness governs the sample size needed
to guarantee a certain prediction error. Moreover, cross-validation, as well as the use of
y ∼ ŷ and y ∼ lbω diagrams were proposed for measuring the validity of a metamodel
online or in practical experiments.
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3 Continuous single-objective
optimization

By asking for the impossible we obtain the possible.
Italian proverb

This chapter discusses the capabilities and limitations of state-of-the-art techniques for
the solution of real valued single-objective optimization problems:

f(x)→ min,x ∈ S ⊆ R
d (3.0.1)

Due to the large number of techniques available for continuous optimization, our survey
will necessarily be incomplete. Our coverage will focus on techniques that we consider
as relevant within the context of this thesis. In particular, we introduce techniques that
work with approximation models. For a broader overview of optimization techniques the
reader is referred to [CDG99, GMW81, HP95] and [Sch95].

Firstly, in section 3.1 the black-box complexity of continuous box constrained optimiza-
tion is discussed. Secondly, a sketch of four main methodologies for approximately solving
the global optimization problem is given, all of which are closely related to the algorithmic
approach proposed in this work. The survey starts with the discussion of gradient based
methods (section 3.2). It continues with deterministic direct search methods, focussing
on pattern search (section 3.3). Bayesian global optimization methods are discussed in
section 3.4. Last but not least in section 3.5 we give a brief overview on bio-inspired and
stochastic methods for optimization. There, we will focus on evolution strategies (ES) that
provide the algorithmic framework for the methods discussed in the subsequent chapters.

3.1 Black box complexity of global optimization

Before introducing different algorithms to tackle single criterion optimization problems,
it shall be motivated from a theoretical point of view, why heuristic procedures are often
needed for the global optimization of black box functions. The concept of information
based complexity or black box complexity will be introduced first, since it fits well within
the context of optimization with time consuming computer experiments. The discussion
will first provide some remarks on general optimization of regular functions and then focus
on some general conditions of continuity that allow to get sharper bounds for estimating
the information based time complexity of the optimization problem. These results also
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limit what we might expect from some kind of general purpose optimization tool in the
continuous domain. Though the results presented here are not new, they have rarely
been discussed within the context of heuristic optimization.

In industrial design, computer experiments are usually very time consuming. Thus,
if computer experiments are scheduled in order to perform a design optimization, the
running time of the algorithm is mainly determined by the running time of the computer
experiments. In these cases, the number of objective function evaluations is a good
measure for the running time of an algorithm.

The black box complexity (or information based complexity [Nov99]) is defined as the
asymptotic number of function evaluations that are needed to determine approximations
to the global optimum with a certain precision. The term is also used in the context of
approximation, where it is desired to achieve a certain approximation quality.

In the following an algorithm will be denoted by ’a’ and it is assumed that it generates
a sequence of points xa

1, . . . , xa

t and evaluates them by obtaining their function values
f(xa

1), . . . , f(xa

t ). From this information an approximation for the global optimum is
determined, usually by determining xa

opt(t) = arg min{f(xa

1), . . . , f(xa

t )}. Generally, a
distinction can be made between non-adaptive algorithms that determine all t sample
locations a-priori and adaptive algorithms that make use of the i − 1 previous function
evaluations in order to determine the i-th sample location [NR96] for i = 1, . . . , t.

According to Novak and Ritter [NR96], it is easy to construct algorithms that converge
to the global optimum for functions f , which fulfil the property that for every positive ε
the set

{x ∈ [xmin,xmax]|f(x) < inf
x∈[xmin,xmax]

f(x) + ε} (3.1.2)

contains an open set. Among others, this class of functions contains all continuous func-
tions.

The sole condition that needs to be assured is that the sequence of points xa

t , t = 1, 2, . . .
generated by the algorithm a is dense in [xmin,xmax]. This can be easily confirmed for
methods working with grid refinement.

For Monte Carlo methods and other stochastic methods a similar result can be obtained
[NR96] for convergence to the global optimum with probability of almost one. It suffices
to show that for each positive ε the ε-ball

Bε(x) := {x′| |x− x′| < ε} (3.1.3)

around any search point x is sampled with a probability p ≥ pmin > 0 at least after each
n0 <∞ samples. In this case a lower bound for the probability pε,n0

(t) that a sample is
placed in the ε-ball around the optimum is given by

1− (1− pmin)t/n0 ≤ pε,n0
(t) ≤ 1 (3.1.4)

and hence
lim
t→∞

(pε,n0
(t)) = 1 (3.1.5)

However, in practical optimization we are also interested in the number of objective
function evaluations (t) needed to achieve a certain precision ∆(at, f) = f(x∗

a
(t)) − f ∗
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for the approximation of an optimum. Meaningful bounds below infinity can only be
achieved, if we make further assumptions on the black box function: Let F : ℘([0, 1]d →
R) denote a class of functions, then

∆(at, F ) = sup
f∈F

∆(at, f) (3.1.6)

is the approximation precision that can be guaranteed for any function in F with t
objective function evaluations when using algorithm ’a’.

More generally, we can ask for the maximal precision that can be achieved with any
algorithm for a class of functions:

et(F ) = inf
a∈A

∆(at, F ) (3.1.7)

where A denotes the set of all possible algorithms.

For many function classes it is possible to prove the lower bound of this function. A very
general class of functions is the Hölder class of functions (expression 2.7.38 on page 26).

For the Hölder class of function with parameters α and k a sharp error bound has been
discovered [NR96], that is

et(F ) ≥ cn−(k+α)/d (3.1.8)

or, if we are interested in the number n of objective function evaluations needed to achieve
the approximation error et(F ):

n =

(
c

et(F )

)d/(k+α)

(3.1.9)

The result demonstrates, that even for this continuous class of functions the number of
objective function evaluations that is needed to achieve a certain approximation accuracy
grows exponentially with the number of dimensions. This observation is often referred to
as the ’curse of dimension’. The effect of the dimension can be compensated to a certain
extent, if F contains only very smooth functions. The latter is an important observation
that has often been neglected in the literature. It provides us with reasonable hope that
even for high dimensional spaces good approximations of global optima can be obtained,
whether the partial derivatives of the function are bounded by small values compared
to the size of the search space. In this context, it shall be noted that many simulation
systems in physics and engineering are based on nonlinear partial differential equations.
Thus, it is sometimes easy to obtain bounds for the derivatives, even though the solution
of the equations is difficult.

Note, that this ’curse’ also weighs on the problem of function approximation we stepped
across in chapter 2 (page 26). Accordingly, the problem of black box optimization and
approximation are closely related and their maximal performance seems to be limited by
the same properties of the function. Note, however, that we have nothing said yet about
the operational run time complexity (cf. [Nov99]) of optimization algorithms, which still
might grow exponentially wo

Even, if the black box complexity is restricted by the bound given above, the operational
run time complexity of the optimization algorithm may grow even faster than the black-
box complexity with the number of dimensions d. It has been stated by Ritter and
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Novak [NR96] that sampling on a regular grid method is among the asymptotically best
methods for solving this problem, if we consider the worst case of the approximation error.
However, in the average case1 adaptive methods can outperform such simple strategies
[NR96].

The error bound in expression 3.1.8 can be achieved with non-adaptive grid methods.
However, adaptive methods outperform non-adaptive methods in the average case. This
has been studied by Ritter [Rit90]. In special cases like Lipschitz optimization and the
optimization of convex quadratic functions much better error bounds can be obtained
(cf. [NR96]).

Expression 3.1.9 suggests that for several relevant classes of high dimensional or low
correlated functions there exists no algorithm that guarantees to find a sufficiently precise
approximation of the global optimum in polynomial time. This is, why the practitioner
has to rely upon heuristic optimization algorithms. These algorithms might not find
the global optimum but they are more or less sophisticated strategies for improving the
quality of a solution measured by the objective function value.

Heuristic search methods range from path oriented methods that converge quickly to a
nearby local optimum to volume oriented methods that do a coarse sampling of the search
space. As we will see in the following, pattern search methods and evolution strategies
are some kind of compromise between these two paradigms. They start with a coarse
sampling of the search space and adaptively refine the sampling in promising regions of
the search space.

3.2 Gradient based optimization methods

Path oriented or local search methods can be defined by a general iterative formula:

xt+1 = xt + σtdt (3.2.10)

Here xt is the vector of design variables, σt denotes a step size, and dt a direction vector
at time step t. The subsequent input vector xt+1 is considered to have a better objective
function value. Note, that for the determination of dt and σt a limited number of trial
evaluations of the objective function are conducted. If the local optimization method is
successfully applied, the series (xt)t=1,2,... converges to the optimal solution. It is said
that (xt)t=1,2,... describes a path of points with decreasing objective function values to the
optimum, why these methods are often referred to as descent methods.

Gradient based methods make use of the gradient of the objective function

∇f(x) = (
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xd
)T (3.2.11)

in order to determine the step direction dt in Eq. 3.2.10.

In cases, where the gradient cannot be provided by the evaluation tools, it may be
approximated by a finite difference method from f(x) plus n or 2 · n objective function
evaluations at small perturbations of x in all coordinate directions [GMW81].

1Note, that this raises the question of how to define some average case. For details on average case
analysis of numerical problems on continuous functions we refer to Ritter [Rit90].
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The most straightforward gradient based minimization method is the steepest descent
method. In the steepest descent method the direction dt in Eq. 3.2.10 is substituted by
the normalized negative gradient:

dt = − ∇f(xt)

||∇f(xt)||
(3.2.12)

The step size is then chosen as the result (so-called relative minimum) of an one dimen-
sional optimization in this direction (so-called line search):

σt = arg minσ>0f(xt + σdt) (3.2.13)

Another possibility for choosing σt is to start with an arbitrary step size and reduce or
extend the step size by certain rules that are applied in each iteration, according to the
success or failure of previous trial steps [Sch95].

Although the concept of steepest descent looks appealing at first glance, this method has
some drawbacks. Besides the disadvantage that convergence to the optimum of f can only
be guaranteed for strictly convex and differentiable functions there is another problem: If
there is strong interaction between the variables, the strategy runs into danger to perform
a ’zig-zag’ course and therefore many line searches will be needed to approximate the local
optimum sufficiently well.

The latter drawback can be offset by considering second order information in the search.
These methods exploit also pieces of information from second order derivatives in order
to determine the search direction.

Second order methods build a local quadratic model of the objective function by means
of its Taylor expansion

f(x) ≈ f(xt) +∇f(xt)(x− xt)
T +

1

2
(x− xt)

T∇2f(xt)(x− xt)
T (3.2.14)

Then, xt+1 is set to the optimum of this approximation. This can be determined by using
Newton’s method in order to find the zero of the gradient, supposed that the Hessian
matrix is positive definite (i. e. the problem is strictly convex). Thus we get the Newton
Raphson optimization strategy:

xt+1 = xt −∇f(xt)[∇2f(xt)]
−1 (3.2.15)

In practical applications the objective function is often far from being quadratic or convex,
why it might be wise to limit the length of a trial step. This can be done by replacing d in
Eq. 3.2.10 by the second factor in equation 3.2.15 and perform like it has been described
for the steepest descent method. In order to decrease the cost of the approximation of the
inverse Hessian matrix, it is also a common strategy to approximate it from a succession
of gradient approximations in gradient based approximation. This is the main idea in
the so-called quasi Newton methods like Stewart’s modification of the Davidon Fletcher
Powell method (DFPS) (cf. [Sch95], pp. 78) or by conjugate directions and conjugate
gradients methods [Sch95]. Note, that the DFPS method approximates the local gradient
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by forward differences or central differences. Thus the DFPS method is a derivative-free
method that can be applied in cases where gradient values cannot be obtained from the
black box evaluator.

Recent Newton optimization methods determine a so-called trust region [CGTT00], i .e.
a local environment of the current search point in that the predictions are being trusted.
The radius of the trust region is adjusted during the optimization run by comparing the
objective function value at the predicted optimum with the predicted objective function
value.

In several studies ([Sch95, ESB02]) it has been demonstrated that Newton methods and
quasi-newton methods like DFPS are not capable of dealing with complex search spaces
involving multimodalities and discontinuities. On the other hand, they perform very well
on quadratic and near quadratic functions.

3.3 Deterministic direct search methods

Besides gradient based methods various derivative-free optimization methods have been
frequently used for the optimization with computer models. A large number of those
derivative-free methods belong to the class of direct search methods. Hooke and Jeeves
were the first, who used the term "direct search methods". In a publication that was
released in 1961 they defined it as follows [HJ61]:

We use the phrase ‘direct search’ to describe sequential examination
of trial solutions involving comparisons of each trial solution with
the best obtained up to that time together with a strategy for deter-
mining (as a function of earlier results) what the next trial solution
will be. The phrase implies our preference, based on experience, for
straightforward search strategies which employ no techniques from
classical analysis except when there is a demonstrable advantage of
doing so.

The origin of many direct search methods dates back to the late fifties and early sixties,
when there was some kind of "boom" for constructing numerical optimization methods.
This was closely related to the upcoming of digital computers and the availability of the
first computer models. For a survey on classical direct search methods that have been
originated in those days the interested reader is referred to [GMW81] and [Sch95]. A
brief overview is given also in [VT00] and [ESB02].

One reason for the success of many direct search methods is that they have been invented
to a time, where gradient based methods were suffering from much more serious drawbacks
than they do today and a theoretical foundation of these algorithms had not yet been
established. However, despite the significant progress in gradient based optimization,
direct search method still have their regular place in the optimization of computer models.
A reason for this is certainly the simplicity and robustness of some of these methods. It
does not require an expert in numerical optimization to implement methods like the
downhill simplex or the method of Hooke and Jeeves [HJ61], and to gain a basic insight
into their search principles and how to control them.
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But also for experts in numerical optimization it is justified to consider these methods.
The fault tolerance and the less rigid iteration schemes of the direct search methods that
are used today, make them easy to apply for automatic optimization in parallel computing
environments that have become very apparent in research and development. Moreover,
they are considered to be less sensitive to numerical noise due to rounding errors and
discontinuities – both being difficulties that are frequently encountered when optimizing
with computer experiments.

The theoretical foundations of direct search methods have been further developed since
the early 60ties and, today for many constrained and unconstrained problem classes the
convergence of these methods to a local minimum has been proven [Tor97]. In recent
years also the concept of generalized pattern search (GPS) has been developed [VT00]
that allows to integrate many direct search methods into a common framework and to
derive a unified theory for these methods (cf. [AD00]).
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Figure 3.3.1: Visualization of some search steps of an algorithm that fits into the generalized
pattern search (GPS) framework. In the example the GPS algorithm has to obtain
an optimum in a two dimensional search space [xmax,xmin] ⊂ R

2. The trial points
for the first step are the white filled points placed around the search point x1.
The largest improvement among these trial points due to f is x2. Thus x2 serves
as the next search point. For x2 again trial points are placed on the mesh in form
of a diamond, excluding those points that have already been evaluated in the first
step or that extend the search space boundaries. Since no improvement has been
found the step size is halved and a new pattern of trial points is generated for
a refined mesh. Among the points on the refined mesh, an improvement x3 has
been found and it is taken as the new search point. Note that the cross-marked
points belong to the core pattern of one of the search space, which is a minimal
sub-pattern that is important to assure stationary point convergence.

Within methods that fall into the framework of generalized pattern search, trial points are
placed on selected nodes of a d-dimensional grid around the current search point xt. Then
these points are evaluated using the objective function f . If an improvement is found, a
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new iteration starts with points placed around a new search point xt+1 that is set to the
trial point where the improvement has been obtained. Depending on the implementation
of the pattern search method, not necessarily the first improvement found on the pattern
needs to be the starting point of the next iteration. Furthermore, there can be significant
differences in the order in that search point are evaluated. If no improvement has been
found among all trial points of the basis (a subset of the selected grid points including
trial points in different coordinate directions), the grid size can be refined by dividing the
mesh size by a constant factor. It is definitely refined if none of the points on the pattern
led to an improvement.

It has been proven that, if the set of trial points meets the condition that a set of
difference vectors between a subset of the trial points and xt is a positive basis of Rd, the
pattern search method converges to a stationary point, i. e. a point x with ∇f(x) = 0,
for any differentiable objective function and t → ∞. Practically speaking, this means
that pattern search will converge either to a local optimum or to a saddle point for any
differentiable function. A proof and a more detailed discussion of this result and a further
discussion of convergence properties of generalized pattern search can be found in [Tor97].
For box constrained search spaces further requirements for the set of trial points need to
be fulfilled as it has been demonstrated by Lewis et al. [LT99].

Example: Figure 3.3.1 visualizes three search steps within a pattern search algorithm
that works with a diamond-shaped 2-D pattern. First trial points for x1 are determined
by the algorithm (the white filled points). They are all placed on a regular pattern (in
the example this has the form of a diamond) around the search point x1. Among the trial
points are the points that belong to the core pattern (the crossed white circles). Now, all
trial points are evaluated and the pattern search moves to the largest improvement (here
it is x2) and a new pattern of trial points is generated, excluding those points that have
already been evaluated. Among the new trial points placed around the new search point
x2 no improvement can be found. Thus, the mesh is refined by halving the mesh size. On
the refined mesh around x2, again trial points are placed in form of a diamond. Again
all new points are evaluated. This time with x3 an improvement has been obtained and
it will serve as the new search point. �

Pattern search methods are regarded to converge slower than gradient based methods
(for simple nearly quadratic functions and in terms of objective function evaluations),
but they are also considered to be much more robust and flexible (cf. [ESB02]) than the
latter. In order to accelerate direct search methods, metamodeling techniques have been
proposed [TT97, DV97].

The working principle of metamodel-assisted pattern search is to evaluate search points in
the sequence that is suggested by rank ordering obtained for the approximations provided
by a Kriging metamodel. It is easy to prove, the circumstance that the stationary point
convergence is still satisfied for these methods. An empirical investigation of metamodel-
assisted pattern search techniques can be found in [Sie00].
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3.4 Bayesian global optimization

Several global optimization methods have been proposed in literature. Due to Dixon
and Szegö [DS78] these algorithms distinguish from local optimization algorithms, as
they do not aim at finding a single local optimum but at finding the best among several
local optima. Törn et al. [TZ89] developed several multi-start clustering techniques for
that purpose. These algorithms run several local search procedures in different parts of
the search space. These parts are identified using cluster analysis techniques. Though
it yields high quality results, this approach needs a large number of objective function
evaluations and thus it is not applicable for optimization with expensive objective function
evaluations.

Zilinskas and Mockus [TZ89] developed bayesian global optimization (BGO) procedures
that are often used for the optimization with time consuming computer experiments.

Within BGO the random field metamodels are employed to model the response surface
from objective function evaluations of points sampled in the search space. A ’figure of
merit’ is used in order to decide which points have to be evaluated. This figure of merit
could be the expected outcome of the experiment for an unknown point. It might also
take into account the local variance of the prediction in order to re-sample less explored
regions or to find regions with high potential for improvements.

However, it is common practice in the BGO literature to suggest the use of error measures
along with the predicted response in order to define ranking criteria. A straightforward
approach to BGO termed statistical global optimization (SGO) has been suggested by
Cox and John [CJ97].

Algorithm 1 Statistical global optimization

1: D0 ← evaluatef (x
(1), . . . ,x(m0)) {Initialize database}

2: t← m0 {Initialize evaluation counter}
3: while t < teval,max do

4: Search for x∗
t = argminx∈S

f̂sc(Dt,x)
5: yt = f(x∗

t )
6: if yt < ytmin then

7: xtmin = x∗
t

8: ytmin = yt
9: end if

10: Dt+1 = Dt ∪ {(x∗
t , yt)}

11: end while

12: return ytmin,x
t
min

In algorithm 1 an outline of the SGO algorithm is given. The algorithm starts with evalu-
ating a user defined number of design points evenly distributed in the design space. Then
repeatedly the following steps are proceeded: First the minimum of a utility criterion f̂sc
is searched for on the metamodel. The minimizer is then evaluated precisely by means of
an computer experiment and used in order to update the database of objective function
evaluations that are used for metamodeling.
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3.4.1 Utility functions in bayesian optimization

Different criteria for the utility criterion f̂sc have been suggested for pre-screening the
search space by means of the metamodel (line 4). They all more or less refer to the
trade-off already described by Kushner [Kus62]:

The purpose of the utility function is to find trade-off between sam-
pling in known promising regions versus sampling in under-explored
regions or regions where the variation in function values is high.

If the focus is put to the promising regions and the degree of exploration is not considered,
the expected function value

f̂sc(x) = ŷ(x) (3.4.16)

would serve as a good criterion. Also, this allows us also to use metamodels that are not
capable of providing an estimation for the approximation error.

Cox and John [CJ97] suggested a compromise between the exploration and the exploita-
tion objective by proposing the criterion

lbω(x) = ŷ(x)− ω · ŝ(x), ω > 0 (3.4.17)

for f̂sc(x). A visualization of this criterion can be found in Fig. 3.4.2. The lbω criterion
looks very appealing since it takes into account the expected function value as well as
the confidence factor attached to this value. The factor ω can be adjusted in order to
balance between global exploration and local search.

A high value of ω rewards regions in the search space that are relatively unexplored,
which entails a high value for ŝ. Driving the search to unexplored regions, can help to
escape from local optima in multimodal optimization and thus increases the robustness
of the approach. On the other hand, a greedy approach would focus on a high progress
within the next step and thus samples values with the minimal expected values. This
might be faster but entails a higher risk of convergence to a local optimum. The influence
of the mean value in expression 3.4.17 is, of course, highest whenever ω takes values close
to zero.

The expression of 3.4.17 can be interpreted as a one-sided (lower) confidence bound.
Accordingly, we will use the abbreviation lbω. In this context, the adjustment of ω can
be related to a confidence level quantifying the probability that the true output value
is above the lower confidence bound, i. e. pα = Pr(lbω(x) > y(x)) provided the model
assumptions are true. For GRFM the relationship between pα and ω can be expressed
by pα = Φ(−ω) where Φ denotes the cumulative gaussian distribution.

Mockus et al. [MTZ78] proposed a criterion based on the expected improvement. Jones et
al. [JSW98, SWJ98] further developed algorithms based on this criterion. The expected
improvement criterion is defined as follows: Let ytmin = min{y(xi)|i = 1, . . . , t} denote
the best so-far found result after t objective function evaluations. Moreover, let x denote
a potential new search point considered for evaluation. Then the improvement at this
new search point is measured by:
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Figure 3.4.2: The figure visualizes the lbω criterion lbω(x) = ŷ(x) − ωŝ(x) for a point
x ∈ S. By means of the confidence factor ω the width of the confidence
interval can be adjusted, in order to achieve a desired confidence level.

I(y) =

{
0 if y > ytmin

ytmin − y otherwise
(3.4.18)

Now, the expected improvement is defined as:

ExI(x) =

∫ yt
min

−∞
(ytmin − y) · ϕ(

y − ŷ(x)

ŝ(x)
)dy

This expression can be simplified by algebraic operations to

ExI(x) = (ytmin − ŷ) · Φ(
ytmin − ŷ(x)

ŝ(x)
) + ŝ(x) · ϕ(

ytmin − ŷ(x)

ŝ(x)
) (3.4.19)

In this expression ϕ denotes the probability density function of the standard gaussian
distribution. In their paper Jones et al. [JSW98] provide a deterministic procedure how
to determine the minimum of the expected improvement, based on Floudas’ α-branch
and bound algorithm for nonlinear optimization ([JSW98], pp. 27). However, they
state that this algorithm is only applicable for small data-sets. The resulting BGO they
termed efficient global optimization (EGO). They conjectured that – provided the θi in
the gaussian model (cf. expression 2.2.8) remain strictly positive – the EGO algorithm
creates a dense subset within the search space ([JSW98], page 25) and thus converges to
the global optimum of continuous functions. Empirical studies of EGO suggest a good
performance especially for low dimensional search spaces and low numbers of evaluations.

There are many other BGO algorithms using different kinds of iteration schemes and
criteria for selecting subsequent search points. Also a lot of work has been spent on how
to design the initial sample. For an overview of BGO methods the interested reader is
referred to [TZ89] and to [SWN03].
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3.5 Bio-inspired optimization algorithms

Like in the field of approximation with artificial neural networks, also in the field of opti-
mization it proved to be successful to build heuristic algorithms inspired by abstractions
of collective processes observed in nature. The general idea of bio-inspired optimiza-
tion has been extensively exploited in the last decades in order to build more or less
specific heuristics for black box optimization, like particle swarm optimization [KES01],
genetic algorithms [Gol89] and ant colony algorithms [DMC99]. Moreover, there are
many stochastic heuristic optimization methods like simulated annealing and tabu search
[CDG99], that are not directly motivated from biological systems but work with similar
mechanisms. It would extend the scope of this work to give a comprehensive overview of
all these heuristics. Instead, we recommend the books [CDG99] and [ZM00] as surveys
on ideas in bio-inspired and related heuristic optimization methods.

Many bio-inspired optimization algorithms belong to the class of evolutionary algorithms
(EA). These algorithms have been inspired by theories of evolution, in particular by those
theories that are referred to as the modern synthesis [Dob37] that unifies the natural selec-
tion theory of Darwin and Wallace with Mendel’s theory of genetics. Within the modern
synthesis, evolution is defined as a change in the frequency of an allele within a gene pool
(or population of genes). This change may be caused by mechanisms like natural selection,
genetic drift or changes in population structure (gene flow), etc. Common evolutionary
algorithms are genetic algorithms (GA), evolutionary programming (EP) and evolution
strategies (ES). For an comprehensive survey of classical evolutionary algorithms we refer
to [BFM97], thereby noting that the development of evolutionary algorithms is still an
field of extensive research.

It shall be remarked here that the view of evolution as ’survival of the fittest’ is way to
simple to account for many evolutionary adaptation processes in nature, though it applies
well to some simple designs for evolutionary algorithms that are used for optimization
purposes. But even there it turned out that elitism is not always the best way of how to
achieve good solutions in the long term [OBS98, Sch02]. For a rich source of material on
theories of natural evolution the interested reader is referred to [Pag02].

Within this work, EA are designed as randomized search heuristics for tackling diffi-
cult black box optimization problems and not in the first instance as models of natural
processes. Therefore, it requires caution to translate the results back into a biological
context.

3.5.1 Evolution strategies

In this work Evolution Strategies (ES) will provide the algorithmic framework for the
optimization studies on single-objective problems. After explaining why this subclass of
an evolutionary algorithm has been chosen, a detailed outline of the (µ, κ, λ)-ES will be
given. Later we will show how this algorithm can be supported by metamodels. Note
that the metamodel-assistance techniques developed for the ES can be easily transferred
to similar EA incarnations that work with rank based selection schemes.

Evolution Strategies have been chosen, since they have proven to be very robust for opti-
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mization of high dimensional (d� 7) continuous optimization problems. Another reason,
why ES have been chosen as basic algorithms is that, unlike other commonly used EA like
for example genetic algorithms, ES have been extensively studied on continuous search
spaces. However, they were also used for other problem domains, like mixed integer
optimization [ESGG00] or under certain assumptions for general metric spaces [Wie01].
Modern incarnations of ES incorporate most of the typical features of EA like rank based
selection, population based search and the usage of mutation and recombination opera-
tors. There are also variants that are working on structured population models. A main
feature of ES is their capability to adapt control strategy parameters such as mutation
step sizes online, which makes them user friendly and allow for a gradual refinement of
search.

It will be impossible to present a comprehensive survey of the results that have been found
in more than 40 years of research on evolutionary strategies. For further discussion of this
algorithm the reader is referred to literature: A comparison of classical EA compared to
ES for parameter optimization can be found in [Bäc96]. The theory of evolution strategies
has been described by Beyer [Bey01]. For a recent overview on ES the reader is referred
to [BS02]. Empirical investigations of the ES variants discussed in this work can be found
in Kursawe [Kur99]. For a comparison to classical search strategies the interested reader
is referred to Schwefel [Sch95] and within the context of industrial design optimization
to Emmerich et. al. [ESB02].

Next, the (µ, κ, λ)-ES as it is used throughout this work shall be outlined in detail.
Algorithm 2 specifies the algorithmic framework for the design of a (µ, κ, λ)-Evolution
Strategy for a general search space. The following notations are used for the description
of the algorithm: P = {a(1), . . .a(m)} ∈ Im denotes a population of m individuals. Here,
I denotes the space of individuals. An individual

a = (x, s, y, k) ∈ S× R
ns × F ∪ {�} × N

+
0 (3.5.20)

consists of the search point x ∈ S, the components of which are called object variables
and a vector of ns strategy parameters s ∈ Rns. Moreover, a set of function values y (the
results of an evaluation) can be stored in the individual along with its age k, i. e. the
number of generations it has survived. In single criterion optimization this value is the
result of the objective function evaluation, i. e. y = f(x).

Algorithm 2 General Framework for an Evolutionary Strategy
1: t← 0
2: P0 = evaluate(initµ())
3: x0

best ← arg min({f(x)|x ∈ P0}); f 0
best ← f(x0

best)
4: while terminate() = false do

5: Gt ←mutateλ→λ(recombineµ→λ(Pt))
6: Ot ← evaluate(Gt)
7: xt+1

best ← arg min({f(x)|x ∈ Ot} ∪ {f(xtbest)}); f t+1
best ← f(xt+1

best)
8: P sel

t ← replaceκλ→µ(Pt ∪Ot)
9: Pt+1 = increase age(P sel

t )
10: t← t+ 1
11: end while

12: return xtbest, f
t
best
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The EA starts with the initialization of the first population P0. Let Ωω describe a
probability space. Then the initialization is done by an initialization operator initµ :
Ωω → Iµ which usually initializes the object variables uniformly distributed within the
search space. The generation of λ new individuals in Ot from individuals in Pt (sum-
marized as generateµ→λ : Iµ → Iλ) can be subdivided into the recombination and
the mutation phase: In the first phase, the recombination operator recombine′

µ→λ :
Ωω × Iµ → Iλ generates λ individuals by iterative calling of a reduced recombination
operator recombineρ→1 : Ωω × Iρ → I that mixes the information of ρ individuals from
Pt in order to generate a new individual. In the second phase, individuals of the resulting
population of λ individuals are further modified by application of the mutation operator.
The mutation operator mutate′λ→λ : Ωω × Iλ → Iλ iteratively applies the reduced mu-
tation operator mutate1→1 : Ωω × I → I, that randomly modifies (mutates) the search
point. The intensity and random distribution of the variation is often controlled by the
individual’s strategy parameters. For some EA variants also these strategy parameters
are mutated. After the generation of λ variations from the parent population, all new
individuals are evaluated. Then a new parent population is composed by the determinis-
tic operator replaceκµ+λ→µ : I

λ+µ×N→ I
µ. This operator favors individuals that have a

good function value and it might also takes into account the age of the individuals, e. g. by
comparing it to a maximal life span κ. Finally, the operator increase ageµ→µ : Iµ → Iµ

is applied, that does nothing else but to increase the age of all individuals in the just now
composed population Pt+1 by one. The generational loop is then repeated with this new
parent population until some termination criterion is fulfilled. The termination criterion
might be related to a measure of diversity in the population or simply the exceed of a
maximum number of evaluations.

Next, we are going to specify a common instantiation of ES for continuous search spaces
with box constraints:

Representation

In continuous optimization with ES the space of individuals is described as

I = R
d × (R+)ns × (R ∪ �)× N (3.5.21)

For an individual

a = (x, s, y, k) ∈ I (3.5.22)

the continuous vector x = (x1, . . . , xd) ∈ Rd denotes the vector of d object variables
and s = (s1, . . . , sns

) denotes the vector of ns strategy parameters, that determine the
shape of the random distribution that is employed for generating mutations of the object
variables. The strategy parameters play a decisive role in controlling the granularity of
the search process during an optimization run.

Furthermore, a single cost value is denoted with y and the individual’s age (in generations)
is denoted with t. Since we deal with minimization problems, the fitness value will be set
equal to y = f(x) after the evaluation of an individual.
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Initialization

Given a box constrained search space with upper bounds xmin ∈ Rd and upper bounds
xmax ∈ Rd, the initialization operator initµ : Ωω → Iµ may sample µ individuals, which
are uniformly distributed within the bounds, i. e.:

x
(i)
j = xmin,j + U(0, 1) · [xmax,j − xmin,j ], i = 1, . . . , µ, j = 1, . . . , d. (3.5.23)

This type of initialization will be called uniform initialization.

Another possibility, that can also be used in unconstrained optimization, is, to initialize
the start population by a gaussian distributed sample around a start point xinit:

x
(i)
j = xinitj + s

(i)
j · N(0, 1), i = 1, . . . , µ, j = 1, . . . , d. (3.5.24)

This kind of initialization will be referred to as Monte Carlo initialization. It can also be
applied for unconstrained optimization.

The strategy parameters in s are typically initialized by the user. If interval constraints
are provided it is suggested [Bäc96] to choose

s
(i)
j = smin,j + 0.06[smax,j − smin,j], j = 1, . . . , µ (3.5.25)

as initial strategy parameters. This allows for a coarse grained search in the beginning
of the optimization.

Recombination

The recombination recombineµ→λ : Ωω × Iµ → Iλ is carried out by generating λ indi-
viduals by λ times generating a single individual by means of the reduced recombination
operator recombine′

µ→1 : Ωω × I
µ → I. Before stating the recombination operator, two

vector operations shall be introduced:

For a set of continuous vectors u1 ∈ Rd, . . . ,uµ ∈ Rd the intermediate recombination
function rI : (Rd)ρ will be defined as

rI(u
(1), . . . ,u(ρ)) = (

1

ρ

ρ
∑

i=1

u
(i)
1 , . . . ,

1

ρ

ρ
∑

i=1

u
(i)
d ) (3.5.26)

Accordingly, discrete recombination (or dominant recombination) rD : Ωω × (Rd)ρ → Rd

will be defined as

rD(u(1), . . . ,u(ρ)) = ((u
(1)
1 or . . . or u

(ρ)
1 ), . . . , (u

(1)
d or . . . or u

(ρ)
d )), (3.5.27)

where the operator ’ or ’ symbolizes that each entry in the list gets chosen with the same
probability. Next, with algorithm 3, we present an outline of the recombination operator
that is used throughout this thesis.
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Algorithm 3 Reduced ES recombination operator.

1: input: P ∈ Iµ

2: Choose ρ individuals {(x1, s1, y1, k1), . . . , (xµ, sµ, yµ, kµ)} randomly out of P
3: x′ = rD(x1, . . . ,xρ)
4: s′ = rI(s1, . . . , sρ)
5: return (x′, s′,�, 0)

Within the ES, recombination is applied for the object variables as well as for the strategy
parameters. Typically discrete recombination is recommended for the first and interme-
diate recombination is recommended for the latter [Kur99]. However, Beyer [Bey01]
frequently uses a different setting with µ = ρ and intermediate recombination for the
object variables, for which it is easier to analyze the convergence dynamics. Another
important version of the recombination operator discussed in literature is the global re-
combination [Sch95], where for each vector position the ρ individuals are chosen anew.
Global recombination allows for an elegant way for the online adaptation of individual
step-sizes, which works with a single mutation rate ([Sch95], page 147).

Mutation

In an ES, all individuals that result from the recombination operator are randomly mod-
ified by means of the reduced mutation operator mutate′

1→1. Formally the global muta-
tion operator mutateλ→λ : Iλ → Iλ reads:

mutateλ→λ(a
(1), . . . , a(λ)) = (3.5.28)

{mutate′1→1(a
(1)), . . . ,mutate′1→1(a

(λ))}
︸ ︷︷ ︸

λ times

There have been different suggestions for the choice of the reduced mutation operator.
Within the canonical ES a gaussian distributed value is added to the object variables and
the strategy parameters are multiplied with a log-normal distributed value.

Let a = (x, s, y, k) denote an arbitrary individual that has to be mutated. Then the
following procedure is applied in order to produce the result of the mutation a′ =
mutate′1→1(a).

Algorithm 4 Reduced ES mutation operator.

1: input: a = (x, s, y, k) ∈ I = Rd × (R+)ns × (R ∪�)× N

2: Nglobal ← N(0, 1)
3: for all i ∈ {1, . . . , d} do

4: s′i ← si · exp(τlocal ·N(0, 1) + τglobal ·Nglobal)
5: x′i ← xi + s′i ·N(0, 1)
6: end for

7: return a′ = (x′, s′, y, k)
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The values of τlocal and τglobal are called local and global learning rate. In [Sch95] and

[BS02] it has been proposed to choose τlocal = (
√

2 ·
√
d)−1 and τglobal = (

√
2d)−1 as

default values for the learning rates. However, Kursawe [Kur99] found that the optimal
choice of these parameter very much depends on the problem at hand. A simple but
effective method to mutate a single step-size is the two-point operator as proposed in
[Rec94] and later analyzed by Beyer (cf. [Bey01] p. 325). More details on this operator
will be provided in 4.5.2.

Replacement

The replacement operator replaceκµ→λ : Iµ+λ → Iµ in ES is deterministic and can be easily
described. Let a1:λ+µ, . . . , aλ+µ:λ+µ denote the in increasing order due to the comparison
operator <κ: I× I→ {true, false} with

a <κ a′ iff k < κ ∧ k′ < κ ∧ f(x) < f(x′)

∨ k ≥ κ ∧ k′ ≥ k

∨ k < κ ∧ k′ ≥ κ (3.5.29)

Then replace is defined as follows:

replaceκλ+µ→µ({a1:µ+λ, . . . , aµ+λ:µ+λ}) = {a1:µ+λ, . . . , aµ:µ+λ} (3.5.30)

In case of κ = 1 the resulting strategy is called (µ, λ)-ES and in case of κ =∞ it is called
(µ+ λ)-ES. Although, the setting κ = 1 has the advantage that it is easy to escape local
optima and that it allows for a better functioning of the step size adaptation, experience
shows that for limited numbers of evaluations higher values for κ should be favored.

3.6 Existing work on metamodel-assisted evolutionary

optimization

Recently, there have been some first efforts to introduce approximate function also in
evolutionary optimization. A good summary of them can be found in Jin et al. [Jin05].
Jin terms approaches that use fitness approximations to accelerate evolutionary algo-
rithms controlled evolution. There are two main approaches for model-assistance applied
within the context of controlled evolution. The first approach, that we will also adopt
in this thesis, is called individual based approach. The basic principle of this approach
is to pre-screen the generated individuals by means of approximate evaluations and then
to evaluate the most promising individuals precisely and consider them for the next
generation. The generation based approach works in a different way. Here, for some
generations all individuals are evaluated entirely on the metamodel. Then a control
step takes place and one generation is evaluated precisely. The individual based control
[GGK01, GEN+01, Rat98] is similar to the model assisted pattern search algorithm that
also uses the metamodel for pre-evaluation in each iteration (section 3.3), whereas the
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generation based pre-screening [EBNK99, ND03] is similar to the bayesian global opti-
mization approach (section 3.4). Typically, the metamodels are used as simple predictors,
i. e. no use is made of the uncertainty information as it is provided with the variance
of Kriging. An exception can be found in the paper of Keane et al. [EBNK99]. Here,
Kriging predictors and their estimated variance have been employed in the context of a
genetic algorithm. Some individuals in the proposed procedure are pre-selected by solely
by means of the variance and some individuals are pre-selected due to the predicted value.
The selection by means of the variance is mainly motivated by the goal to increase the
model quality, regardless if the sampled region contains promising solution.

The first evolution strategies that make use of metamodels were introduced by Giotis et
al. [GEN+01]. Here, the authors adopted a radial basis function network for the pur-
pose of metamodel. A measure that combines the variance with the mean value of the
prediction has been proposed for evolution strategies by Emmerich et al. [EGÖ+02] and
later adopted by other authors [USZ03, BSK05], using a different variant of the evolu-
tion strategy working with a derandomized covariance matrix adaptation [HO01] that
works with comparably small population sizes. Within the context of evolution strate-
gies, Emmerich et al. [EGÖ+02] proposed to use the Kriging method for metamodeling.
Note, that in this thesis the Kriging method is referred to as gaussian random field meta-
model, in order to emphasize on the gaussian distribution that describes the predictions.
Before more details on the relationship between different proposed metamodel-assisted
evolution strategies are discussed, it seems suitable to introduce the general framework
of metamodel-assisted evolution strategies, as it is done in the next chapter.
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4 Metamodel-assisted evolution
strategies

Whosoever wishes to know about the world must learn about it in its particular details.

Herakletos of Ephesos.

In this chapter we propose evolution strategies assisted by metamodels. Unlike in the
previous work on metamodel-assisted strategies, emphasis is given to the treatment of
the variance. It will be demonstrated that the use of the variance information can be of
crucial importance in order to prevent premature stagnation of the search. The chapter
includes a thorough description of the metamodel-assisted ES (MAES) framework and a
detailed discussion of its alternative implementations.

Firstly, in section 4.1 we introduce the algorithmic framework of the MAES. Then, in
section 4.2, we propose and discuss solution filters for the MAES, the choice and design
of which is a crucial part in the development of the MAES. In section 4.3 we proceed with
a brief discussion of theoretical results on the algorithm, including a proof of convergence
to a global optimum. Accuracy measures, needed for the empirical analysis of the MAES,
are proposed in section 4.4. Based on these measures studies of the algorithmic behavior
are provided in section 4.5 for various artificial landscapes. The chapter ends with a
concluding discussion on the use of uncertainty measures in metamodel-assisted evolution
strategies (section 4.6).

4.1 Algorithmic framework

There are many possibilities of integrating metamodels into evolutionary algorithms.
For example, one could use generation control or individual control (cf. section 3.6).
Generation control faces the difficulty that it enforces to work with approximations, even
if it is known that the information is insufficient to guide the search. Especially when
dealing with high dimensional problems, the global quality of the metamodel can be very
poor, and in that case a steady update of the database would be of crucial importance.
This is why we favor an individual-based control scheme. In particular, for each candidate
solution it shall be decided, whether it is evaluated precisely or rejected, depending on
its expected value and the confidence value used in the approximate evaluation.

In this work, the screening of new individuals will be done by means of imprecise evalua-
tion filters (briefly: IPE-filters or just filters). IPE filters are defined as operators on sets
of solutions that reduce a set of imprecisely evaluated candidate solutions G to a subset
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of promising solutions Q ⊆ G. Only those candidate solutions that pass the filter are
processed further within the algorithm, while all other solutions are rejected.

A straightforward way to install filters in the EA is to employ them as a pre-selection
operator before the precise evaluation and replacement procedures, in order to reduce
the number of solutions that are precisely evaluated. Alternatively, filters might also be
installed in other parts of the algorithm. For example, they may assist the variation
operators to produce a high ratio of promising solutions. However, in this work we will
focus on the use of filters as a pre-selection operator in an ES. The concepts derived,
can easily be transferred to other optimization algorithms that work with a selection-
variation scheme, like other types of EA and also many algorithms that can be assigned
to the category of generalized pattern search (cf. section 3.3).

The MAES incorporates a filter before the evaluation of the offspring population. Ac-
cording to Jin’s classification scheme [Jin05], it can be classified as an EA with individual
based control (cf. section 3.6). Algorithm 5 displays an outline of the main loop of an
MAES, which is a modified version of the basic (µ+ λ)-ES described in algorithm 2.

Two features distinguish the MAES from the standard ES. Firstly, any exactly evaluated
individual is recorded in a database (lines 4 and 14 of Algorithm 5). Secondly, a pre-
screening step is added and new candidate solutions are imprecisely evaluated using
GRFM before deciding whether they should be re-evaluated by the exact evaluation
software. By means of the filter, at time t, the set of offspring solutions Gt is reduced to
the set of offspring solutions Qt that which will be evaluated and considered in the final
selection procedure.

The suggested filters for the MAES are parameterized operators. Typical parameters are
the confidence factor ω and the number of pre-selected individuals ν. This is the case for
fixed cardinality filters that let always pass the same number of individuals. Furthermore,
some of these filters compare the approximated solution candidates to individuals in the
parent population.

Positioning the filter before the replacement has the advantage that the algorithm remains
transparent and thus the effect of the filter can easily be measured, as we will see in the
subsequent sections. For filters with fixed cardinality the number of precise evaluations
can be calculated from the number of generations, and vice versa. This is not the case
for filters, for which the cardinality of the output set is determined by the quality of the
input set. In that case, it is sometimes difficult to decide whether the performance of the
algorithm is due to the quality of the filter or due to the number of generations. Hence,
we will study both: Filters with fixed output size and filters with variable output size.
In any case, the number of solutions that enter a subsequent generation will be denoted
with νt.

In case of fixed cardinality filters we shall denote the output size with ν and term the
resulting algorithm a (µ, κ, ν < λ)-MAES.

Before discussing different types of filters, the online learning of the metamodel will be
addressed briefly. In line 8 of algorithm 5, all offspring individuals are evaluated by means
of the GRFM. For each offspring solution an approximation is calculated by means of
a metamodel. In particular, we are interested in the prediction of the mean value ŷ(x)
and the standard deviation ŝ(x). The training of a metamodel from the entire database
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Algorithm 5 (µ+ ν < λ)-MAES.

1: t← 0
2: P0 = evaluate(initµ()) {Initialize population}
3: x0

best ← arg min({f(x)|x ∈ P0}); f 0
best ← f(x0

best)
4: D0 ← P0

5: while terminate() = false do

6: Gt ←mutateλ→λ(recombineµ→λ(Pt))
7: /* Pre-screening phase - start */
8: evaluate Gt approximately with metamodel derived from Dt

9: Qt ← filterω,ν(Gt, Pt) {Select subset Qt of size ν from Gt by means of an IPE filter
with parameter ω}

10: /* Pre-screening phase - end */
11: Ot ← evaluate(Qt)
12: xt+1

best ← arg min({f(x)|x ∈ Ot} ∪ {f(xtbest)}); f t+1
best ← f(xt+1

best)
13: P sel

t ← replaceκν+µ→µ(Pt ∪ Ot)
14: Dt+1 ← Ot ∪Dt

15: Pt+1 = increase age(P sel
t )

16: t← t+ 1
17: end while

of points can be very time consuming. Thus, local metamodels are used, as suggested
in section 2.5. For each solution x in Gt, a metamodel is trained from its nearest local
neighbors in the database. Leave-one-out cross validation [JSW98] is used in order to
assure that all predictions are feasible. Furthermore, the inversions of the correlation
matrix in the GRFM procedure are checked by multiplying the correlation matrix with
its inverse and comparing it to the unity matrix1. If significant numerical problems
are encountered for the approximation, precise evaluations are enforced. In order to
avoid numerical problems caused by inversion, a minimal distance between neighboring
solutions is required.

Furthermore, it is noteworthy that the number of neighboring solutions used for the
training has been set to 2d, where d is the dimension of the search space. Further
training points usually enhance the quality of the metamodel. On the other hand, extra
points might increase the approximation time significantly. However, it has been found
in practical experiments, which will be presented later, that the approximations obtained
with the proposed local metamodeling technique are already sufficient to establish a
good approximate order among the function values of the individuals in the offspring
population.

4.2 Imprecise evaluation filters

The incorporation of a filter used as pre-selection operator before the precise evaluation
of individuals is the main operator that distinguishes the MAES from the ES. Various
interesting alternatives of how to design a filter can be considered. We will present and

1A maximal deviation of 10−12 for each entries of the product matrix from the unity matrix shall be
accepted.

50



evaluate some of them in the subsequent chapters, including filters that have already
been discussed in past publications as well as yet unpublished approaches.

Fixed cardinality filters let pass always the same constant number of solutions. These
solutions are typically selected by means of a scalar criterion that is derived from the ap-
proximate evaluation. Filters of that kind are introduced in section 4.2.1. Improvement-
based filters compare the approximations to a threshold value (e.g. the best found so-
lution found so far). Four different improvement-based filters are discussed in section
4.2.2. Last but not least, the concept of interval filters is introduced in subsection 4.2.3.
Unlike the filters presented before, these filters decide whether an individual is selected
or not by taking into account the whole ensemble of candidate solutions presented to the
filter. Interval filters handle approximations as confidence intervals with lower and upper
confidence bounds and are based on the theory of interval orders.

4.2.1 Mean value and lower confidence bound filters

The simplest strategy for filtering out less promising solutions is to select a constant
number of ν < λ individuals due to the predicted mean value ŷ(x) with the metamodel.
This strategy will be termed mean value filter or briefly ŷ-filter. This technique does
not make use of the confidence information and thus can be used with metamodeling
techniques that do not provide this piece of information. This is probably the reason why
it is most frequently used in literature (cf. [Jin05]).

Emmerich et al. [EGÖ+02] suggested to incorporate the confidence information for fil-
tering candidate solutions in the evolution strategy. This has been done using the lbω
criterion that has been suggested as a optimization criterion in bayesian Global Opti-
mization (section 3.4). In particular, they use a so-called lower confidence bound (lbω)
filter that establishes a ranking due to the lbω criterion (equation 3.4.17) and select the
ν best solutions according to this ranking. They provide first empirical evidence that an
MAES using the lbω filter is more robust against premature stagnation than an MAES
working with a mean value filter. This has been ascertained, empirically, on multimodal
problems.

Example: As an example, figures 4.2.1 and 4.2.2 visualize the ŷ filter and the lbω filter,
respectively. In both figures the approximately evaluated offspring population Gt consists
of the five individuals xo1 . . . xo5, and the parent population Pt consists of the three
individuals xp1, xp2, and xp3. Unlike for the filters that will be introduced later in this
work, the parent population is not considered by the mean value and the l filter. For the
mean value filter and the lbω filter only the five individuals of the offspring population
Gt are considered. If ν is set to three, the mean value filter accepts the individuals xo1,
xo2, and xo3, that have the three smallest mean values. The solutions xo4 and xo5 are
rejected. The lbω filter accepts xo1, xo2, and xo5, which have the three lowest values for
the lower confidence bound.
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xp3xp2xo1 xo2 xo3 xo4 xo5

f(x)

xp1

3rd best mean value for offspring

Figure 4.2.1: Mean value filter with a number of pre-selected individuals of ν = 3. The
precisely evaluated parent population is given by Pt = {xp1, xp2, xp3} and
the offspring population by Gt = {xo1, . . . , xo3}. Only the three offspring
solutions with the lowest mean value pass the filter. These are xo1, xo2 and
xo5. Note that the values of the parent individuals are not considered by
the mean value filter. They have been included in the drawing to simplify
comparisons to other filters.

xp3xp2xp1xo1 xo2 xo3 xo4 xo5

f(x)

3rd best lower confidence bound 

Figure 4.2.2: Lower confidence bound filter with ν = 3. The precisely evaluated parent
population is given by Pt = {xp1, xp2, xp3} and the offspring population
by Gt = {xo1, . . . , xo5}. Only the three offspring solutions with the lowest
lower confidence bounds pass the filter. These are xo1, xo2 and xo5.
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4.2.2 Improvement-based filters

The ŷ and lbω filters previously mentioned are independent of the set Pt, to which the
new candidate solutions in Gt will be compared for the replacement.

Improvement-based filters diminish this shortcoming by comparing new individuals in Gt

to a reference value (threshold). As a default this reference value is chosen as the worst
function value for an individual in the parent population Pt.

Let xtbest denote such a reference solution and ytref = y(xtref). Then, according to expres-
sion 3.4.18 I(y(x)) = max{f tbest − y(x), 0} defines the improvement for any new set of
design variables x ∈ S. Next, we will define four criteria that are based on the notion of
improvement and compare them on a conceptual level.

Probability of improvement. According to Ulmer et al. [USZ03] the probability of
improvement is defined as

PoI(x) := Pr(I(y(x)) > 0) (4.2.1)

in case of ŝ(x) > 0. It will turn out to be convenient to define the probability of im-
provement also for precise evaluations, i. e. for evaluations with ŝ(x) = 0. In that case
we define PoI(x) = 1, if I(ŷ(x)) > 0, and PoI(x) = 0, if I(ŷ(x)) = 0. The term in
expression 4.2.1 can be calculated via

PoI(x) =

∫ ft
best

−∞
PDFx(y)dy = Φ(

f tbest − ŷ(x)

ŝ(x)
). (4.2.2)

The probability of improvement has been studied as a ranking criterion in the ES by
Ulmer et al. [USZ03]. Like the lower confidence bound criterion, it depends on the confi-
dence measure ŝ(x) and on the predicted value ŷ(x). Ulmer et al. [USZ03] claim that an
advantage to the lbω criterion is that the PoI does not depend on a user-specified parame-
ter like the parameter ω for the lbω criterion. Another important difference between the
PoI and the lbω criterion is that the PoI criterion does not take into account the quantity
of an improvement. Thus its numerical value is invariant to monotone transformations of
the GRFM. A potential problem with the PoI is that it tends to favor small improvements
around existing solutions and thus the MAES avoids more risky steps that might lead to
large improvements. This entails the danger of premature stagnation of the search.

Another, more subtle, difference of the PoI in comparison to the lbω is, that a higher
variance does not lead necessarily to a equal or better ranking among other solutions, as
it is the case for the lower confidence bound criterion. In fact, it depends on the value
of ŷ relative to f tbest if an increased value of ŝ leads to a higher value of the PoI. It can
be easily obtained from a graphical visualization, that an increased variance leads to a
decreased value of the PoI, iff ŷ < f tbest, and to an increased value of the PoI, iff ŷ > f tbest
(cf. figure 4.2.3).

Within the MAES there are two options how to employ the PoI criterion as a filter. One
option is to sort the population by means of the PoI and only select the ν candidate
solutions from Gt with the highest values for the PoI criterion. For this fixed cardinality
filter, the user has to provide the number of pre-selected individuals ν. Another possibility
is to keep the size of the output set variable and to define a probability threshold. Only
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PoI(A) > PoI(B) PoI(A) < PoI(B)

ŷ

f tbest

f tbest

Figure 4.2.3: Schematic draw illustrating the influence of the variance ŝ on the PoI.
The filled area depicts the area, the size of which determines the PoI. If
ŷ > f tbest (left figure) an increased variance corresponds to an increased PoI.
Otherwise, if ŷ < f tbest (right figure) an increased variance corresponds to a
decreased PoI.

candidate solutions with a value below this threshold will be rejected. The latter filter
will be termed PoIτ filter. Here the τ parameter denotes the threshold probability.

Expected Improvement. Another filter that is based on an integral expression is the
expected improvement filter (ExI filter), which is based on the expected improvement
(ExI) criterion (cf. section 3.4). In contrast to the PoI criterion this criterion takes into
account the expected quantity of an improvement.

Slightly different from equation 3.4.19 we will define the ExI criterion as follows:

For ŝ(x) > 0

ExI(x) = E(I(x)) =

∫ ft
best

−∞
I(y) · PDFx(y)dy =

∫ ft
best

−∞
I(y) · ϕ(

f tbest − ŷ(x)

ŝ(x)
)dy (4.2.3)

Again ϕ denotes the probability density function of the standard gaussian distribution.
For ŝ(x) = 0 we will deviate from the definition by Schonlau et al. [JSW98] and define
the expected improvement as equal to I(ŷ(x)). This makes sense, because, if we know
the improvement precisely, it will be not a good assumption to set it to zero, like they
do in [JSW98]. In the context of pre-selection, it turns out that it is better to set its
value exactly the value of the improvement we will get. Recall, that the integral in
equation 4.2.3 can directly be calculated by means of the closed analytical expression
given in equation 3.4.19.

The expected improvement always takes positive values, provided that ŝ(x) > 0. Only in
case of ŝ(x) = 0 and ŷ(x) > ytref the expected improvement is equal to zero. Furthermore,
the expected improvement is a monotonously decreasing function in ŷ(x). Moreover we
note that ExI(x) has a limit value of zero as its argument approaches infinity. Like the
PoI the ExI integrates the confidence information and does not require a user specified
parameter, like the ω-parameter for the lbω criterion. Furthermore it is usually more
optimistic than the mean value.
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In order to integrate the ExI criterion as a filter into the MAES, there are two options:
One option is to only accept solutions that have ExI values above a certain threshold and
the other option is to work with a constant number of ν pre-selected individuals that are
the individuals with the ν highest values for the ExI. The latter option has clearly to be
preferred to the first option, since when working with the first criterion, it is by no means
clear how the threshold value should be controlled during the search.

Most likely improvement. Next, we propose a straightforward design of a threshold
filter based on the mean value criterion and relate it to the previously defined improvement
based filters.

Taking a statistical stance, under the GRFM assumptions the value ŷ(x) is not only the
mean value, but also the most likely outcome of the computer experiment for an input
vector x. Accordingly, the most likely improvement would be defined as:

MLI(x) = I(ŷ(x)) =

{
ŷ(x)− f tbest if ŷ(x) > ytmin

0 otherwise
(4.2.4)

Like the ŷ criterion, the MLI criterion does not take into account the uncertainty of the
approximation, and thus it can be used with metamodels that do not provide a confidence
measure. Like the ExI criterion it also measures the quantity of an improvement. In order
to establish the relationship between the MLI and the ExI, we can prove the following
lemma:

Lemma 1. For any x ∈ S, we find that MLI(x) ≤ ExI(x), and in case of ŝ(x) > 0 we
find that MLI(x) < ExI(x).

Proof. In case of ŷ(x) < f tbest and ŝ(x) > 0, the statement follows from the positivity of
the ExI(x) and from the fact that – by definition – in the considered case MLI(x) equals
zero. In case of ŝ(x) = 0 we always get ŷ(x) = f tbest, and hence MLI(x) = ExI(x).

Let us now turn to the remaining case: ŷ(x) > f tbest and ŝ(x) > 0. By definition of
the MLI we get MLI(x) = f tbest − ŷ(x). Since ŷ(x) is the expected value of the normal
distribution, we can rewrite the equation of the MLI in the form

MLI(x) = f tbest −
∫ ∞

−∞
y · PDF(y)dy. (4.2.5)

Now, we can pull the f tbest value inside the integral, by making use of the equivalence

f tbest =

∫ ∞

−∞
f tbest · PDF(y)dy (4.2.6)

. Hence,

MLI(x) =

∫ ∞

−∞
(f tbest − y) · PDF(y)dy. (4.2.7)

This integral can be decomposed into two addends

MLI(x) =

∫ ft
best

−∞
(f tbest − y) · PDF(y)dy

︸ ︷︷ ︸

=ExI(x)

+

∫ ∞

ft
best

(f tbest − y) · PDF(y)dy

︸ ︷︷ ︸

<0

. (4.2.8)

55



Here, the first term in the sum equals the ExI expression, and the second is an integral
that takes a value clearly below zero due to our assumption f tbest < ŷ. Hence, the resulting
MLI is smaller than the value of the ExI for any x ∈ S.

According to lemma 1, the MLI criterion can be regarded as more pessimistic than the
expected improvement criterion. The ranking produced by the MLI criterion generally
can differ from that produced by the ExI and PoI criterion, since it does not make use of
the variance.

Unlike in the case of the ExI and PoI criteria, there is a straightforward strategy of how to
filter individuals by means of the MLI criterion. This is, only to let pass those individuals
that have a positive MLI. Such a filter shall be termed MLI filter. However, a minimum
and maximum number of pre-selected individuals should be defined in order to avoid
stagnation or, on the other hand, too many evaluations per generation.

Taking a closer look, the MLI criterion is equivalent to the PoIτ criterion for τ = 0.5, since
the most likely value of the prediction is exactly below the threshold, if the probability of
improvement is one half. However, this equivalence will not be found by generalizations
of the MLI and PoI for multi-objective and constrained problems.

Potential improvement. As in case of the ŷ criterion, we can also re-define the lbω
criterion as an improvement-based criterion: The potential improvement LBIω then reads:

LBIω(x) = I(lbω(x)) = I(ŷ(x)− ω · ŝ(x)), ω ∈ R
+. (4.2.9)

It follows from positive values of ω and ŝ(x) that the potential improvement is always
larger than the most likely improvement. With either ω = 0 or ŝ(x) = 0 both criteria are
equivalent.

In contrast to the PoI, ExI and MLI criteria, the LBIω criterion asks for the parameter
ω. This might be considered as a drawback, because it requires a decision by the user.
On the other hand, it gives the user the possibility to scale between global search and
local search, as an increased ω amplifies the influence of ŝ(x) and thus favors solution
candidates in less explored regions.

Also for the potential improvement criterion there is a straightforward strategy of how
to use the LBIω criterion as a filter. We suggest, to let pass only those individuals that
obtain a positive potential improvement. The filter operator – that we will term LBIω-
filter – should also be equipped with a minimal and a maximal number of individuals
that can pass the filter.

Example: In Figures 4.2.4 and 4.2.5 the operations performed by the MLI and LBIω-
filters are illustrated. The highest objective function value among individuals of the
parent population Pt = {xp1, xp2, xp3} is set as a threshold. Now, the MLI-filter selects
only those individuals from the set Gt = {xo1, . . . , xo5} that have a mean value below
this threshold. These are the solutions xo1, xo2, xo3 and xo5. The LBIω-filter only
accepts individuals with a lower confidence bound below the threshold. In the example,
these are all individuals in the example population Gt. Note that, unlike in the example
of the mean value and lbω filters, the information of the parent population is considered
in the MLI and LBIω-filters.
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xp3xp2xp1xo1 xo2 xo3 xo4 xo5

f(x)
Highest value for a parent

Figure 4.2.4: Illustration of the operation of an MLI-filter: The precisely evaluated parent
population is given by Pt = {xp1, xp2, xp3} and the offspring population
by Gt = {xo1, . . . , xo5}. The worst function value for a parent provides a
threshold. Only the offspring solutions with mean value below this threshold
pass the filter. These are xo1, xo2, xo3 and xo5.

xp3xp2xp1xo1 xo2 xo3 xo4 xo5

f(x)
Highest value for a parent

Figure 4.2.5: Illustration of the operation of an LBIω-filter: The precisely evaluated par-
ent population is given by Pt = {xp1, xp2, xp3} and the offspring population
by Gt = {xo1, . . . , xo5}. The worst function value for a parent provides a
threshold. All offspring solutions have a lower confidence bound that is
below this threshold and thus pass the filter.
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4.2.3 Interval filters

Up to now, all filter procedures have been based on scalar criteria. In contrast to this
interval filters, that will be proposed next, do not work with a scalar criterion but by
comparing two-sided confidence intervals assigned to each candidate solution. In order to
obtain confidence intervals for evaluations Emmerich et al. [EN04a] proposed to calculate
for each solution a lower confidence bound lbω(x) and an upper confidence bound ubω(x)
with

lbω(x) = ŷ(x)− ω · ŝ(x), ubω(x) = ŷ(x) + ωŝ(x). (4.2.10)

Provided the GRFM assumptions are true, it can be said that the probability pα that
the true value is inside the specified interval reads

pα = Pr(Fx ∈ [lbω(x), ubω(x)]) = 1− 2Φ(−ω). (4.2.11)

This formula stems from the gaussian distribution assumption. The normalized gaussian
random variable for Fx reads (Fx − ŷ(x))/ŝ(x). The probability that the true value is
below lbω(x) is Φ(−ω) and the probability that the true value is above ubω is 1− Φ(ω),
which is equal to Φ(−ω) due to the symmetry of the gaussian distribution.

We make the convention that lbω(x) = ubω(x) = ŷ(x), if ŝ(x) is estimated as 0, which
might happen on plateaus or if the result of x is precisely known. It is now possible to
compare approximate and precise results with the same criterion.

Given these intervals, the question arises, which of the solutions of a set Gt of candidate
solutions in algorithm 5 would be among the µ individuals selected in the replacement,
if all function values would be evaluated precisely.

When determining this set, we can make two kinds of mistakes:

(A) We may select solutions, which are not among the set of the µ best solutions.

(B) We may reject solutions, which are among the set of µ best solutions.

A filter is said to work with a high precision, if it avoids mistake A. Accordingly, a filter is
said to work with a high recall, if it avoids mistake B. The terms precision and recall stem
from the theory of information retrieval ([vR79], pp. 112). There, the recall measures
the percentage of relevant solutions that have been retrieved, and the precision measures
percentage of relevant solutions among the retrieved solutions. Usually, in the presence
of uncertainties there is a trade-off between these two objectives.

It is important to note, that in the following we will first develop concepts for the filters
on basis of precise intervals bounding the objective function value (scenario 1). Then
we apply them to two-sided confidence intervals that bound the precise objective func-
tion value only with a certain probability, depending on the confidence level (scenario
2). Hence, the statements derived for the scenario 1 are only valid for scenario 2 under
the condition that the confidence intervals bound the realization of the random variables.
This is true with a probability of at least (1− pα)k, if k denotes the number of approxi-
mations that we compare and pα is the confidence level, which should be equally chosen
for each confidence interval.
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Example: Before starting to discuss the design of interval filters that take into account
this trade-off, let us give a motivating example on how to reason with intervals that bound
solutions. Let us consider we have a set of five solutions x1, . . . ,x5 and corresponding
intervals b(x1) = [−1, 1], b(x2) = [2, 4], b(x3) = [1, 2] and b(x4) = [4, 10], b(x5) = [5, 12]
that bound the precise function values f(x1), . . . , f(x5) for these solutions. The question
is, which of the solutions have to be selected, if we want to select for sure only solutions
that are among the two minimal solutions. In the special case of solutions with equal
function value, we assume that these solutions get sorted randomly.

Actually, the sole solution that can be selected is x1 with b(x1) = [−1, 1], because only
this one clearly dominates at least three other solutions. Likewise, we may ask what are
the solutions that we need to select, if we want to be sure to have selected the two best
solutions. This is the solution x1 with b(x1) = [−1, 1], but also solutions x2 and x3 have
to be considered, since they may not be dominated by more than two other solutions. �

Considerations like the one stated above gave rise to the development of filters that are
highly adaptive and take into account the whole information about interval boundary
values of the individuals presented to them, when deciding on whether to accept or reject
one solution.

Next, we are going to derive two IPE filters that work on the basis of interval information
and that operate on the two extremes of this trade-off. The filter that avoids mistake A
will be called Pω-filter since it maximizes the precision of the result. Accordingly the
filter that avoids mistake B will be called Rω-filter since it maximizes the recall of the
result.

In order to estimate the subset of µ-best solutions from Gt with a good precision, the
following lemma will prove to be useful:

Lemma 2. Let M denote a set of at least µ + 1 solutions for that precise interval
boundaries lb(x) < ∞ and ub(x) < ∞ for the function value y(x) are known for all
x ∈M . The intervals are considered to be closed, i. e. y(x) ∈ [lb(x), ub(x)]. Furthermore,
let Υµ(M) = {x ∈M | |{x′ ∈M |y(x) < y(x′)}| ≥ |M |−µ−1} denote a set of solutions
that dominate at least |M | − µ− 1 other solutions in M , and hence would be among the
µ selected solutions, if only precise evaluations were used. Then

ζAµ (M) := {x ∈M | |{x′ ∈M |ub(x) < lb(x′)}| ≥ |M | − µ} (4.2.12)

is the maximal subset of M that contains only elements that belong to the set Υµ.

Proof. Provided the intervals are valid, each element that dominates at least |M | − µ
elements is for sure part of the µ best solutions. No other element can be included,
because whenever this would be done it is possible that x does not belong to the µ best
solutions. For example x falls out of the set Υµ(M), if the true value of y(x) is realized
at the upper bound of the interval [lb(x), ub(x)] and for any other x′ ∈M the true value
of y(x′) is realized at the lower bound of the confidence interval [lb(x′), ub(x′)]. In that
case, µ solutions can be found in M that have an equal or smaller function value than x

and thus it cannot be decided, whether x is selected or not.

From lemma 2 we can easily derive a filter that can be used for the MAES. Let P−κ
t ⊆ Pt

denote the set of individuals from Pt with an age lower than κ. Then, the set Qt =
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ζAµ (Gt ∪ P−κ
t ) ∩Gt is determined by means of algorithm 6:

Algorithm 6 Pω-filter (Gt, Pt): Reduces the set Gt to Qt, aiming at a high precision.

Qt ← �
for all x ∈ Gt do

c← 0
for all x′ ∈ P−κ

t ∪Gt do

if ubω(x) < lbω(x
′) then

c← c+ 1
end if

end for

if c ≥ |P−κ
t ∪Gt| − µ then

Qt ← Qt ∪ {x}
end if

end for

return Qt

It is possible – and also likely for large intervals and small populations – that the Pω-filter
selects no individual at all. Furthermore, the Pω-filter never selects more than µ elements.

A similar filter algorithm can be found, if the aim is to maximize the recall, i.e. to avoid
the rejection of individuals that might be selected. Again, we start with a lemma on
solution sets with precise intervals for the evaluation of their members.

Lemma 3. Let M denote a set of solutions for the precise interval boundaries lb(x) and
ub(x) for the true function value y(x) of which are known for all x ∈ M . Furthermore,
let us define Ψµ(M) := {x ∈M | |{x′ ∈M |y(x′) < y(x)}| < µ} as the set of individuals
that are not strictly dominated by at least µ other individuals in M. Then the set

ζBµ (M) := {x ∈M | |{x′ ∈M |ub(x′) < lb(x)}| < µ} (4.2.13)

contains the minimal subset of M that includes all elements from Ψµ(M). �

Proof. Provided the intervals are valid, each element that is dominated by less than µ
elements possibly belongs to the µ smallest solutions. This can be verified by making
the most optimistic assumption about the true value for y(x) that is y(x) = ub(x) and
the most pessimistic assumption about all other individuals that is y(x′) = lb(x′) for all
x′ ∈M \{x}. In this case x would be among the solutions in ΨB

µ and – with regard to the
replace∞,|M |→µ operator – it cannot be sure that the element is rejected. Furthermore,
it is clear that no other element from M needs to be considered, since any element from
M that is dominated by more than µ solutions is for sure not selected.

Again, we can derive a filter algorithm from the lemma. This time lemma 3 provides
the principle for the Rω-filter algorithm, that aims at a high recall. It rejects only those
individuals that would for sure be rejected by the replace operator, under the condition
that all realizations of the random variables are enclosed by their confidence intervals.
This is done by detecting the solutions ζBµ (Pt ∪Gt) ∩Gt by means of algorithm 7.

The computation time of algorithm 6 and algorithm 7 is given by O(((|Gt|+ |Pt|) · |Gt|).
This quadratic time complexity is practically of no significant importance for the MAES, if
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Algorithm 7 Rω-filter (Gt, Pt): Reduces the set Gt to Qt, aiming at a high recall.

Qt ← �
for all x ∈ Gt do

c← 0
for all x′ ∈ (P−κ

t ∪Gt)− {x} do

if ubω(x
′) < lbω(x) then

c← c+ 1
end if

end for

if c < µ then

Qt ← Qt ∪ {x}
end if

end for

return Qt

we work with small sets of Qt and Pt. However, if these sets get larger, a modified version
of these algorithms should be used that reduces the calculation time to O(log |Gt| · |Gt|)
for |Pt| < |Qt|. This algorithm is based on the following lemma:

Lemma 4. Let M be a set of solutions which contains at least µ + 1 elements. For all
elements upper bounds ub(x) and lower bounds lb(x) for the true function value y(x) are
known. Furthermore, for m = |M | and µ ≤ m let us define the µ smallest lower bound
as

lbµ:m(M) = min
x∈M
{lb(x)| |{x′ ∈ M |lb(x) ≥ lb(x′)}| ≥ µ}. (4.2.14)

This is the smallest lower bound for which no more than µ elements are better or equal
than lb(x). Likewise, let us define the µ lowest upper bound as:

ubµ:m(M) = min
x∈M
{ub(x)| |{x′ ∈ M |ub(x) ≥ ub(x′)}| ≥ µ} (4.2.15)

Then

ζAµ (M) = {x ∈ M |ub(x) < lbµ+1:|M |(M)} (4.2.16)

and

ζBµ (M) = {x ∈M |lb(x) ≤ ubµ:|M |(M)}. (4.2.17)

Proof. Let us first prove that equation 4.2.16 is true. Consider a solution x ∈ M for
which it should be decided, whether it belongs to Υµ(M) or not. It is clear that all
solutions that have a upper bound below the threshold lbµ+1:|M |(M) have a smaller true
function value than lbµ+1:|M |(M) and thus they dominate at least one element from M .
For |M | = µ+ 1, we are done. For |M | = µ+ 2 from the transitivity of the linear order
it follows that there must be |M | −µ− 2 further solutions in M that have a lower bound
higher than lbµ+1:|M |(M) and thus are dominated by x. Hence, x dominates more than
|M | − µ− 2 solutions as it is required for being member of Υµ(M). Furthermore, it has
to be proven that no further elements than the ones defined in expression 4.2.16 fulfill
the requirements for being member of Υµ. For that purpose, consider an element x with
ub(x) ≥ lbµ+1:|M |(M). If we are pessimistic about the outcome of x by assuming that
its function value is realized at its upper bound and optimistic about the function value
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of all other x ∈ M , then x dominates at most max{0, |M | − µ − 2} solutions and thus
cannot be part of Υµ(x).

A similar argumentation can be provided in order to prove equation 4.2.17. Consider, a
solution x ∈ M with lb(x) ≤ ubµ:|M |(M). Then x might be selected for Ψµ(M) and thus
is part of ζBµ (M), because the true function value for x is strictly dominated by less than
µ function values for other solutions in M . Furthermore all solutions with lb(x) > ub(x)
are not member of Ψµ(M) since any of these solutions is clearly dominated by more than
µ other solutions from M .

From these lemmata, we can derive modified versions of algorithm 6 and 7. The idea
for the Pω-filter is to sort the population Gt ∪ Pt by lower confidence bounds or upper
confidence bounds for a given confidence level pα, respectively. Thereby, we take into
account the age of the individuals that correspond to the solutions and favor solutions
that have an age lower than κ. Then, for the Pω-filter algorithm, the lower confidence
bound for the µ + 1-th element is detected. All upper confidence bounds of elements in
Gt are compared to this value and rejected, if they are not smaller than it.

Accordingly, the Rω-filter first sorts the population Gt∪Pt by upper confidence bounds in
order to detect the µ-th lowest upper confidence bound, thereby considering additionally,
whether the age of the individuals in Pt is lower than κ or not. For all elements of x ∈ Qt,
the lower confidence bound lbω(x) is compared to the µ lowest upper confidence bound
and the element is accepted, if its lower confidence bound is lower or equal than this
upper confidence bound.

It could be remarked that algorithm 6 and 7 need not be introduced. However, the for-
merly introduced algorithms are more transparent and thus easier to implement. More-
over, unlike the algorithms based on lemma 4, algorithms 6 and 7 can be generalized for
multi-objective optimization.

Example: The Pω-filter and the Rω-filter are visualized by means of examples in figure
4.2.7 and figure 4.2.6. The parent population Pt={xp1, xp2, xp3 } and the offspring
population Gt= {xo1, . . . , xo5 } are considered as one set and the µ = 3 best solutions
shall be filtered from all parent and offspring solutions (here the case of plus-selection
is assumed). The parent solutions have been evaluated precisely, while the offspring
solutions have been exactly evaluated. Only solution xo1 passes the Pω-filter, since it has
an upper confidence bound that is exceeded by the µ+ 1 lowest lower confidence bound.
Contrary to this, three offspring individuals pass the Rω-filter, because they have lower
confidence bounds that do not exceed the µ lowest upper confidence bound. �

It becomes apparent that in comparison to the formerly introduced IPE-filters the interval
based Pω-filter and Rω-filter make extensive use of the information provided by the parent
population.

4.2.4 Invariant permeability relationships between filters with

variable output size

Now, we will emphasize invariant relationships among the identified filters with variable
output size. By invariant relationships, those relationships that do not depend on the
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xp3xp2xp1xo1 xo2 xo3 xo4 xo5

f(x)

4th lowest lower confidence bound

Figure 4.2.6: Pω-filter for a parent population Pt = {xp1, xp2, xp3} and offspring popula-
tion Gt = {xo1, . . . , xo5}. The offspring individual xo1 will pass the filter,
since its predicted upper confidence bound is smaller than the µ+1-th lowest
predicted upper confidence bounds of all other solutions.

xp3xp2xp1xo1 xo2 xo3 xo4 xo5

f(x)

 3rd lowest upper confidence bound

Figure 4.2.7: Rω-filter for a parent population Pt = {xp1, xp2, x3} and offspring pop-
ulation Gt = {xo1, . . . , xo5}. The offspring individuals xo1, xo2 and xo5

will pass the filter, since their approximate lower confidence bounds do not
exceed the predicted µ-th lowest upper confidence bound.
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particular choice of the set of input solutions are meant. In particular, we are interested
in relationships between output sets of filters for the same input sets G and P , without
further specifying the input set.

Before, we start the discussion, the concept of permeability shall be introduced. Compar-
ing two filters FA and FB we say FA is less permeable than FB, iff ∀M ∈ ℘(I), P ∈ ℘(I):
FA(M,P ) ⊆ FB(M,P ). Here, ℘ denotes the power set function that yields the set of all
subsets for a given set.

The permeability forms a preorder on the set of IPE-filters. The sole minimal element is
always the filter that rejects all solutions and the sole maximal element of this preorder
is the filter that lets all solutions pass. We will summarize the permeability relationships
among the filters with variable output size by means of the following lemma

Lemma 5. Let us assume G denotes a set of approximately evaluated offspring individ-
uals and P denote a set of precisely evaluated parent individuals. Furthermore, consider
LBIω-filter and MLI-filter for the case κ =∞, only. Then we can establish the following
relationships among IPE-filters with variable output size:

(1) The LBIω-filter is more permeable than Rω-filter.

(2) With decreasing ω the LBIω and the Rω-filter get less permeable.

(3) The MLI filter is less permeable than the LBIω filter.

(4) The Pω-filter is less permeable than the MLI filter.

(5) With increasing ω the Pω-filter gets less permeable.

Proof. We will consider the statements one by one: Statement (1) is true, since the µ
lowest upper confidence bound will never be larger than the µ-th worst fitness value for
the parent population, but it might be smaller. Hence, it is more difficult to pass the
Rω-filter than the LBIω-filter. Statement (2) is true, because if ω decreases, more lower
confidence bounds will exceed the threshold value of the LBIω-filter. Also, for the Rω-
filter more individuals will be selected. The reason for this is, that with decreasing ω
the µ-th lowest upper confidence bound will decrease. And, as also the lower confidence
bounds of all solutions decrease or stay equal, more lower confidence bounds will exceed
the µ-th lowest upper confidence bound and thus more solutions will be rejected by the
filter. (3) is true since the MLI is equivalent to the LBIω-filter for ω = 0. The rest
follows from (2). In case of statement (4) it suffices to state, that the µ lowest lower
confidence bound is always lower or equal to the µ-th best value. For proving statement
(5), we can argue that more individuals are possibly selected, if the uncertainty about
the approximation grows. Concretely speaking, if the lower confidence bounds decrease
and the upper confidence bound increase, further individuals will have a upper confidence
bound that is higher than the decreased µ lowest lower confidence bound. That is the
reason, why less individuals might be identified as being selected by the replacement
operator.

The hierarchy of filters due to their permeability have been depicted for κ =∞ in figure
4.2.8. It makes clear that the choice of the filter type as well as the ω parameter can be
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Rω-filter (ω ↓)

Pω-filter (ω ↑)

MLI-filter

LBIω-filter (ω ↓)

�

Gt

Figure 4.2.8: Permeability of filters with variable output size. Here, the symbol ’ω ↑’
indicates that with increasing ω the permeability decreases. Likewise, the
symbol ’ω ↓’ indicates that with decreasing ω the permeability increases.

used for regulation of the permeability. Furthermore, it shows that in the one-dimensional
case the considered filters are linearly ordered.

4.2.5 Refinements of interval based filters

After highlighting some relationships between stochastic ranking and selection procedures
and IPE-filters, designs for filters with adaptive output size will be discussed that are
closely related to such procedures. Such filters might be seen as refinements of interval-
based filters.

Stochastic ranking and selection methods

Closely related to the field of metamodel-assisted optimization is the field of optimization
with noisy function evaluations [AB03, BBPM05, BT05, JB05, Rud01]. Buchholz and
Thümmler [BT05] proposed statistical selection procedures based on two-stage sampling
(TSS) for evolution strategies that work with approximate, uncertain, evaluations. In
their scenario, stochastic simulation procedures designate the source of uncertainty. The
uncertain evaluations are modeled by gaussian distributions. The proposed evolution
strategies aim at finding solutions with minimum mean response.

They based their selection procedures on a two-stage selection procedure for selecting the
µ best individuals from a sample of k individuals. The ranking is based on the a-priori
unknown mean values E(Yi) of the random variables Yi, i = 1, . . . , k that describe the
responses.

A correct solution is a subset selection where indeed the µ best solutions are contained in
the selected subset. Here, as ’best’ µ solutions they define the best µ solutions according
to the mean values of the response.
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Law and Kelton [LK00] clarified that without further assumptions algorithms cannot
guarantee correct solutions for a probability pα > 0. Therefore, it is common practise
to introduce a indifference-zone parameter z∗, meaning that the user does not care for
differences between the E(Y1) and E(Y2) , whenever these differences stay below z∗.

Koenig and Law [KL85] proposed a two-stage sampling procedure for selecting a subset
of size µ containing the l best (with regard to their mean value) out of k independent
normal distributed random variables. In a first stage, their TSS procedures executes
a constant number of n0 replicated evaluations for each individual. From the resulting
response values it estimates mean values and variances of the random variables. In a
second stage, additional evaluations, the number of which can vary from individual to
individual, are performed.

Relationship to filters in the metamodel-assisted evolutions strategy

Let us now relate TSS approach to the scenario in which we apply metamodel-assisted
evolution strategies. Recall, that in this scenario the likelihood of the yet unknown
outcome of a deterministic function evaluation is described by a gaussian distribution.
Recall, that after the first sampling stage in TSS we obtain a set of k mean values and
variances describing gaussian distributions. Within the MAES scenario, this corresponds
to the information we get for the search points after evaluating the metamodel. Thus, at
first glance both approaches seem to be closely related. But there are some important
differences between both approaches:

• In the MAES approach the evaluation of an input vector with the simulator always
means to obtain the precise result for that particular input vector.

• Rather than estimating the µ smallest mean values of the given random variables,
in the MAES we are aiming at selecting those random variables which realizations
are most likely the µ smallest solutions.

Clearly, this scenario differs from the scenario of stochastic selection and different subset
selections are to be sought than the ones proposed by Koenig and Law [KL85].

There are now at least two options we can take:

1. Select a set of size ν ≥ µ that contains the µ best individuals with a probability
equal or higher than pα without any resampling.

2. Proceed with resampling until we can separate the µ best solutions from the k − µ
solutions with a probability higher than pα.

The first procedure seems to be more appealing, because it allows us to stay within the
proposed MAES schema that separates between pre-selection and evaluation phase. A
first approach for capturing such a set is provided with the interval-based filters. A
conservative bound on pα is given by (1− 2Φ(−ω))k, if k is the number of approximated
individuals.
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Note that in order to obtain separation procedures for which better bounds for pα can
be stated can be sought. However, they likely become very complicated as the solution
of the following closely related problem may indicate.

Let Y = {Y1, . . . ,Yk} denote a set of independent gaussian distributed random variables
with mean value ŷi and some positive standard deviations ŝi. Our objective is to find a
µ-sized subset Y ∗

µ ⊂ Y that, with maximal probability, will provide µ smallest out of k
realizations. Let Pr(Yµ ≺ Ȳµ) denote the event that the variables of some µ-sized subset
Yµ ⊂ Y generate samples that are all smaller than the samples from Ȳµ = Y − Yµ. An
expression for Pr(Yµ ≺ Ȳµ) is can be derived by integrating over all u the conditional
probability density for the realizations of Yµ being below or equal u and realizations of
Ȳµ being above u under the condition that u is the value of the µ lowest realizations of
random variables in Y :

p(Yµ ≺ Ȳµ) =

∫ ∞

u=−∞
pµ;k(u)

∏

Y∈Y
Φ

(
x− E(Y )

S(Y )

)
∏

Y ∈Ȳ

[

1− Φ

(
x− E(Y )

S(Y )

)]

du. (4.2.18)

Here, as usual, E(.) denotes the mean value of the random variable and S(.) denotes the
standard deviation. Moreover, pµ;k(u) denotes the probability density function for the µ-
th lowest coordinate from a realization of the joint distribution of Y1, . . . , Yk. Borrowing
a result from the theory of order statistics (cf. David [Dav81], page 22), we obtain

pµ;k(u) =

k∑

i=1

∑

Si

i∏

l=1

Φ

(
E(Yjl)− u

S(Yjl)

) k∏

l=i+1

[

1− Φ

(
E(Yjl − u)

S(Yjl)

)]

. (4.2.19)

Here the summation Si extends over all permutations with (j1, . . . , jk) for which j1 <
· · · < ji and ji+1 < · · · < jn. Except in special cases, the computational effort for
computing these expressions is considerable. Moreover, the maximization of expression
4.2.18 over all µ-sized subsets from Y has to be carried out, and it is at least not obvious
to see how this procedure can be efficiently implemented.

Thus, more sharp separation techniques that take into account the precise shape of the
gaussian distribution likely come at the cost of a significant computational overhead.
Future studies will have to reveal if this overhead is justified by a considerable increase in
algorithm performance, or if it is possible to increase the efficiency of the such separation
algorithms.

Concerning the resampling approach (alternative 2), we note that it is also possible to
resample points which are not among the set of search points in the offspring population,
in order to reduce the variances. This opens up a large number of resampling possibilities
resampling. A thorough discussion of them would exceed the scope of this thesis and is
thus left to future research.

4.3 Global convergence behavior

Independent of the filter that is employed, it is relatively easy to prove the probabilistic
global convergence of the MAES for regular functions under certain weak restrictions for
the algorithm. This proof will be discussed in the first subsection. The second subsection
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addresses the difficulty to develop a theory for the dynamics of the MAES and motivates,
why experiments are needed in order to answer questions of practical importance about
the algorithms behavior.

4.3.1 Proof of global convergence

If certain simple requirements are met, it is always possible to prove the probabilistic
global convergence of the MAES for all regular functions.

Let us first define a regular function as a function f : S→ R with

(A) f is continuous

(B) S is a closed set,

(C) ∀x′ ∈ S : ∀ε > 0 : the set {x ∈ S|x 6= x′ ∧ f(x) ≤ f(x′) + ε} is non-empty.

Now, we can prove the theorem about the global convergence of the MAES:

Theorem 2. Let us consider an regular function f and an arbitrary (µ, κ, ν < λ) MAES
with ν > 0 and a minimal step-size of σmin > 0. In addition, let ∆t = ||xtbest−x∗|| denote
the distance of the search point xtbest in iteration t to the global optimum x∗ of f . Then

Pr{∆t
−−−−→
t→∞ 0} = 1 (4.3.20)

.

Proof. From the construction of the algorithm it follows:

∀t ≥ 0 : ∆t+1 ≤ ∆t (4.3.21)

and from the definition of the global optimum we get

∀t ≥ 0 : ∆t ≥ 0. (4.3.22)

With proposition 4.3.21 and 4.3.22 it follows that there exists a limit value

∆t
−−−−→
t→∞ ∆∞. (4.3.23)

We show that ∆∞ > 0 leads to a contradiction and thus (with proposition 4.3.22) ∆∞ = 0
is true. Let f∞

best denote the function value for f tbest for t→∞. Then let

ε = (f∞
best − f ∗)/2 (4.3.24)

and it follows from the regularity of f that

X∗
ε = {x ∈ S||f(x)− f ∗| ≤ ε} (4.3.25)

is a nonempty set and thus there exists a hyper-sphere K = {x ∈ Rn||x − x′|2 ≤ r2}
with r > 0 and x′ ∈ K such that K ⊆ X∗

ε . Now, the probability that a new offspring
generated by the EA in a d-dimensional search space is part of K is lower bounded by

pε = min
x′∈S

(
1√

2πσ2
min

)d

·
∫

x∈K
exp

(
1

2σ2
min

)

· (x− x′)T · (x− x′)dx > 0 (4.3.26)
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for a limited step-size of σmin. Given these preliminaries, it can be concluded that the
probability that all individuals of a generation are placed inside of K can be calculated
as (pε)

λ > 0. Due to ν ≥ 1, this is a lower confidence bound for the probability that at
least one individual is placed inside of K passes the filter in the pre-selection and thus is
considered for replacing the currently best individual in one generation of the MAES.

Now, we can derive a lower bound for the probability that K is hit at least once after q
generations as:

Pr(

q
∨

i=0

(xibest ∈ K)) = 1− (1− (pε)
λ)q, (4.3.27)

and hence

Pr(

q
∨

i=0

(xibest ∈ X∗
ε )
−−−−→q →∞ 1 (4.3.28)

With expression 4.3.22 and expression 4.3.24 we get an contradiction to our assumption
that ∆∞ > 0.

The result assures that the MAES does what it is expected to do, that is to converges
in probability to the global optimum. However, the result does not provide insights on
how fast the global optimum is approached. The answer to this question is much more
difficult to be obtained and will be addressed in the subsequent sections.

4.3.2 Convergence dynamics

In this subsection we will briefly study some aspects of the convergence dynamics for the
MAES. A general expression for the convergence velocity of the MAES will be derived.
Then it will be displayed, why standard techniques for the theoretical analysis of ES
cannot be applied in the context of the MAES and empirical studies are needed.

We will compare the convergence speed of the ES and the MAES with the same settings
of µ, κ, and λ. First, a general definition for the convergence velocity of ES (algorithm
2) and MAES (algorithm 5) shall be derived. Let t denote the number of generations
of an EA. Suppose ∆t = |xtbest − x∗| denotes the distance to the global optimum in one
iteration (generation) t of an EA and let τt denote the expected time for all objective
function evaluations conducted during one generation. Then the convergence velocity of
the EA can be defined as

vt =
E(∆t+1 −∆t)

τt
. (4.3.29)

For standard techniques in the analysis of the ES (cf. Beyer [Bey01]) the value of τt is
assumed to be constant for constant λ. In the context of approximate evaluations, this
is the sum of evaluation times for individuals in a single generation. In the MAES every
individual is evaluated once by using the approximate model and, if it passes the filter,
also by using the precise model. Let Ta denote the expected time it takes to evaluate
the individuals by means of the approximate model and Tp the expected time it takes
to evaluate the precise model. Furthermore, let ν denote the number of pre-selected
individuals for one generation. Then

τt = λ · Ta + ν · Tp. (4.3.30)
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Now, assuming that within one generation of the MAES the same progress is achieved as
in one generation of the ES, we can compare the convergence speed of the MAES to the
convergence speed of the ES by calculating the convergence speed-up sMAES

t :

sMAES
t =

vMAES
t

vESt
− 1 =

λ · Tp
λ · Ta + ν · Tp

− 1. (4.3.31)

In order to find out the break-even point, where the speed-up is exactly zero, we introduce
dimensionless numbers α = Ta/Tp and γ = ν/λ. Now, equation 4.3.31 reads:

sMAES
t (α, γ) =

1

α + γ
− 1. (4.3.32)

Hence, whenever α + γ < 1 we achieve an acceleration, otherwise the algorithm slows
down. It is often assumed that Ta is orders of magnitude smaller than Tp. In this case the
acceleration of the MAES depends mainly on γ since α ≈ 0. Whenever the acceleration
is greater than this, we can conclude that this has to be attributed to another positive
effect the metamodel-assistance has on the dynamics of the search, e. g driving the search
into unexplored regions of the search space.

Among the pre-screening criteria that have been discussed in section 4.2 only the LBIω-
filter aims at avoiding the rejection of individuals that might be successfully selected
in the replacement, if evaluated precisely. Hence, only for this strategy it is a good
assumption that E(∆ES

t+1 − ∆ES
t ) and E(∆MAES

t+1 − ∆MAES
t ) are the same. Here ∆ES

t

denotes the distance to the optimum for the ES, and ∆ES
t the distance to the optimum

for the MAES. In that case the extended expression for the acceleration coefficient should
be used, that is defined as

sMAES
t =

λ · Tp
λ · Ta + ν · Tp

· E(∆MAES
t+1 −∆MAES

t )

E(∆ES
t+1 −∆ES

t )
− 1. (4.3.33)

If a positive acceleration is desired, it has to be assured that

1

α + γ
≥ E(∆ES

t+1 −∆ES
t )

E(∆MAES
t+1 −∆MAES

t )
(4.3.34)

.

The theoretical analysis of the convergence speed of the MAES faces the serious diffi-
culty of determining the progress rate at a certain iteration. In literature, most analysis
methods make use of the Markov property of the ES, viewed as a discrete dynamical
system with index t. In particular, for the ES (algorithm 2) it can be assumed that the
randomized generation of any new population Pt+1 only depends on the previous pop-
ulation Pt. This feature can be used to derive terms for the expected progress rate for
simple function classes. An extensive discussion of the theory of the ES dynamics can be
found in [Bey01]. However, for the MAES the generation of population Pt+1 is a random
procedure that depends on all previous populations P0, . . . , Pt+1. Noting that already the
rigorous analysis of the dynamic behavior of the standard ES on some simple functions
is only possible if simplifying assumptions are made (cf. [Bey01]), loosing the Markov
property makes it even more difficult to derive analytical expressions for the convergence
velocity. Hence, computer experiments are needed to investigate the dynamical behavior
of the MAES.
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4.4 Performance and indicator measures

The experimental analysis of algorithms involves many decisions. The most important
ones are the choice of the appropriate instantiations of the algorithms in charge, the set
of test problems, the performance measures and last but not least measures that allow
for a deepened understanding of why the algorithm behaves the way it does. The latter
will be termed indicator measures.

In this section these aspects of the experimental setup for single-objective optimization
with time consuming evaluations is addressed, before, in section 4.5, we will present
results of the tests and discuss them.

4.4.1 Performance measures

Typically, the major CPU time during a run of the MAES is spent on the precise objective
function evaluations. Thus the number of time-consuming objective function evaluations
it takes to achieve a certain precision of the approximation to the optimum will be studied
in the following, assuming that the time for approximate objective function evaluations
can be neglected. Indeed, for problems in industrial design optimization it often takes
minutes up to hours of time to evaluate one solution candidate, thus the time to evaluate
a metamodel is insignificant. For a given test problem the history of the best found
function value fbest(ne) after ne objective function evaluations can be plotted against ne.
From this plot we can obtain the behavior of the MAES for different running times.

Since the ES, as well as the MAES, is a randomized algorithm, it is insufficient to provide
only a single run for the performance test in order to gain insights into the typical behavior
of the algorithm. Several runs have to be averaged in order to detect significant effects. A
straightforward approach would be to calculate the average best function value achieved
after ne objective function evaluations for several runs of the same ES. Usually, it is better
to plot the median instead of the arithmetic mean in order to prevent outliers to disturb
the results. Especially for multimodal problems the arithmetic mean can be misleading,
if there are substantial numerical differences between the local optima.

In order to measure robustness of a strategy, also some quantile should be displayed, e. g.
the 80% quantile. This is the result for which 80% of runs have obtained a better function
value after a given number of objective function evaluations teval. Again, we can give the
same arguments as mentioned above for the arithmetic mean, why the 80% quantile is a
better choice than the standard deviation. Generally, the confidence margins that are due
to the standard deviation can be quite confusing, because they do not show the skewness
of a distribution and thus are not very specific about the most frequent direction of the
deviation.

4.4.2 Accuracy and selectivity measures

The selectivity of the metamodel-based predictions during the evolution can be displayed
by plotting the difference between predicted and exact objective function values, such as
in y ∼ ŷ, y ∼ ŷlb diagrams (see e.g. [EN04a]). The y ∼ ŷ plot indicates the correlation
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between predicted values and estimated values, while the y ∼ ŷlb plot indicates whether
ŷ(x) − ω · ŝ(x) was an adequate choice for a lower confidence bound for the predicted
values or not.

It is a well known fact, that ES are rank-based optimization strategies that are invariant
to monotonic transformations of the objective function. Hence, a metamodel used in
conjunction with ES can be regarded as successful, if it is able to predict whether or
not a new individual is an improvement with respect to the parent population Pt. For
instance in the (µ + λ) ES, any filter that can identify the subset Gt of the offspring
population with ν ≤ µ individuals, that are worth entering the next generation, is fully
adequate. The so-called retrieval quality of any filter can be measured by means of the
recall and precision measures defined below.

Let Mµ(A) denote the subset defined by the µ best solutions in A. The filter operator in
the MAES aims at identifying the members of Gt ∩Mµ(Gt ∪ Pt) that will then enter the
next generation. Thus, it is desirable that

Qt ≈ Gt ∩Mµ(Gt ∪ Pt). (4.4.35)

It is reasonable that none of the filters can always retrieve the ensemble of relevant
individuals out of Gt. As has already been described in a less formal manner in section
4.2 a non-satisfactory filter is one that: (A) selects too many individuals that do not
belong to Gt ∩Mµ(Gt ∪ Pt) and thus are irrelevant or (B) fails capturing a considerable
part of Gt ∩Mµ(Gt ∪ Pt).

The retrieval selectivity, in relation to the first of the two unpleasant situations that
have been mentioned, is defined as precision(t), which expresses the ratio of the relevant
solutions retrieved to the total number of retrieved solutions, as follows:

0 ≤ precision(t) =
|Mµ(Gt ∪ Pt) ∩Qt|

|Qt|
≤ 1. (4.4.36)

On the other hand, the ratio of the relevant solutions retrieved from Gt to the number of
all relevant solutions in Gt is quantified as follows:

0 ≤ recall(t) :=
|Mµ(Gt ∪ Pt) ∩Qt|
|Mµ(Gt ∪ Pt) ∩Gt|

≤ 1. (4.4.37)

In contrast to quantitative measures such as y ∼ ŷ-plots, specificity measures can not
be evaluated without conducting extra objective function evaluations, which would cause
extra computing cost. Hence, they are mainly useful for statistics on simple academic
test cases and not for real world problems.

4.4.3 Indicator measuring the number of inversions

With regard to the criterion based filters it can also be interesting to measure the capa-
bility of the MAES to establish a proper order on the subset of solutions. For this we
propose to count the number of inversions in the sorting of individuals due to their fitness
values. This measure is calculated as follows:
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Let the sequence π(1), . . . , π(n) denote a permutation of the sequence 1, . . . , n. Then, the
pair xπ(i),xπ(j) is called an inversion, if π(i) > π(j) and i < j. The number of inversions
in a permutation can be counted via:

Invn(π) =
1

2

∑

(i,j)∈{1,...,n}2

ι(π(i) > π(j)), ι(π(i) > π(j)) =

{
1 if π(i) > π(j) ∧ i < j
0 otherwise

.

(4.4.38)
Additionally, we will define the number of sorted pairs as

Sortn(π) = n · (n− 1)/2− Invn(π). (4.4.39)

The number of sorted pairs takes the value of (n− 1) · n/2, if the sequence is completely
ordered and it gets zero, if π represents an inverse order.

In order to test wether an approximate order is significantly better than a pure random
ordering, the theorem of Sachkov [Sac97] is useful:

Theorem 3. [Sac97] If ξn is a random variable representing the number of inversions in
a random equiprobable permutation of n elements, then the random variable

Ξn = (ξn − E(ξn))/Var(ξn) (4.4.40)

has a normal distribution with mean 0 and variance 1 as n→∞.

Margolius [Mar01] found that for n ≥ 10 the approximation to a standard gaussian
distribution is already very close. Hence, we can test the hypothesis, whether the sequence
of individuals is ordered randomly or not by means of a simple test:

Pr(π has been produced by random ordering) = Φ(
−(Ninv + E(ξn))

Var(ξn)
). (4.4.41)

An expression for the mean and variance of the number of inversions in equiprobable
permutations has been given in [Mar01]:

E(ξn) =
n · (n− 1)

4
(4.4.42)

and

Var(ξn) =
2n3 + 3n2 − 5n

12
(4.4.43)

Example: Consider the aim is to sort a population of 100 individuals by means of
predictions for the objective function evaluations. After evaluating the correct ordering,
it has been obtained that 3397 pairs of solutions are in the right order. In that case,
the maximal number of ordered pairs is 4950. The mean value of ξ100 is 2475 and the
variance is 169125, and hence the standard deviation is approximately 411. Hence, the
probability that by chance more than 3397(= 2475 + 2 · 411) sorted pairs can be found
in an random order is given approximately by Φ(−2) that is less than 2.3%. Thus, it is
likely that by means of the approximation a better sorting has been achieved than by
pure random sorting.
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4.5 Studies on artificial test problems

The aim of the studies is to find out more about the characteristics of the convergence
process of the MAES using different filter strategies. First, the test problems for the
comparison are displayed. Then, the results of test runs will be described and analyzed.

4.5.1 Test functions for the first comparison

Six different test functions have been chosen in order to test different filters for the MAES
for single criterion optimization. Visualizations of these functions can be found in figure
4.5.10.

Sphere problem

f(x) =

d∑

i=1

x2
i → min . (4.5.44)

The known minimum of the sphere function is f(x∗) = 0 at the minimizer x∗ = 0.

The sphere problem is a simple reference test case. The objective function is strictly
convex, quadratic, and also point-symmetric. The center of symmetry is the known
minimizer x∗ = 0. From test runs on the sphere problem we approximate the best case
behavior of the MAES algorithm and we learn about its local convergence speed.

Ellipsoid problem

The ellipsoid problem reads

f(x) =
d∑

i=1

i · x2
i → min . (4.5.45)

The known optimum of the ellipsoid problem is f(x∗) = 0 at the minimizer x∗ = 0.

The ellipsoid function can be used to study, whether the algorithm can deal with variables
that have a different impact on the objective function. Furthermore, this test case is useful
to answer the question whether a proper scaling can be learnt or not.

Double sum problem

A difficult quadratic problem is the double sum problem taken from Schwefel ([Sch95],
pp. 326):

f(x) =
d∑

i=1

(
d∑

j=i

xj)
2 → min . (4.5.46)
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Its known minimum is f(x∗) = 0 at the minimizer x∗ = 0.

Like the sphere problem and the ellipsoid problem, the double sum problem is unimodal
and convex. The function has an elliptic contour hyper-surface (f(x) = const). Let amax

denote the maximal length of one of the semi-axes of the elliptic contour hyper-surface
and amin denote its minimal length, then the condition number of the quadratic problem
is given by K = (amax/amin)

2. For moderate numbers of d the condition number increases
nearly quadratically with the dimension of the problem (cf. [Sch95]). Hence, the ratio
between the largest and smallest length of the semi-axis of the ellipsoids scale linearly.
This characteristic is shared with the ellipsoid problem.

In contrast to the ellipsoid problem, the double sum problem is not decomposable. In
geometrical terms, the semi axes of the ellipsoids of the contour hyper-surface are not
parallel to the coordinate axes. Hence, it is not possible to progress to the optimal
solution by adjusting each variable separately. Thus, the double sum problem allows to
check the algorithm’s capability to deal with interaction effects between input variables.

Step problem

f(x) =

d∑

i=1

bxic2 → min . (4.5.47)

The known minimum of this function is f(x∗) = 0 at the minimizer x∗ = 0. From a
distance this surface of this problem looks like that of sphere model (cf. figure 4.5.10).
However, it has a non-steady surface consisting of several plateaus. Like steps they are
symmetrically placed around the center zero. The optimal region is the open interval box
] − 1, 1[, with 1 = (1, . . . , 1)T ∈ Rd . For all inputs located in this region the function
value is zero. Tests on the step function reveal whether or not the optimization algorithm
is capable of dealing with discontinuities and plateaus.

Ackley problem

A multimodal problem with regularly distributed local optima is given by the Ackley
problem ([Ack87], pp. 13):

−c1 · exp



−c2

√
√
√
√(

1

d

d∑

i=1

x2
i )



− exp

(

1

d

d∑

i=1

cos(c3 · xi)
)

+ c1 + exp(1)→ min . (4.5.48)

c1 = 20; c2 = 0.2; c3 = 2π

The minimizer of the Ackley function is x∗ = 0 with f(x∗) = 0. The function of Ackley is
moderate in difficulty. It possesses local optima that are located in symmetrical patterns
around the global optimum (cf. figure 4.5.10). The number of optima grows exponentially
with the problem dimension.
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Figure 4.5.9: Comparison of the one-dimensional Rastrigin and Ackley function.

Rastrigin problem

Multimodal optimization is a typical application field for EA. Thus, a further test problem
has been studied in the experiments. Like the Ackley problem, also the Rastrigin problem
is characterized by regularly distributed local optima and a global trend. In contrast
to the Ackley function, the trend of this function is not an exponential function but a
quadratic sum. Hence, the global trend of the Rastrigin function is steep at its boundaries
and gets flat to the middle of the interval boundaries (see figure 4.5.9).

10d+
d∑

i=1

(x2
i − 10 cos(2π · xi))→ min . (4.5.49)

x ∈ [−5.12, 5.12]d

The minimizer of the Rastrigin function is x∗ = 0 with f(x∗) = 0.

Fletcher Powell problem

The Fletcher Powell problem, originally proposed by Fletcher and Powell in 1963 [FP63],
is also highly multimodal. In contrast to Ackley’s function, its optima are irregularly
spaced. This makes it difficult to optimize by strategies that exploit the symmetry of an
objective function.

n∑

i=1

(Ai −Bi)
2 → min . (4.5.50)
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Ai =
d∑

j=1

(aij · sinαj + bij · cosαj) (4.5.51)

Bi =
d∑

j=1

(aij · sin xj + bij · cosxj) (4.5.52)

The position of the random optima is determined by the random matrices A = (αij) and
B = (bij). The entries of these matrices have been chosen as suggested by Bäck ([Bäc96],
pp. 143). The global optimum is obviously given by: x∗ = (α1, . . . , αd)

T with f(x∗) = 0.

4.5.2 Implementation details

All tests in the comparison have been conducted for a maximum number of 1000 objective
function evaluations. This choice was due to the fact that for many industrial problems
with time consuming objective function evaluations only a few hundred objective func-
tion evaluations can be spent, even in cases where objective function evaluations can
be performed in a distributed fashion. Note that we will not only discuss final results
after 1000 objective function evaluations. Instead, all results have also been displayed for
smaller numbers of objective function evaluations, in order to gain insights on a broad
range of possible problem settings.

As a reference strategy three variants of the ES have been chosen:

• (1 + 10)-ES: A single-parent ES with small offspring population size

• (5 + 20)-ES A multi-membered ES with moderate population size and selection
pressure

• (5+35)-ES A multi-membered ES with moderate population size and recommended
selection pressure of seven. This setting was studied in [USZ03] within the context
of metamodel-assisted evolution strategies.

• (15 + 100)-ES: A typical multi-membered ES with large population size

Note that plus strategies have been chosen for our studies, because they turned out to be
more reliable on problems where the number of objective function evaluations is small.
Since our test runs have been conducted for a number of maximal 1000 objective function
evaluations, the (5+20)-ES is considered as a good choice that allows many iterations and
also some robustness on multimodal functions. Similar strategies like the (5+35)-ES, that
was used in [USZ03], were outperformed by this strategy. Furthermore the (1 + 10)-ES
has been employed, which is regarded to be less robust but faster on local optimization
problems than the multi-membered ES.

The algorithms have been implemented using the TEA C++ library, which is a library for
evolutionary algorithms developed at the Collaborative Research Center ”Computational
Intelligence” at the University of Dortmund [EH01]. All implementations used for the
empirical comparison on test functions can be obtained from the authors web-site.
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Figure 4.5.10: The pictures show two dimensional instantiations of the sphere problem
(upper left), the ellipsoid problem (upper right), the double sum problem
(middle left), the step problem (middle right), the Ackley problem (lower
left) and the Fletcher Powell function (lower right).
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Abbreviation µ λ Type ν Filter ω

1p10 1 10 ES 10 - -
5p20 5 10 ES 20 - -
5p35 5 35 ES 35 - -
15p100 5 100 ES 100 - -
Mean 5 100 MAES 20 mean value filter 0
lb 5 100 MAES 20 lbω filter 2
PoI 5 100 MAES 20 PoI-filter -
ExI 5 100 MAES 20 ExI-filter -
MLI 5 100 MAES variable MLIω-filter 0
LBI 5 100 MAES variable LBIω-filter 1
rfilt 5 100 MAES variable Rω-filter 2
pfilt 5 100 MAES variable Pω-filter 2

Table 4.5.1: Strategy variants tested in the algorithm comparison.

Table 4.5.1 displays an overview of all strategy variants that have been tested in the algo-
rithm comparison for single-objective optimization. For the MAES filters with constant
output size an output size of ν = 20 has been chosen, i. e. ν = 20 individuals have been
pre-selected in each generation. Hence, we expect to get a strategy the behavior which
is somewhere in between that of a (5 + 20)-ES and (5 + 100)-ES. The former would be
the limit case, if the pre-selection criteria would result in a pure random sorting of the
offspring population, and the (5+100)-ES behavior would be reproduced if the IPE-filter
would work at a recall of one, i. e. if it detects all relevant individuals in each generation.

The motivation behind these settings for the MAES parameters is, to get a strategy that
works with a sufficiently large number of generations and also allows for the step size
adaptation. As a preliminary for a successful step-size adaptation, λ had to be much
greater than µ. Moreover, we wanted to have a multi-membered ES. Though they may
perform better on simple quadratic problems, single parent ES have the tendency to get
stuck in local optima. It shall be noted, that we were not aiming at the maximization of
the convergence speed of the ES on simple local optimization problems, as ES are usually
not applied for simple problems. Usually, gradient-based methods - as discussed in section
3.2 - perform much better for this problem class. Rather, we desired a good compromise
between convergence reliability and local convergence speed on more complex problems,
including difficulties like discontinuities and/or multiple local optima.

In order to increase the number of generations a comparably small selection pressure of
ν/µ = 4 has been chosen. The latter number measures the selection pressure in terms
of precisely evaluated offspring individuals. If the metamodel provides good predictions,
the selection pressure increases. Assuming that the recall of the employed filter is one,
an ES with a selection pressure of λ/µ = 20 would be emulated.

For the filters with variable output size it has been assured that at least one individual
is pre-selected and precisely evaluated in each generation. By doing so, we intend to
avoid stagnation of the optimization process and to maintain the necessary conditions for
global convergence on regular functions as discussed in section 4.3.1.
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Next, let us discuss the settings for the initialization and variation operators: The ES has
been started from a random point in the interval provided with the problem definition.
For each of the strategy variants the same set of starting solutions has been used. The
initial step-size is 0.1 % of the interval range. The strategy was allowed to move beyond
the bound constraints. Hence, the problems were treated as unconstrained optimization
problems and the bounds have only been used for generating the starting points for the
runs.

For this benchmark comparison an isotropic Gaussian mutations have been employed.
The standard deviation has been adapted by means of mutative self-adaptation. The
mutation step size a two point operator with a learning rate γ = 1.3 has been chosen
([Rec94], p. 47).

The choice of γ = 1.3 has been made due to a suggestion by Beyer ([Bey01], p. 325) for
the starting phase (first 1000 generations) of an ES. At least for ν/λ� 1, the adaptation
of the shape of the mutation distribution should be a far less important issue for the
metamodel-assisted ES than it is for the simple ES. If we would consider only the ν
offspring individuals that are pre-selected, their distribution is significantly influenced
by the IPE-filter that selects only the promising solutions from the generated sample.
However, it is still very important to adjust the size of the sampling distribution in order
to allow for an increase of the sampling radius if the population is far away from the
optimum and a decrease of the sampling radius if the MAES approaches the optimum.
The latter can well be achieved with a single step size.

However, more sophisticated step-size adaption methods like the individual step-size
adaptation (algorithm 4) might also be considered to improve the long term performance
of the MAES on local optimization problems with a high condition number.

Moreover, a discrete recombination of the object variables and an intermediate recombi-
nation of the step size variables were employed. A local recombination with two parents
has been used for intermediate recombination of the step-size. Discrete recombination
has been applied for the object variables. The variation operators are comparably simple
and transparent and shall allow an easy reproduction of results.

As a random number generator the rand() of function from Gnu C++ V2.95.4 has
been used. This random number generator is based on a multiplicative congruential
method and supports the new version of therand() function with no problems on lower
order bits. The generation of normal distributed random numbers has been done with
a technique proposed in [Rin01]. x = −6 +

∑12
i=1 Ui(0, 1). Here, Ui(0, 1), i = 1, . . . , 12

denotes uniformly distributed random numbers. The resulting number x is approximately
distributed like the standard normal distribution. A normal probability plot for a sample
of 50000 random numbers is depicted in figure 4.5.11. The deviation from the true
normal distribution is insignificant. Only in the outer regions which are sampled with a
probability of less than 0.001 some slight deviations from the true normal distribution
appear.

Though it was not used in this work, for future studies we consider the use of the Box-
Muller transformation in its polar form as proposed by Carter [Car94]. This generator
of random numbers has the advantage that it needs less random numbers and produces
random numbers with infinite support. The latter is especially important for studies of
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Figure 4.5.11: Normal probability plot of the 50000 samples from the pseudo random
number generator used in the experiments for generating normally distrib-
uted pseudo random numbers.

the long-term behavior of the MAES, as the infinite support of the gaussian distribution
guarantees the convergence for t→∞ on regular functions (see section 4.3).

The metamodel that has been chosen was an implementation of the gaussian random
field model using cross-validation for obtaining the correlation parameter θ. A simple grid
search method has been used for the calibration of this parameter. For the inversion of the
correlation matrix, an implementation of the LU factorization by M. Dinolfo [Din98] has
been used. Ifm is the number of samples, the execution time of this code is proportional to
m3. For each inverted matrix, by checking det(A ·A−1) = 1 for each inversion, it has been
assured that the matrix inversion was successful. A minimal distance between neighboring
solutions of 10−8 have been demanded in the selection of neighbors in order to avoid
singularities. Furthermore, the metamodel accuracy has been restricted to theta values
between 10−6 and 10, to avoid long running times for the calibration of the metamodel
parameters.

Furthermore we used a local metamodeling technique. This means that for each predicted
point a metamodel has been trained from its neighboring solutions. The number of
neighboring solutions in the test runs was 30. In the transient phase, when the database
was filled with less than 30 points, objective function evaluations were made instead of
metamodel predictions. The calculation time for predictions was about 0.1 seconds (on an
Intel Pentium 4 with 2 GHz) in the beginning of the search (database with 30 points) and
about 0.3 seconds in the final stage (database with 1000 points). This time consumption
can be neglected, if the time consumption of objective function evaluations lies in the
range of several minutes, but it makes the implementation of statistical comparisons on
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the suggested benchmark problems already very time consuming. Here we note that one
run of the (5, 20 < 100)-MAES with 1000 objective function evaluations demands 5000
evaluations of the metamodel, which results in a total time consumption of about 20
minutes for a run on a single processor machine.

4.5.3 Discussion of results

Next, we will discuss the results obtained for the MAES variants listed in table 4.5.1.
First, one by one, the results for filters with a constant output size will be studied. Later,
we take a look at filters with an adaptive mechanism to control the output size.

Filters with constant output size

We start with a comparison of MAES versions that work with constant output size filters.
As a consequence of this restriction, the differing performance of the strategies reported
cannot be attributed to a different number of generations or different population size
parameters. It is merely attributed to the choice of the criterion for selecting the subset.
The mean value, lbω, PoI and ExI filter have been tested.

Later it will be demonstrated that by choosing values of the confidence factor ω and
output size ν we can shift the search characteristics on the trade-off from a fast local
convergence speed with low robustness to a more robust behavior with decreased local
convergence speed. As a starting point for our comparison we chose a (5 + 20 < 100)-
ES. For the lbω filter ω has been set to a value of 2.0. This choice of parameters is
a good compromise solution, that leads to a high robustness on difficult test problems,
accompanied by a convergence speed to local optima, that is still significantly higher than
that of most conventional ES.

Note, that we will provide more details on the choice of ν, µ and ω in section 4.5.5.

Performance on the sphere problem in different search space dimensions Table
4.5.2 shows the results for the sphere problem in different dimensions of the search space.
For each dimension we have plotted the median and the 80th percentile of the best found
function value so far. In order to get statistically significant results, 20 runs have been
conducted for each strategy.

The first row of table 4.5.2 displays results on the convergence dynamics measured on
the five dimensional sphere function. For this test case the tested MAES variants clearly
outperform tested conventional ES variants. This result is significant, since the 80th
percentile of the MAES runs is still clearly better than the median of the conventional
strategies. As a rule of thumb it can be stated that the MAES needs about half the time
than the best strategy among the conventional ES to achieve the same precision.

An unexpected observation has been that the strategies that use the confidence infor-
mation, namely the lower confidence bound, the PoI and the ExI MAES, are not slower
than the mean value strategy. This can be attributed to the fact that the models are very
precise for the sphere problem and thus there is no significant difference in the predictions
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due to the mean value and the MAES versions that consider also the imprecision of the
metamodel.

The acceleration of the ES continues to function in different phases of the optimum
approximation that are characterized by different orders of magnitude for the precision
of the optimum approximation. This is an indicator for the functioning of the step-size
adaptation and also for the functioning of the online learning of the metamodel. In other
words, the precision of the local metamodel adapts to the precision of the search. This
result will be observed on many other test cases. A detailed study of this scale invariance
will be provided in section 4.5.6, where the long term behavior of the MAES is discussed.

Note, that the operators of the MAES work with a maximal precision of 10−6, in order
to make sure that the matrix operations for computing the metamodel predictions work
well. Working with higher precision arithmetics would clearly slow down the optimization
process. For more complex functions than the five dimensional sphere problem this
precision limit has almost no influence on the behavior of the strategies.

So far we discussed only results for the five dimensional case, where function approxi-
mation is easy. The second and the third row of the table depict results for 10 and 20
dimensions, respectively. In 10 dimensions the MAES still outperforms the classical ES
versions. It can be observed that the convergence speed (1 + 10)-ES is now much closer
to that of the MAES. However, the (1 + 10)-ES is not very robust, as the plot of the
80th percentile reveals. Still the MAES is about a factor two faster than the conventional
(5 + 20)-ES - the strategy with the same population size parameters.

In addition, it can be observed that the MAES versions that use the confidence informa-
tion of the metamodel converge slightly slower than the MAES with mean value filter.
This effect gets more visible in 20 dimensions (third row of table 4.5.2). It can be at-
tributed to the fact that the model quality gets worse in higher dimensions and thus the
MAES concentrate more on exploration than on exploitation, the effect of which is a
slowed down convergence.

Also in higher dimensions the acceleration achieved with the MAES is significant. One
might intervene, that the (1 + 10)-ES converges with the same speed than the MAES in
the 20 dimensional case. Without providing an extra table, it shall be noted here that
MAES versions that work with an increased generation number converge much faster on
the sphere model. However, these strategies as well as the (1 + 10)-ES show a lack of
robustness on more difficult test functions. Empirical evidence for this will be given later
in this section, when we discuss results on multimodal test functions.

Results on further unimodal test functions The sphere model is a very simple test
function, even among unimodal functions. It is symmetrical, decomposable and differ-
entiable. Further unimodal test problems have been investigated on, in order to gain
confidence in the observations on convergence behavior of the MAES. Table 4.5.3 sums
up these results.

The first row of the table 4.5.3 depicts the convergence behavior of different strategies
on the ellipsoid model. Again, a clear superiority of the metamodel-assisted strategies
can be observed. Still the MAES variants converge almost twice as fast as the equivalent
standard ES, i.e. the (5 + 20)-ES. In addition, it converges faster than the (1 + 10)-ES.
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Table 4.5.2: Results for the sphere model in different dimensions. The descriptions of the
studied algorithm variants can be found in table 4.5.1.

This indicates, that the MAES is capable of dealing with problems, where the variables
have a different impact on the function value.

Another problem, that has been investigated on, was the double sum problem, the re-
sults for which are displayed in the second row of the table 4.5.3. For this test problem,
variables do not only have different effects on the function value but they are also cor-
related. Note, that correlated variables are not reflected by the choice of the correlation
function for the MAES. On this problem the mean value MAES and lbω MAES have
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almost the same convergence speed than the equivalent (5 + 20)-ES. However, the PoI
and ExI criterion perform better than their conventional counterpart.

Certainly, the increased robustness, due to the confidence information used, would be
suspected as an explanation for the increased performance. But, then the performance of
the lbω criterion should also have an increased performance in comparison to the mean
value MAES, and this is definitely not the case. Hence, the use of confidence information
alone cannot serve as an explanation for the superior behavior of the PoI and ExI MAES.

In order to explain this effect, let us recall a result stated earlier (section 4.2.2: For the
PoI and for the ExI the relative position of the reference value f tbest to the predicted
value ŷ is of crucial importance for determining, whether the standard deviation of the
prediction ŝ has an positive effect on the ranking of an solution or not. Unlike the PoI
and ExI criterion the lbω criterion always rewards solutions with high value of ŝ. In
particular, the PoI and ExI criterion reward solutions that have an decreased value for
ŝ if ŷ is smaller than the best found solution so far, thus rewarding solutions that are
improvements with a high certainty to solutions which are improvements with a lower
certainty. This is not the case for the lower confidence bound criterion, which always
rewards solutions with high certainty, provided their predicted value is equal.

The experimental data of the double sum problem confirms that the metamodel tends to
underestimate the true function value. Now, due to their characteristics, the PoI and ExI
are able to distinguish between underestimated values and values that are better than
the currently best function value with a high certainty. This leads to a more focussed
search and to the significantly better results than that obtained with the strategy using
the LCB filter, which focusses on underestimated solutions, and the mean value criterion
which does not care at all for the certainty of an prediction, thus having a convergence
behavior that lies in between that for the PoI and ExI on the one hand and the lower
confidence bound criterion on the other hand.

Last but not least, the behavior on a discontinuous function with plateaus should be
discussed. The results on the 10-D step function, that reflects these characteristics, are
depicted in the third row of table 4.5.3.

Due to their model assumptions, gaussian random field do not support the modeling of
discontinuous functions. However, they can still provide valuable predictions, if there is
some causal structure in the modeled landscape. In particular, this holds, if the ’jumps’
in the function values are small compared to the range of function values in the sample.
For the step function, this means, that the metamodel can predict with a small relative
error if the sample is widely distributed in the search space and thus the relative change
of function values is similar to that of the sphere function. As the search approaches the
optimum, an increasingly poor quality of the metamodel is to be expected. However, the
standard deviation ŝ can still serve as an relative indicator for the unexploredness of an
region.

The results obtained with the MAES are consistent with the aforementioned assumptions.
Indeed, the MAES finds rapidly a near optimal region and then tends to stagnate. The
stagnation time is lower for strategies that make use of confidence information and thus
have the tendency to strive to the unexplored regions of the search space. The latter
characteristic also helps to navigate on plateaus, where a random walk tends to re-sample
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the same region again and again.
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Table 4.5.3: Results for unimodal functions using filters with constant output size. The
descriptions of the studied algorithm variants can be found in table 4.5.1.

Results on multimodal functions Evolutionary algorithms are often applied for multi-
modal optimization. Hence, we included some multimodal problems into our benchmark.
These are the Ackley problem (10-D and 20-D), the Rastrigin problem (10-D), and the
Fletcher Powell problem (10-D). Table 4.5.4 shows the results on these functions. For
some parameterizations of the MAES, plots in table 4.5.4 are accompanied by detailed
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plots of all test runs (table 4.5.5 for the Ackley problem and table 4.5.6 for the Fletcher
Powell problem).

A first test problem for multimodal optimization has been the Ackley problem (section
4.5.1), the results on which can be obtained from the first (d = 10) and second row
(d = 20) in table 4.5.4. In contrast to the Rastrigin problem, the global trend of the
Ackley function is very flat in the regions far away from the optimum (cf. figure 4.5.9).
Therefore, the ability of the strategy to ’jump across’ local optima is of crucial importance
in the beginning of the search.

Conventional ES with a high selection pressure seem to have more problems, than those
with low selection pressure. In particular, the (1 + 10)-ES gets clearly outperformed
by all other ES with µ > 1. Again, the MAES versions perform significantly better
then the conventional ES. Unlike the mean value MAES, all MAES versions using the
confidence information, namely the lbω MAES, the PoI MAES and the ExI MAES, found
the attractor region of the global optimum in more than 50% of the test runs. Only the
MAES using the lbω-filter obtained the attractor region of the global optimum in more
than 80% of the test runs. In 20 dimensions (third row of table 4.5.4), the advantage of
strategies using confidence information gets even more visible.

A detailed comparison of twenty runs for the mean value MAES and the lbω MAES on
the 10-D Ackley problem is given in table 4.5.5. Here, convergence to local sub-optima,
which goes along with a reduction of the sampling radius, can be observed many times.
It is notable, that the convergence to local sub-optima also happened for the lbω MAES,
though it occurred only in two out of twenty runs. Once the sampling radius has been
reduced, there is almost no more chance to escape from a local optimum. This effect
cannot be attributed to the failure of the lbω criterion to detect unexplored regions in
the search space. Rather, it points to the possible shortcoming of the MAES, that it
might not sample points in unexplored regions if the step-size is too low. Thus these
points cannot be preselected, even though they might have good values for the lbω. A
possible measure to counteract this problem, would be to keep the sampling radius high.
However, such strategies have not been tested in this work but their development bears
potential for future improvements.

Further support for the hypothesis that the use of filters that consider ŝ helps to improve
results on multimodal problems can be obtained from the experimental study on the
Rastrigin problem (cf. 4.5.1), the results of which are displayed in the third row of table
4.5.4. As discussed previously (section 4.5.1), from a distance the Rastrigin function
looks like a quadratic unimodal function. The superposed sinus and cosine terms have a
constant, high frequency and are relatively low in amplitude.

The results indicate, that it is difficult to find attractor basin of the global optimum within
1000 evaluations, even for the MAES. However, we can compare the relative performance
of the different ES and MAES on this problem. Among the conventional strategies tested,
the ES instantiations with µ > 1 performed better. Furthermore, a low selection pressure
seems to increase the average performance, as the comparison between the (5 + 20)-ES
and (5 + 35)-ES reveals. It is remarkable, that all MAES versions perform better than
the conventional ES versions on this problem. In particular, the (1 + 10)-ES is no longer
competitive, as it was the case for one of the unimodal functions. Despite, it tends to
converge quickly to local optima. Among the MAES versions, the strategies using the
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lbω-filter and the PoI filter perform best, which can be attributed to the fact, that they
reward solutions, that have relatively low predicted value ŷ accompanied with a high
standard deviation ŝ. This entails an increased tendency to escape from local optima.

Finally, a study that points to the limits of the applicability of the MAES, is discussed.
The Fletcher Powell function is the most difficult problem among the multimodal test
problems in the comparison. In contrast to the Rastrigin and Ackley problem, the optima
are irregularly spaced and have attractor basins of different size. The fourth row of table
4.5.4 displays averaged test runs for this problem. The results are supported by table
4.5.6 that displays results in a more detailed resolution. With the exception of the
(15+100)-ES, all strategies stagnated after about 500 evaluations. Thus, the initial phase
of the optimization decided, to which optima the strategies converged. An advantage can
be made out for the PoI and mean value strategy. However, it seems difficult to explain
the superior behavior of these strategies, as from the detailed plots in table 4.5.6 we
obtain that their behavior is highly unpredictable. It seems that for this problem class
other settings of the MAES parameters are to be chosen, if we want to obtain a good
result in the long run. Results for the LBIω MAES, which work with a much lower
selection pressure, point in that direction (see lower right corner of table 4.5.6). Later,
in the discussion of adaptive filters, we will come back to this point.

In summary, it was observed that the MAES outperforms standard ES on multimodal
problems. Filters using the confidence information typically lead to an increased con-
vergence reliability. This holds, in particular for relatively simple multimodal problems.
For more complex multimodal problems, like the Fletcher Powell problem, the behav-
ior of the MAES with constant output-size filters becomes highly unpredictable for the
given number of 1000 evaluations, though for some MAES variants still an accelerated
convergence was encountered.

Filters with variable output size

Among the filters with variable output size we distinguished between filters with a high
recall – i.e. the LBIω-filter and the Rω-filter – and filters aiming at a high precision – i.e.
the MLI-filter and the Pω-filter . The results for these types of filter strategies shall be
discussed next.

Table 4.5.7 displays results obtained with MAES using filters with adaptive output size
on unimodal functions, and in table 4.5.8 results for multimodal problems, respectively.
In both tables, they are compared to the aforementioned (5 + 20 < 100)-MAES variants,
all of which used filters with constant output size.

On quadratic problems MAES that used high precision filters performed by far better
than all other MAES strategies tried so far. For example the MLI filter found the optimal
solution on the 10-D sphere model in about 18 % of the time of the corresponding (5+20 <
100)-MAES. The Pω-filter was even slightly faster.

Clearly, a lack of robustness is the price that has to be paid for the improved performance
on smooth unimodal functions. This already comes to show, when looking at the results
on the step function (fourth row of table 4.5.7), where both, the MLI-MAES and the
Pω-filter MAES failed to find the global optimum. Similar results were found for multi-
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Table 4.5.4: Results of the (5 + 20 < 100)-MAES on different multimodal functions. The
description of the studied algorithm variants can be found in table 4.5.1.
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Table 4.5.5: Detailed plot of the function values measured during 20 runs of different
MAES versions on the Ackley problem.
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Table 4.5.6: Detailed plot of the function values measured during 20 runs of different
MAES versions on the Fletcher Powell problem.
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objective functions (table 4.5.8).

A contrary behavior was observed for MAES variants, using filters that aim at a high
recall, namely the LBIω-MAES and the Rω-filter -MAES. These MAES showed a relatively
good performance on multimodal problems, but converged extremely slow on smooth local
optimization problems. In particular, this holds for the LBIω-MAES. The MAES versions
that worked with filters of constant output size behave in a way that lies between these
extremes.

An explanation for the complementary behavior of the high precision and high recall filter
on local optimization problems is probably that the high recall filters let a significantly
larger number of individuals pass in each generation than the high precision filters. As
a consequence, the number of generations for the high recall filters was much lower than
that for the high precision filters. This explanation is supported by the Box-plot in figure
4.5.12, where the number of generations are compared for different MAES. The Rω-filter
works with a low number of only 20 generations, indicating that almost all individuals
generated during the test runs have passed the filter, while the MLI and Pω-filter achieve
a high number of generation, though not each of the individuals was rejected by these
filters. Note, that the (5 + 20 < 100)-MAES computed a total of 50 generations, which
is similar to the average number of generations performed with the LBIω MAES.

The value of ω = 1 has been chosen for the LBIω filter in contrast to ω = 2 the Rω-filter
(see table 4.5.1). Due to lemma 5 in section 4.2.4 an decreased value of ω leads to a lower
permeability of the Rω-filter and LBIω filter. Hence, by choosing a lower value of ω, the
number of generations can be increased. The empirical results indicate, that ω has to
be chosen sufficiently much lower than the default value of ω = 2, in order to avoid that
(almost) all individuals pass the filter.

A remarkable result has been achieved on the multimodal Fletcher Powell function. Here
the MAES using the LBIω filter performed superior (third row of table 4.5.8) to all other
tested MAES variants. A detailed plot of the results on that function is displayed in
table 4.5.6 (lower right). The LBIω MAES was the only strategy that did not have the
tendency to converge to local sub-optima. The only drawback of the LBIω MAES seemed
to be, that it did not allow for a fine tuning of the result in the end. Hence, for practical
applications, it is recommended to further improve the final result obtained with the
LBIω MAES by means of a local optimization strategy.

Summing up, we may learn two lessons from the results obtained with filters of variable
output size. Firstly, it has been obtained that high precision filters converge very fast
to local optima but fail to work on discontinuous and multimodal problems, while high
recall filters are much more robust on multimodal and discontinuous problems but lack
precision in the final optimum approximation. Secondly, we observed, that a possible
danger when using MAES with high recall filters is, that they might let pass almost all
individuals. Hence, the choice of ω can be crucial.

However, this entails that the user has to choose a parameter again and we loose one of
the alleged advantages of the MAES with variable output size, since we claimed that we
can get rid of one of the parameters. This also holds for threshold versions of the PoI
filter, namely the PoIτ -filter, since they are equivalent to the LBIω filter with τ = Φ(−ω).
Still, the MAES with adaptive output size filters have the advantage that they can react
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more flexible on the measured function topology during the run, by increasing the output
size in case of rugged landscapes and decreasing it in case of smooth landscapes.
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Figure 4.5.12: Box-plots for the number of generations performed by variable output fil-
ters on sphere model for a limited number of 1000 objective function evalua-
tions (pfilt = Pω-filter, mli = MLI-filter, rfilt = Rω-filter, lbi = LBIω-filter).

4.5.4 Performance of the metamodel

It might be alleged, that the metamodel assistance does not support the search in the way
we explained it, but some other obscure effect is responsible for the increased performance
of the strategies. In order to meet this objection several indicator plots have been studied,
that shall provide us with more details about what is going on during the run of a MAES.
The aim was mainly to verify that the metamodels and the filters based on them behave
in a way that is consistent with their theory. Furthermore, the results shall lead to a
deeper understanding of the behavior of the different MAES.

First, we studied the numerical quality of the metamodel predictions for runs on the
sphere model in different search space dimensions by means of y ∼ ŷ-plots (figure 4.5.13
and 4.5.14). The results are displayed in a twice logarithmic y ∼ ŷ-plot in order to screen
the prediction quality in different orders of magnitude.

All points were near the intersection line, meaning that the correspondence between the
metamodel predictions and the true objective function value was very high. The relative
deviation from the true value is almost constant for different orders of magnitude of the
function value. It has also been observed, that in higher dimensions the quality of the
metamodel hardly decreases (4.5.14). The performance loss due to the dimension is less
significant than one might have been expected on basis of the ’curse of dimension’. This
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Table 4.5.7: Results of MAES using filters with variable output size on unimodal func-
tions. The descriptions of the studied algorithm variants can be found in
table 4.5.1.
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Table 4.5.8: Results for MAES using filters with variable output size on multimodal test
problems. The descriptions of the studied algorithm variants can be found
in table 4.5.1.
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result can be explained by the decreased convergence speed, that entails an increased
dwelling time of the MAES on the 20-D problem in different distance ranges to the
optimum and thus an more extensive sampling.

Additionally, the accuracy of the predictions on the multi-modal 20-D Ackley problem
was investigated (figure 4.5.15 and 4.5.16). Also on this problem we observed a strong
correlation between the predicted and true function values, thought the relative error
considerably higher on these problems. From the y ∼ ylb plot we conclude that this is
also reflected by an increase width of the estimated confidence interval.

On basis of the y ∼ ŷ-plot exclusively it is difficult to judge whether the metamodel
quality suffices to find the a precise sorting of the offspring solutions or not. Thus we
also provide indicator plots that display the number of inversions (cf. section 4.4.3) for
different stages of the optimization and two representative problems (figure 4.5.17).

For chosen test problems, namely the 20 dimensional sphere problem and the 10 dimen-
sional Ackley problem, the number of inversions is significantly below the number of
inversions that is expected for a random sorting of the 100 offspring individuals. The
results on the other test problems look similar and have thus been omitted in this thesis.
Recall, that the expected number of inversions E(ξ100) and its standard deviation σ(ξ100)
have been derived in the example of section 4.4.3. In the figures, dashed lines indicate this
mean value and the lower confidence bound (= mean value minus standard deviation) for
random sorting. The number of inversions fluctuates and decreases slightly towards the
end, which can be explained by the enrichment of the database with sampled points. In
higher dimensions the number of inversions grows on average, but stays below the critical
number of E(ξ100)−

√

Var(ξ100).

For the other filters with constant output size, the results are worse than that for the
mean value filter. This is consistent with the theory of these filters, because they do not
sort the population by means of the predicted value but by a value that also depends on
the standard deviation of the prediction. This more or less biases the ordering achieved
for the offspring population. With exception of the sphere problem, a low number of
inversions does not directly correspond to a better convergence behavior.

Due to these results, using the number of inversions as a performance measure, or even
as a measure to adapt strategy parameters during the run, would be misleading. The
results on the Ackley function provide a good example for the problem. Here, in the
stage of convergence to local sub-optima, the number of inversions is very low, because
after a while the sub-optimal region is well exploited. Hence, the number of inversion
indicator would suggest that the strategy is doing well, not recognizing that it is trapped
in a nicely modeled local sub-optimum.

It might be claimed, that the main purpose of including the variance into a pre-selection
criterion, is to boost sampling in regions of poor model quality in order to obtain a better
metamodel. The results presented in table 4.5.17 do not support this argument. Rather,
the high performance of the lbω filter on the Ackley function, supports the thesis that
the ’escape’ to unknown regions (white spots) of the search space has to be supported,
which helps to prevent stagnation of the search.

Additionally, recall and precision, as introduced in section 4.4, have been measured for
all employed MAES variants over time. Tables 4.5.9 and 4.5.10 display the results for
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Figure 4.5.13: y ∼ ŷ-plot for all predictions made during the run of the (5+20<100)
mean value MAES on the 10-D sphere model.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1e-05  0.0001  0.001  0.01  0.1  1  10  100  1000

y 
pr

ed
ic

te
d

y

Figure 4.5.14: y ∼ ŷ-plot for all predictions made during the run of the (5+20<100)
mean value MAES on the 20-D sphere model.
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Figure 4.5.15: y − y plot for a run of the MAES on the 20-dim. Ackley function.
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Figure 4.5.16: y − ylb plot for a run of the MAES on the 20-dim. Ackley function.
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Figure 4.5.17: Average results for the number of inversions for two different test problems,
the 20-D sphere problem (upper) and the Ackley problem (lower). For each
combination of algorithm and test problem 20 runs were performed. The
descriptions of the studied algorithm variants can be found in table 4.5.1.
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filters with constant output size as well as for adaptive filters.

Clearly, the results reflect the main characteristics of the filters that were expected from
theory. This is, that the MLI and Pω-filter both work at a high precision and a low recall
and that the LBI filter and Rω-filter work at a low precision but high recall.

For the filters with constant output size (table 4.5.9) the precision stays below a value
of 0.25, which is consistent with the fact that only µ = 5 out of ν = 20 pre-selected
individuals are finally selected and thus it is impossible to obtain higher precision values
than 5/20 = 0.25. In addition the PoI and mean value filter have a slight tendency to
work at a higher precision.

The highest recall for constant output size filters were achieved for the mean value cri-
terion, where more than 80% of the relevant individuals are among the preselected 20
individuals. The only exception to this rule was the result obtained on the double sum
function. As it has already been said, the high correlation between variables severely
violates the model assumptions of decomposable correlation functions. However, it is
interesting to see that the bad model quality for this function does not lead to a com-
plete failure of the MAES. This can be attributed to the fact, that a wrong sorting of
the offspring population does not completely deteriorate the search process. Rather, the
strategy falls back to the standard (5 + 20)-ES, in that case.

The only case, when the metamodel-assistance could indeed be harmful would be, if it
produces a deceptive ordering, which - in case of the (5+5 < 100) -ES would be indicated
by recall values below 20/100 = 0.2. Strangely enough, this is exactly the case for the
expected improvement criterion on the double sum, which - besides the PoI criterion -
performed best on the double sum problem. A possible explanation for this behavior is,
that this filter either selects solutions that are almost for sure among the 5 best solutions,
or it selects solutions that are placed far away from good solutions, and the latter case
appears more often, since regions far away from a local optimum are sampled more often.
The results in the precision column for the double sum function in table 4.5.10 support
this conjecture.

Another reason for the good results on local optimization problems is certainly the high
number of generations (figure 4.5.12). It is surprising that the low selection pressure with
regard to the ratio between the number of pre-selected individuals and parent individuals,
that is often smaller than one, does not lead to a failure of the step-size adaptation.
Clearly this indicates, that the number of generations is an important factor for scaling
between more local and more global search. If we compare the results of the MLI-MAES
with that of the lower confidence bound and mean value MAES, it can also be concluded,
that the choice of filter criterion for a filter with constant output size is far less important
for the behavior of the strategy than the choice of the number of pre-selected individuals
that determines the number of generations performed.

The price that has to be paid for the extremely high acceleration on local optimization
problems is a lack of robustness on discontinuous and multimodal problems. The results
on the step problem as well as the results on the Ackley and Fletcher Powell function
(table 4.5.8) clearly indicate this.

Again, the experimental results demonstrate the similarity between the behavior of the
LBI and Rω-filter -MAES on the one hand, and the MLI and Pω-filter -MAES on the
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Table 4.5.9: Averaged recall and precision of filters with constant output size.
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Table 4.5.10: Averaged recall and precision values of filters with variable output size.
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other hand. If one can spend more than one run on a particular problem, it would be
recommended to try both strategies.

4.5.5 Study of strategy parameters

Next, two studies reported originally by Emmerich et al. [EBN05] are reproduced. The
first study aimed at studying the behavior of the MAES for different settings of the
important strategy parameters µ (the number of individuals in the parent population)
and ω (confidence factor). A second study addresses the long term behavior of the MAES
for local optimization.

The influence of µ and ω on the convergence dynamics was studied on the 20-dimensional
Ackley function (appendix 4.5.1). Figure 4.5.18 displays the results. It indicates that an
optimal value for ω exists. For high ω values (ω = 3), the intensive exploration entailed
a low convergence speed. For low ω values (ω ≤ 1), the MAES likely converge to a
local optimum, since the confidence information had less impact on the criterion for
pre-selection.

Additionally, the effect of the population size µ on the convergence speed of MAES is
illustrated in figure 4.5.18. Low values of µ implied a higher selection pressure. This
led to significantly better results during the first generations but increased the risk of
premature stagnation in local optima. For the discussion of the effect of the selection
pressure on the extinction of sub-populations on multi-modal landscapes we refer to
studies by [SEP04, PSE05], in which the author of this thesis was involved. Note, that
stagnation occurred later than in case of runs with a too small ω. It is also noteworthy,
that choices ω = 2 and µ = 5 led to a similar behavior to those of the ExI and PoI
strategies with µ = 5. From the experience we gathered so far, µ = 5 and ω = 2 is also a
good default setting for the MAES that allows a fast convergence to local optima as well
as an increased robustness as compared to the mean value criterion.

Also, the setting for ν has been checked for constant output-size filters. Without dis-
playing results, we note that a higher value of ν decreases the local convergence rate
significantly, while a two low setting of ν increases the risk of pre-mature convergence.
Values of ν between 10 and 20 turned out to yield the best results. However, we choose
the setting of ν = 20 in order to guarantee a sufficient selection pressure in case that
the metamodel generates a more or less random sorting on the offspring population. If
the prescreening produces a random sorting on the offspring population, the convergence
behavior of the (µ+ ν < λ)-MAES would correspond to the a simple (µ+ λ)-ES.

However, there are still some open questions concerning the control parameters of the
MAES. For example we have not tested if there is interaction between the parameters
ν, µ and ω. Moreover, different step-size adaptation mechanisms and/or recombination
operators could be tested. An interesting approach for finding optimal parameter settings
for evolutionary algorithms has recently been proposed by Bartz-Beielstein [BB05]. It
could be an interesting direction for future research to apply this approach to obtain
near-optimal parameter settings for the MAES on different problem classes.
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Figure 4.5.18: Development of the 80%-quantiles for best found function values for differ-
ently parameterized versions of the MAES. The runs have been conducted
on the 20-dim. Ackley function. Different settings for the population size
µ and the confidence factor ω in the (µ+5 < λ)-MAES using the criterion
described in equation 3.4.17 are displayed.

4.5.6 Long term behavior

Finally, the long term behavior of the MAES was studied. Figure 4.5.19 displays results
for a long run with 2000 precise evaluations on the 20-dim. ellipsoid problem. The results
indicate that the MAES is capable to approximate a local optimum with a high precision
and does not converge to a false optimum, as it might be suspected (cf. [Jin05]). Another
important observation is that the absolute error of the prediction shrinks proportionally
to the distance from the local optimum.

Summary of experimental results

The experiments already give a good impression of the behavior of the MAES variants on
problems with moderate dimensions. On the basis of the performance studies it is possible
to select the adequate type of filter, if we have an assumption about the topology of the
landscape on which to optimize. First attempts towards an explanation of the observed
behavior have been made and supported by experimental data.

Summing up, let us highlight the lessons we have learned from the study. Due to their
empirical nature the following results should be understood as rules of thumb for the
practitioner who wants to apply the MAES and not as precise results:

• The MAES working with constant output size filters accelerate the standard ES by
a constant factor ranging from two to eight for the tested problems.
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Figure 4.5.19: A run of the (20+5 < 100)-MAES with PoI pre-screening on the ellipsoid
problem with 2000 evaluations. It demonstrates that the MAES is capable
to converge to a high precision. Also, it can be obtained that the error of
the predictions shrinks proportionally with the distance to the optimum.

• The linear convergence order of the ES on simple problems gets preserved

• Using the PoI, ExI or lower confidence bound criterion might slightly decrease the
local convergence speed but significantly improves the results on some multimodal
functions

• The lower confidence bound strategy performed better on discontinuous problems
with plateaus, while the PoI showed better results for local optimization problems
and for the Fletcher Powell Problem. The ExI criterion only outperformed these
strategies in case of correlated variables.

• The quality of the metamodel trained merely from the pre-selected individuals
remains sufficiently well to establish an approximate sorting on the offspring popu-
lation. This sorting is significantly better than a random sorting of the population.

• The choice of ν determines significantly the convergence speed and robustness of the
strategy. The (5+20 < 100)-ES provides a robust choice for population parameters.

• The theoretical assumptions about the precision or recall of the variable output
filters prove to be valid on the basis of the experimental data. The Rω-filter MAES
best emulates the ’true’ behavior of the ES.

• Variable ratio filters easily tend to result in extreme values of ν, thus either dete-
riorating convergence speed or robustness. Moderate values of ω are recommended
to achieve a more balanced behavior.
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Further experimental research will have to deepen the understanding of the MAES. Stud-
ies of the distribution of the sampled and/or pre-selected populations hopefully can pro-
vide further insights on their dynamical behavior. Probably the most important question
will be to derive a robust control of ν. It will not suffice to base the decision whether
to spend more objective function evaluations merely to enhance the quality of the meta-
model and to focus on emulating the ’true’ ES, by maximizing recall and/or precision
values. It is far more important to avoid premature stagnation of the strategy by detect-
ing new unexplored but promising areas of the search space. The lower confidence bound
and the LBI filter are first attempts in this direction that needs to be further explored.

4.6 Conclusions

In this chapter the MAES has been introduced. The metamodel-assistance can easily be
integrated into existing versions of the ES. It requires the installation of a IPE-filter in the
main loop of the ES and the maintenance of a database of conducted objective function
evaluations, that is used for approximating the function values of offspring individuals by
means of GRFM.

Various types of filters have been introduced and compared, both on a theoretical and on
a practical level thereby making extensive use of the variance information provided by the
GRFM. A theory of filters for the MAES has been outlined. First, fixed cardinality filters
have been used that sort the population by scalar criteria. Differences and similarities
between these criteria have been pointed out. Then filters with a variable number of
pre-selected solutions have been proposed and related to each other. It has been found
that the concepts of precision, recall and permeability are important for evaluating and
adjusting the characteristics of these filters. Based on the theory of interval orders, the
Pω-filter and Rω-filter have been derived.

Next, the convergence properties of the MAES have been studied. It has been pointed out
that under the condition that at least one individual passes the filter each time, the global
convergence property of the ES on regular functions is inherited by the MAES. With
regard to the performance the speed-up for a perfect filter, i. e. a filter that selects the
same individuals than the replacement, has been measured, thereby considering different
times for the approximation and for the objective function evaluation. An expression
for a break even point has been found, for which the speed of the ES and MAES are
equivalent in the best case scenario of optimal precision and recall. It has also been
motivated that for the analysis of the MAES experimental results are needed, since the
loss of the Markov property forbids the analysis of the MAES with the standard theory.

Measures for experimental studies of the MAES have been suggested. Three kind of
measures have been proposed. For the performance analysis history plots standard tech-
niques like plots of the median and 80% quantiles MAES seem to be adequate to measure
average behavior and robustness. It has been pointed out that the number of objective
function evaluations determines the time of the strategies and is usually limited.

New measures for the analysis of filter characteristics have been proposed, that quantify
their precision and recall based on the number of selected and non-selected relevant
offspring individuals. For accuracy measuring of the metamodel the double-logarithmic

105



y ∼ ŷ and y ∼ lbω plot based on cross-validations has been adopted.

In order to measure the capability of a criterion-based filter to establish a proper ranking
on the offspring population, the number of ordered pairs provide a useful measure. By
employing the theorem of Sachkov, it has been demonstrated, how this measure can be
used to disapprove the hypothesis that sorting by means of function approximations is no
better than pure random sorting. Both, the numerical accuracy measure and the number
of sorted pairs measure can be used for an online screening of the metamodel quality.

Finally, the results of various test runs of the MAES on selected artificial test problems
have been displayed and interpreted. It has been obtained in the test runs that the pre-
screening with MAES speeds-up the ES significantly on a set of problems that include
some of the most common difficulties for optimization strategies. Exclusively in the
presence of discontinuities and plateaus the MAES failed to perform better than the
corresponding ES. The test runs also indicate that the MAES is quite robust against
little errors in the model assumptions. Furthermore, the runs adds further evidence
to the hypothesis that the incorporation of the variance increases the robustness of the
strategies, in particular for multimodal functions. The reason for the increased robustness
has not been due to a better sorting or a better recall of the strategies employing the lbω
filter. More likely the increased robustness is caused by the mechanism that the variance
term drives the MAES into new unexplored regions of the search space.
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5 Metamodel-assisted constrained
optimization

In throwing stone at a mouse, beware of breaking a precious vase.

Chinese proverb

In this chapter we will deal with the handling of implicit (inequality) constraint functions
in the MAES, i. e. constraint functions that are evaluated by means of the time consuming
evaluator. Accordingly, we discuss an instantiation of the problem definition in section
5.2, where the evaluation tool describes a mapping Rd → Rnf+ng with ng > 0 and nf = 1.

For constraint handling we adopt the metric penalty approach as described by Hoffmeister
and Sprave [HS96]. We propose selection procedures for candidate solutions, the objective
and constraint functions of which have been evaluated approximatively.

The different topics of constrained metamodel-assisted optimization will be discussed in
the following order: In section 5.1 we start with a brief survey of constraint handling
methods and discuss their applicability for the MAES. Section 5.2 introduces the treat-
ment constraints within the ES and MAES based on a metric penalty approach. Section
5.3 generalizes the IPE-filters of the MAES (section 4.2) to the constrained case. The
remainder of the chapter (section 5.5) provides a study on benchmark problems.

5.1 Constraint handling methods

In the past, several techniques have been proposed for the treatment of constraints in
evolutionary algorithms. A comprehensive summary of constraint handling methods in
EA is given by Coello Coello [Coe99]. Classical constraint handling methods are also
discussed in [BFM97]. Next, we pick out some of the most important approaches to deal
with constraints and discuss their applicability within the MAES.

A common way to handle simple constraints is to transform the search space in a way
that it contains no more infeasible solutions. This can be done by so-called decoders
(cf. MF00) or just by choosing an appropriate representation. This approach can be
generalized in a straightforward manner, if the metamodel is learned for the transformed
search space. However, this approach demands for analytical expression of the constraint
functions. Hence, it cannot be applied for the treatment of implicit constraints. A
related approach for handling constraints is the use of repair heuristics. Starting from
an infeasible point, a nearby feasible point is searched for, e. g. by means of an local
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minimization of a penalty term. Then the objective function value of the repaired solution
is assigned to the individual as fitness value [Coe99]. Another idea would be to reject
and re-generate offspring solutions until a sufficient number of offspring solutions has
been obtained. All these approaches typically demand for a large number of constraint
function evaluations and are thus inapplicable if the evaluation of the constraint function
is time consuming.

There is a variety of methods that use non-standard population models and selection
operators in order to incorporate constraints. For example Paredis [Par95] used a preda-
tor prey approach with two separate populations and Schoenauer et al. [SX93] used
an scheme where attention is paid to different constraints at different times. Recently,
Kramer [Kra03] proposed meta-evolutionary approaches and an co-evolutionary methods
for handling constraints in evolution strategies. We will not consider co-evolutionary
methods in this thesis, though it may be an interesting direction for future research.

Penalty function methods are probably the most common approach to handle implicit
constraints. The general principle of these methods is build a penalty function that inte-
grates the function values of violated constraints and is added to the objective function
value. Thereby the constrained optimization problem is re-casted as a single-objective
optimization problem. The literature distinguishes between dynamic and static penalty
functions. The former class of penalty methods works with dynamical schedules to con-
trol the impact of the penalty term during optimization. A classical approach for this is
the sequential unconstrained minimization technique (SUMT) by Fiacco and McCormick
[FM90]. For a more recent discussion of the SUMT we refer to [Nas98]. However, the
metamodels proposed in this thesis cannot learn dynamically changing landscapes. More-
over, the adoption of a scheme like it is used in the SUMT methods involves the choice of
further parameters by the user. These are the reasons why we cannot use these methods
in this thesis.

Static penalty functions usually introduce a penalty term that assures that infeasible
solutions are always inferior to any feasible solution. As a consequence they introduce
a discontinuity at the constraint boundary and thus it is difficult to model the resulting
fitness function by means of interpolating metamodels like GRFM.

In this work we base the constraint handling methods on the metric penalty approach,
as suggested by Hoffmeister and Sprave [HS96]. Instead of building a surrogate function
from the constraint and objective function values, Hoffmeister and Sprave proposed to
establish a quasi-order on the set of solutions that is based on the values of the constraint
functions and the objective function. Like for the static penalty function approach,
feasible solutions are always ranked better than infeasible ones. Feasible solutions are
compared by their objective function value and infeasible solutions are compared by the
values of the violated constraint functions. Since ES selection schemes usually do not
demand for absolute fitness values but only for a ranking, this approach provides an
elegant way of constraint handling. In the next chapter we will be more precise on how
this approach and how it has been implemented in the MAES.
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5.2 Constrained optimization with evolution strategies

Constrained optimization problems, with one objective function f and ng (ng > 0) con-
straint functions (g1, . . . , gng

) can be formally stated as:

f(x)→ min (5.2.1)

g1(x) ≤ 0, . . . , gng
(x) ≤ 0 (5.2.2)

x ∈ S ⊂ R
d (5.2.3)

For notational convenience, we shall denote vectors of output values by y = (y1, . . . , yng+1),
whenever this seems suitable. In this notation the first position of the vector y1 denotes
the objective function value and the remaining positions y2, . . . , yng+1 denote the con-
straint function values.

As mentioned in the introduction, a common approach is the static penalty approach.
The basic idea is to extend the definition of the objective function as follows:

f(x) +

{
0 if g(x) < 0
fmax + δ(g(x)) otherwise

(5.2.4)

with

δ(g(x)) =

ng∑

i=0

(max{0, gi(x)})γ.

Here we define that g(x) < 0 is true, if and only if all vector positions are lower than
or equal to zero and at least one vector position is strictly lower than zero. In a similar
manner, we define to be true g(x) ≤ 0, if and only if all constraint values are lower or
equal than zero. By δ we denote a penalty function that takes the value of zero, whenever
no constraint is violated, and a positive value that reflects the severity of the constraint
violation, otherwise. The penalty function establishes a metric in the infeasible region
that can be used as an orientation for the optimization algorithm to find the feasible
region. It is a common choice to use a quadratic penalty function γ = 1 or γ = 2. The
latter choice is typically made when dealing with equality constraints. However, in this
thesis we focus on inequality constraints why γ = 1 can be an adequate choice, as well.

The value of fmax needs to be chosen such that feasible solutions always dominate infea-
sible solutions. As indicated above, Hoffmeister and Sprave [HS96] pointed out that for
rank-based optimization algorithms there is no need to define a parameter fmax. Instead
of computing a scalar value from the constraint values and objective function value, it
suffices to establish a preference relation on the set of output vectors. This can be done
by defining the following preference relation between output vectors containing both, the
objective function and the constraint function values.

Let y = (y1, . . . , ynf+1)
T =: (yf) ◦ yg and y′ = (y′1, . . . , y

′
nf+1)

T =: (y′f) ◦ y′
g denote two

result vectors. Then

y ≺c y′( say y dominates y′) :⇔ (5.2.5)

yg ≤ 0 ∧ y′
g ≤ 0 ∧ yf < y′f ∨
yg ≤ 0 ∧ y′

g > 0 ∨
yg > 0 ∧ y′

g > 0 ∧ δ(yg) < δ(y′
g).
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Figure 5.2.1: The rank ordering of solutions due to the constrained quasi-order ≺c.

It will turn out in the subsequent discussion that the idea to define such a preference
relation among solutions is a very suitable way to handle constraints that will allow
for a coherent design of filtering strategies. The preference relation ≺c is used in the
replacement of the ES in order to establish a quasi-order1 among the solution candidates
x ∈ S. Hence, the ES searches for minimal elements of this quasi-order.

Example: For a finite set the quasi-order of solutions is visualized in figure 5.2.1 for a
space with nf = 1 and ng = 1. The solutions x5 and x6 share the same first rank. The
solution x4 is assigned to the second rank. The solutions x3, x1 and x2 are assigned to
the last three ranks in the given sequence. The sequence of the infeasible solutions x1,x2

and x3 is determined by the distance to the constrained boundary that is measured by
the penalty function.

The introduction of the extended preference relation makes it possible to handle con-
straints within the standard ES. However, further adaptations to the ES have to be
made in order to accelerate convergence in the presence of constraints. For example,
Kramer [Kra03] found that correlated mutations and/or the introduction of a minimal
step-size can be important measures in order to prevent the standard ES from stagnating
in suboptimal regions of the search space.

5.3 Generalization of the IPE-filters

In order to extend the MAES for constrained problems further adaptations have to be
made. In particular, IPE-filters have to be adapted for metamodels with multiple outputs.

Moreover, whenever dealing with a single-objective function and one or more constraints
(nf = 1, ng > 0), the IPE-filters introduced in section 4.2 should be based on the prefer-
ence relation in equation 5.2.5.

1an order where the same rank can be shared by different solutions

110



5.4 Metamodels with multiple outputs

Our goal is to utilize information about the multivariate probability distribution of an
output vector, instead of a one-dimensional distribution for a scalar output in the IPE-
filters. A common simplification is to model outputs of different constraint and objective
functions separately [SWJ98]. Note that after the training of the GRFM the metamodels
can also can also have a different parametrization of their correlation function. This can
be advantageous, since some of the output functions may be more sensitive than others.
The usage of independent metamodels still allows to get arbitrarily precise metamodels,
whenever the local density of samples is sufficiently high.

For more accurately modeling functions with directly correlated outputs, specialized mul-
tivariate GRFM (Co-Kriging models) could be considered [Mye92]. Instead of indepen-
dent gaussian distributions for the single outputs, a full multivariate gaussian distribution
describes the likelihood of different realizations of the output vectors within this approach.
However, the co-kriging approach can be numerically demanding and add instabilities to
the prediction procedure, why it should be treated with caution[SWJ98].

In this thesis, will refer to the full multivariate distributions only in the conceptual design
of the filters, by first stating general expressions for the pre-screening criteria, if possible,
and then instantiating them for the special case of independent gaussian distributions
describing the outputs.

For the independent metamodels, independent gaussian distribution with mean value
ŷ ∈ Rny , ny = ng + 1 and standard deviations ŝ ∈ R

ny

+ are considered as predictors,
adopting a notation by Schonlau et al. [SWJ98] for constrained bayesian optimization.
Here the values ŷ1 and ŝ1 correspond to the predicted objective function f , whereas
the values ŷ2, . . . , ŷng+1 and ŝ2, . . . , ŝng+1 correspond to the predictions of the constraint
functions g1, . . . , gng

, respectively.

5.4.1 Mean value and lower confidence bound filter

Whenever ranking with the ≺c relation, it seems quite natural to use the following gen-
eralizations of the mean value (ŷ) and lower confidence bound (lbω) filter:

For mean value filter calculate ŷi(x), for i = 1, . . . , ng +1 and rank all solutions by means
of these mean value vectors to the ≺c quasi-order. Again, this criterion does not make use
of the uncertainty measure ŝ(x), and thus it can be used with metamodels (e. g. RBFN)
that do not provide such a measure.

Accordingly, for the generalized lbω criterion the algorithm ranks solutions by means of
lower confidence bound vectors

lbω,i = ŷi(x)− ω · ŝi(x), i = 1, . . . , ng + 1. (5.4.6)

Here, the computed lower confidence bound vectors can be understood as a lower confi-
dence bound for the vector valued result. An illustrative example for a problem with one
constraint function is given in figure 5.4.2.

As in the single-objective case the mean value filter and the lbω filter select a subset of
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Figure 5.4.2: Example for establishing a rank order among approximations for a problem
with one objective function and one constraint function. The rank numbers
in the drawing result if the lower confidence bound criterion gets applied.
If we would rank with the mean value criterion, the first and second ranked
solutions would exchange their position.

fixed cardinality with the user-specified output size ν. The best ν solutions with regard
to the applied criterion (ŷ or lbω) and the preference relation ≺c shall pass the filter.

5.4.2 Improvement-based filters

For the improvement-based filters we again need a reference point, which can be chosen as
the worst function value in the parent population Pt, if an improvement of the population
is envisaged. The reference point will be denoted with yref = (fref , g1,ref , . . . , gng,ref)

T .
Assuming that the reference solution yref is feasible, the improvement criteria can be
generalized in a straightforward manner:

Since ŷ(x) is the most likely outcome of the computer experiment for any x ∈ S, the
most likely improvement criterion can be redefined as:

MLI(x) =

{
I(ŷ1(x)) if ŷi(x) ≤ 0, i = 2, . . . , 1 + ng
0 otherwise

. (5.4.7)

Note that this criterion is also valid for general multivariate gaussian distributions with
correlated output variables. As in the single-objective case, the MLI filter shall let only
those solutions pass that have a positive MLI.

Accordingly, the LBI criterion can be redefined for constrained optimization as:

LBIω(x) =

{
I(ŷ1(x)− ω · ŝ1(x)) if ŷi(x) ≤ 0, i = 2, . . . , 1 + ng
0 otherwise

. (5.4.8)

This definition is only meaningful for independent output variables (cf. section 5.4).
In this case we can calculate lower confidence bound vectors, which, under the GRFM

112



assumptions, are valid with the probability

pα =

1+ng∏

i=1

Φ(
ŷi(x)− ω · ŝi(x)− ŷi(x)

ŝi(x)
) = (Φ(−ω))ng+1 (5.4.9)

Note that for a correlated distribution for the estimated output variables there is no
straightforward generalization of the LBI criterion. In that case the ExI and PoI measures
provide clearer concepts of how to integrate the uncertainty information.

Let us now turn to these integral criteria that have already been described for the single-
objective case in section 4.2. The PoI criterion can be written as

PoI(x) =

∫

y∈Hf

PDFx(y)dy (5.4.10)

where PDFx denotes the estimated probability density function for response vectors for
input x and Hf denotes the part of the ng + 1 dimensional solution space dominated by
xref (cf. Fig. 5.2.1) that reads:

Hf := [(−∞, . . . ,−∞
︸ ︷︷ ︸

ng+1 times

), (fref , 0, . . . , 0
︸ ︷︷ ︸

ng times

)]. (5.4.11)

Let ϕ : R→ [0, 1] denote the PDF of the standard gaussian distribution. Then for inde-
pendent response vector distributions (cf. section 5.4) the PoI criterion can be calculated
as

PoI(x) =

∫

y∈Hf

ng+1
∏

i=1

ϕ(
yi − ŷi(x)

ŝi(x)
)dy = Φ(

ŷ1(x)− fref
ŝ1(x)

) ·
ng+1
∏

i=2

Φ(
−ŷi(x)

ŝi(x)
) (5.4.12)

provided that the best solution is feasible.

For the ExI criterion a general formula for the expected improvement reads:

∫

y∈Hf

(fref − y1) · PDFx(y)dy (5.4.13)

and for the case of an independent distributions of the output variables (cf. section
5.4) Jones et al. [JSW98] derived the direct formula for applications in bayesian global
optimization:

ExI(x) = [(fref − ŷ1(x) · Φ(fref ) + ŝ1(x) · ϕ(fref − ŷ1(x))] ·
ng+1
∏

i=2

Φ(
−ŷi(x)

ŝi(x)
). (5.4.14)

Having defined these criteria, the ExI-filters and PoI-filters can be used in the constrained
case as criteria in order to preselect the subset of the ν most promising solutions.

Also filters with variable output size could be considered. Again, for the PoI and ExI-
filters threshold values could be provided that determine the minimal value τ that a
solution needs to have in order to pass the filter.
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5.4.3 Comparison of the PoI- and MLI-filter

For the threshold version of the PoI filter, i. e. the PoIτ -filter, there is no longer an
equivalence between the MLI-filter for a threshold probability τ = 0.5 and between t the
LBIω-filter, and the PoIτ -filter with τ = Φ(−ω). The reason for this is, that, unlike for the
MLI- and LBIω-filters, the PoIτ -filter considers the distance to the constraint boundary
for feasible solutions. The larger this distance gets, the more likely the individual is an
improvement. Only for values located exactly at the constraint boundary and those with
a mean value located in the infeasible region both filters decide the same way whether or
not to reject a solution.

To put things in more concrete terms, the following lemma shall be stated for the per-
meability of the LBIω-filter.

Lemma 6. For nf = 1 and ng > 0 the LBIω-filter is less permeable than the PoIτ -
filter with τ = Φ(−ω)ng+1 and the MLI-filter is less permeable than the PoIτ -filter with
τ = 0.5ng+1.

Proof. We will prove the result for the LBIω criterion. The result for the MLI criterion
will then follow immediately, from the equivalence between the MLI-filter and the LBIω-
filter for ω = 0. Let us assume the reference solution has an objective function value
of fref . Furthermore, as always, we will assume that it is feasible. Let us assume a
candidate solution for which all approximated constraint function values are active, that
is ŷi(x) ≥ 0 for i = 2, . . . , ng + 1. Then PoIΦ(−ω)ng accepts this solution exactly if the
LBIω does. This is the case, if the solution is placed on the boundary edge y0 with

y0 = (fref , 0, . . . , 0
︸ ︷︷ ︸

ng times

). (5.4.15)

If the coordinates of the constrained values of the solution move further below zero, the
PoIτ value further increases and PoIτ (x) might exceed the threshold probability Φ(−ω)ng

for further solutions. On the other hand, the permeability of the LBIω-filter remains
unchanged.

Summing up, it has been shown, that all expressions for the improvement-based filters
can be generalized to the constraint case. Moreover, it turns out that these general-
ized procedures can be easily computed, if we assume independent output variables. In
particular, for the integral criteria PoI and ExI explicit expressions can be derived.

5.4.4 Interval filters

Last but not least, let us give a sketch of the generalization for interval based criteria
that have been introduced in section 4.2.3.

We recall that one-dimensional confidence intervals have been used for filtering solutions.
The Pω-filter aimed at avoiding, with a high probability, the selection of solutions that
are not competitive with the solutions in Pt (mistake B in section 4.2.3), and the Rω-filter
aimed at avoiding, with a high probability, the rejection of solutions that are competitive
with solutions in Pt (mistake A in section 4.2.3).
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Figure 5.4.3: Computation of the confidence factor ω for a desired pα value and a given
number of independent response functions ny (equation 5.4.16).

This idea can also be generalized for optimization with multiple outputs. The basic idea
for the generalization is to work with confidence interval boxes bounding the precise func-
tion value instead of one-dimensional intervals. Within the pre-selection with multiple
outputs, lower and upper confidence bounds of confidence interval boxes will be com-
puted. Here, an interval box is a hyper-rectangle defined by an upper confidence bound
vector u ∈ Rny and a lower confidence bound vector l ∈ Rny with li ≤ ui, i = 1, . . . , ny.
As a confidence interval box for a random variable we denote a hyper-boxes in which
the realization of a random variable is located with a certain confidence probability pα.
Confidence interval boxes are symmetrically placed around the mean prediction value.
In case of independent distributions such confidence interval boxes can be calculated by
B(x) = ŷ(x)±ωŝ(x) (cf. Figure 5.4.2). The value for ω can be related to a user specified
confidence probability pα – the probability for the true result to lie inside an interval box
(= Pr(y ∈ B(x))) – by means of

pα(ω) = Pr(y ∈ B(x)) = (1− 2Φ(−ω))ny . (5.4.16)

Here Φ(y) := 1
2
(1 + erf( y√

2
)) is the cumulative gaussian distribution for the desired confi-

dence level pα. It is impossible to invert the expression for pα analytically. Thus, values
for ω have to be obtained by means of approximations. Practically, the ω value for pα can
be obtained from a graph of this function. Figure 5.4.3 depicts this graph for different
ny. For example for a desired confidence probability of pα = 90% and two outputs, the
user has to set the confidence factor to ω ≈ 2.0.

Once having established the confidence interval boxes a generalization of the filters pro-
posed in section 4.2.3 is straightforward, if we apply the rank ordering established by ≺c
on the lower and upper confidence bound edges.

For the example in figure 5.4.2, an Rω-filter with µ = 1 would select the two solutions
located in the lower part, whereas a Pω-filter with µ = 1 would select no solution, since it
is not clear, which one of the two solutions located in the lower part is the best solution.

From this simple example we can already get the impression that the interval based filter
tends either to extreme small or extreme large sizes of the output size. Also practical
experiments we conducted with ω = 2 on the test problem described in the next section,
approved this, why we omitted a further study of this approach.
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5.5 Study on an artificial test problem

As an example for an artificial test problem Keane´s bump function has been chosen.

min−|
∑n

i=1 cos4(xi)− 2
∏n

i=1(cos2(xi))|
√∑n

i=1 i ∗ x2
i

, (5.5.17)

n∏

i=1

xi > 0.75,

n∑

i=1

xi <
15n

2
(5.5.18)

xi ∈]0, 10.0]

The Keane bump function is some kind of standard benchmark for nonlinear constrained
optimization. It is highly multimodal and its optimum is located at the nonlinear con-
strained boundary. The true minimum of this function is unknown.

In order to evaluate the performance of MAES coupled with different pre-screening criteria
in the constrained optimization problems, test runs on the 10-D Keane problem (equation
5.5.17) have been conducted. Results have been summarized in Fig. 5.6.4 (median)
and 5.6.5 (reliability measured by 80% quantile). Two important observations could
be made. First of all, any metamodel-assisted strategy performs significantly better
than the corresponding EA without metamodel-assistance. Second, strategies using the
confidence information perform much better than the ones utilizing only the predicted
function value. However, the differences between the three pre-screening criteria that use
confidence information (lower confidence bound, PoI and ExI) are less significant for this
problem.

A possible explanation of the good performance of the strategies that take into account
the uncertainty information is, that they more likely place points near the constraint
boundary. Besides, also the advantage of these strategies on multimodal problems, that
has already been pointed out in chapter 4 is a possible explanation for the superior
performance of these strategies.

Further examples for the successful application of the MAES will be given in the chapter
about applications (chapter 8).

5.6 Conclusions

In this chapter, extensions of the MAES for the optimization with time consuming con-
straint function evaluations have been derived. The basic principle of the generalization
was to train separate metamodels for all constraint functions, instead of training the
metamodel from the values of a penalized objective function. A vector valued compar-
ison has been employed in order to compare solutions. For the lower confidence bound
criterion, mean value criterion and their corresponding improvement based criteria LBI
and MLI straightforward extensions can be defined, assuming a rank ordering that works
with an penalty function criterion that always ranks feasible solution higher than infea-
sible solutions. For the integral criteria PoI and ExI expressions have been taken from
literature, and for the first time employed within the context of evolutionary optimiza-
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tion. Last but not least, also the interval based pre-selection criteria have been extended
in a straightforward manner.

The test runs show, that the metamodel-assisted strategies with lbω filter seems to per-
form best in the long run, while in the first iterations it seems to better to work with the
mean value criterion. In the test runs we conducted the MAES with the PoI criterion
performed slightly better than the strategies with other filters that take into account the
confidence measure. However, there seems to be no significant difference between the
criteria ExI, PoI and the lower confidence bound criterion. Since the ExI and PoI criteria
do not ask for a user specified parameter ω, these pre-selection methods have a slight
advantage.
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Figure 5.6.4: Median for best found feasible function values for different strategies on the
multimodal and constrained 10-D Keane bump problem (20 runs, (15+100)-
MAES)).
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6 Multi-objective optimization

People talk about the middle of the road as though it were unacceptable. Actually, all
human problems, excepting morals, come into the gray areas. Things are not all black
and white. There have to be compromises. The middle of the road is all of the usable
surface.

D. Eisenhower

As in life, also in design optimization, we often have to deal with conflicting objectives.
Optimization tools may not enable the decision maker(s) to dissolve conflicts, and thus
save us from the struggle for a good compromise solution. However, so-called Pareto
optimization tools can help to avoid lose-lose decisions, and to gain insights into the
structure of the trade-off curve or surface comprising the interesting alternatives. Thus
Pareto optimization can be a valuable tool for the decision maker.

Evolutionary multi-objective optimization algorithms (EMOA) will be considered as solu-
tion methods for this problem domain. We will focus on two versions of EMOA in order
to discuss the integration of metamodeling techniques. These are the NSGA-II algorithm
and the S metric selection EMOA (SMS-EMOA). With the latter, a new approach will
be suggested that is well-suited for design optimization and for the generalization of
metamodeling techniques.

After a brief introduction to the problem of Pareto optimization (section 6.1), we in-
troduce two selected EMOA. The first one (section 6.2) is the well-established NSGA-II
algorithm and the second one (section 6.3) is a recently proposed algorithm, the SMS-
EMOA. The SMS-EMOA has been chosen, because it allows for an elegant integration of
metamodel-assistance. Moreover, it yielded in superior results on standard benchmarks.
Since the SMS-EMOA is a new algorithm, it is discussed in more detail and we compare
it to established EMOA. Later, in chapter 7, metamodel-assisted versions of these two
algorithms will be proposed.

6.1 Introduction into Pareto optimization

Pareto optimization [CVL02, Deb01, Zit99] has become an established technique for de-
tecting interesting solution candidates for multi-objective optimization problems. It en-
ables the decision maker to extract efficient solutions from the set of all possible solutions
and to discover trade-offs between opposing objectives among these solutions.

In Pareto optimization vectors of objective function values are compared by a preference
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relation that defines a partial order on the solution space. Given a problem with multiple
objectives (to be minimized1) and no constraints (nf > 1, ng = 0), the preference relation
can be defined for arbitrary solution vectors y ∈ Rnf and y′ ∈ Rnf :

y ≺p y′(say: y (pareto)-dominates y′) :⇔ (6.1.1)

∀i ∈ {1, . . . nf} : yi ≤ y′i ∧
∃i ∈ {1, . . . nf} : yi < y′i.

According to expression 5.2.5, we can easily extend this definition to the constrained case
(ng > 0). Let y ∈ Rnf+ng and y′ ∈ Rnf +ng denote two arbitrary solution vectors. Their
first nf positions denote objective function values and the last ng positions the values of
the constraint functions. Moreover, let yf := (y1, . . . , ynf

)T , yg := (ynf+1, . . . , ynf+ng
)T ,

y′
f := (y′1, . . . , y

′
nf

)T and y′
g := (y′nf+1, . . . , y

′
nf+ng

)T . Then

y ≺ y :⇔ (6.1.2)

yg ≤ 0 ∧ y′
g ≤ 0 ∧ yf ≺p y′

f ∨
yg ≤ 0 ∧ y′

g > 0 ∨
yg > 0 ∧ y′

g > 0 ∧ δ(yg) < δ(y′
g).

Here, δ : Rng → R
+
0 denotes a metric penalty function (cf. expression 5.2).

For notational convenience, we also define a preference relation on the search space S.
Let x and x′ denote two solutions in S. Then

x ≺ x′ :⇔ y(x) ≺ y(x′) (6.1.3)

Given a set R of search points, the non-dominated subset nd(R) of R is defined as2:

nd(R) = {x ∈ R| 6 ∃x′ ∈ R : x′ ≺ x} (6.1.4)

The aim in Pareto optimization is to detect the pareto-optimal set, defined as nd(S),
for a search space S, or at least a good approximation to this set. In contrast to the
pareto-optimal set, we define the Pareto front as the set of all solutions that correspond
to points in the pareto-optimal set.

According to Deb [Deb01], a good approximation to the Pareto front is an approximation
that covers a large portion of the Pareto front. In practice, the decision maker often wishes
to evaluate only a limited number of pareto-optimal solutions. Typically these solutions
include extremal solutions as well as solutions that are located in parts of the solution
space, where good compromise solutions can be found.

1By simply inverting the sign of objective functions, maximization problems can be transformed into
minimization problems.

2Note, that this order is not a partial order, because the antisymmetry axiom does not hold.
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Figure 6.1.1: Dominance relations in multi-objective minimization: The solution vectors
for some solution set R = {x1, . . . ,x5} are depicted in a two-objective solu-
tion space spanned by f1 and f2, that denote the objective functions to be
minimized. The set {x1,x4,x5} is the non-dominated subset nd(R) of R.

In the context of Pareto optimization, the following definitions are also useful: A solution
is said to be non-dominated by a set of solution, iff no solution in this set dominates the
solution:

x � P :⇔6 ∃x′ ∈ P : x′ ≺ x. (6.1.5)

Two solutions x and x′ are said to be incomparable, iff neither x ≺ x′ nor x′ ≺ x.
Furthermore, we will define the solution set Y as the co-domain of y, i. e.

Y = {y(x)|x ∈ S}. (6.1.6)

Example: As an example, Figure 6.1.1 depicts the ranking of a small set R = {x1, . . . ,x5}
of solutions by means of the Pareto preference relation. Solutions x1, x4, and x5 are non-
dominated. Solution x2 is dominated by x1, x4, and x5, while x3 is only dominated by
x4 and x5. The non-dominated solutions x1, x4, and x5 are mutually incomparable, as
well as solutions x2 and x3.

The characteristics of the Pareto preference relation and the possible geometrical struc-
ture of the Pareto front for different numbers of objectives have been the subjects of
theory for long. For a comprehensive introduction, the interested reader is referred to
[Mie99]. A more practical introduction, focussing on aspects that are important in the
context of EMOA, can be found in [Deb01] and in [CVL02].

6.2 Evolutionary multi-objective optimization

Several algorithms have been suggested for the approximation of Pareto fronts. Among
them, evolutionary multi-objective optimization algorithms (EMOA) became increas-
ingly popular, because they are considered to be robust and their design is flexible,
meaning that they can be applied for different representations and adapted to different
(parallel) computing environments. The elaboration of EMOA is a subject of ongoing
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research. However, some state-of-the-art algorithmic variants have established in recent
years. Among them are the strength Pareto evolutionary algorithm (SPEA) [ZLT01],
Pareto evolution strategy algorithm (PESA) [KCF03], and the non-dominated sorting
genetic algorithm (NSGA) [DAPM00a, DAPM00b, DPAM02]. The more recent variant
of the latter approach, termed NSGA-II [DPAM02], has been frequently used for design
optimization and features the (µ + λ)-selection that is also used in evolutionary strate-
gies. Thus, the NSGA-II algorithm was chosen as the starting point of our discussion on
metamodel-assisted EMOA.

Like other EMOA, the NSGA-II aims at detecting a well-distributed set of solutions
close to the Pareto front. This is achieved by using a special selection procedure within a
(µ + λ)-EA. In order to achieve a good convergence to the Pareto front, non-dominated
solutions are always ranked higher than dominated solutions. Moreover, by means of the
so-called non-dominated sorting procedure, a rank is assigned to each of the solutions
in a population, expressing the degree of non-dominance of these solutions. The non-
dominated sorting procedure works as follows: First the set of non-dominated solutions
R1 among the solutions in a population is determined. All members of this subset are
assigned to the first rank. From the remaining set R \ R1, the set of non-dominated
solutions R2 is detected and its members are assigned to the second rank. This procedure
is repeated, until the whole population is subdivided into partitions R1, . . . , R`, each of
which members are assigned to ranks 1, . . . , `.

Obviously, there can be more than one element in one of the partitions. In order to
establish a total ranking among the elements of a particular partition, crowding distance
sorting is used. This sorting procedure assigns higher ranks to elements that contribute
more to the diversity of the given set. In order o determine the crowding distance of an
individual, first the distance to the nearest neighboring solutions is determined in each
positive and negative coordinate direction. Here, the coordinates are always sought as
the coordinates of the solution vectors. In order to calculate a scalar value, all these
distances are summed up and the resulting value is the crowding distance. Extremal
solutions, that have no neighboring solutions in at least one of the coordinate directions,
are always preferred to non-extremal solutions.

Example: In figure 6.2.2 and figure 6.2.3 the sorting procedure of NSGA-II is illustrated
for a two-objective minimization problem. Figure 6.2.2 displays the three partitions
detected by the non-dominated sorting procedure, while figure 6.2.3 displays the ranking
of the first partition due to crowding distance sorting.

Once unique ranks for the elements in a population have been determined, the (µ + λ)
selection can be employed in the usual way (cf. subsection 3.5.1). The resulting NSGA-II
algorithm will be termed (µ+λ)-NSGA-II. Typically, as proposed in [Deb01], the (µ+µ)
selection is used in the NSGA-II.

6.3 The S-metric selection

Though the NSGA-II selection method provides a unique ranking for a set of solution,
it does not provide an intuitive, scalar measure of improvement. Such a measure would
be desirable, for example, if we want to achieve a straightforward generalization of some
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Figure 6.2.2: Illustration of the non-dominated sorting procedure for a population of
13 individuals in a two dimensional solution space. The population gets
subdivided into three partitions. The numbers attached to the solutions
indicate the rank that was assigned to them by the non-dominated sorting.
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Figure 6.2.3: Illustration of the crowding distance sorting of members of the non-
dominated subset of the population depicted in figure 6.2.2. The circum-
ference of the boxes touching neighboring solutions are used as ranking
criterion. Extremal solutions are always ranked better than non-extremal
solutions. The numbers assigned to the solutions indicate their rank.
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Figure 6.3.4: Illustration of the hypervolume measure for a two dimensional solution
space. The gray area indicates the subspace H(P ) dominated by the solu-
tion set A = {x1, . . . , x4} and H(P ) the non-dominated subspace. Given
a reference point ymax in the solution space, the Lebesgue measure Λ of
⋃

y∈A{y′|y ≺ y′ ≺ ymax} is termed the hypervolume measure of A, in brief
S(A). In the figure, the part of the dominated subspace that is filled dark
gray indicates the subset of H, the area of which determines S(A).

of the pre-screening criteria introduced in 4.2. Hence, a method was sought that is
based on a measure of improvement. The method that was found, namely the S metric
selection EMOA (SMS-EMOA), turned out to be very powerful, even without making
use of metamodel-assistance. The remainder of this chapter provides a detailed analysis
of this new algorithm, which forms the basis of the metamodel-assisted EMO that will
be introduced in chapter 8.

The S metric selection EMOA (SMS-EMOA) has been recently proposed by Emmerich,
Beume and Naujoks [EBN05]. It uses the hypervolume measure – a scalar criterion for
the quality of an Pareto front approximation – as a criterion for comparing solutions of
the same dominance rank. The SMS-EMOA is especially designed for approximating a
small, well-distributed set of pareto-optimal solutions. It also allows for the straightfor-
ward integration of metamodeling techniques, in particular of those techniques based on
integral expressions like the probability of improvement and the expected improvement.
In this section, we first outline the new algorithm and compare it conceptually to the
NSGA-II. Later, the SMS-EMOA shall be compared on a set of benchmark problems to
other EMOA, including NSGA-II.
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6.3.1 The hypervolume measure

The hypervolume measure (or S metric) was originally proposed by Zitzler and Thiele
[ZT98], who called it the size of dominated space [Zit99]. Later, Fleischer [Fle03] defined
it as the Lebesgue measure Λ of the union of hyper-rectangles defined by a set of non-
dominated solution vectors A and a reference solution vector ymax that is dominated by
all solution vectors in A:

S(A) := Λ(
⋃

y∈A
{y′|y ≺ y′ ≺ ymax}).

An illustration of the hypervolume metric for a solution set of a problem with two
objectives is given in figure 6.3.4.

Given a solution set R = {x1, . . . ,xm} with xi ∈ S, i = 1, . . . , m, for notational conve-
nience, we will sometimes write S({x1, . . . ,xm}) instead of S({y(x1), . . . ,y(xm)}), pro-
vided that it is clear to which objective function we refer.

The ranking of different sets of solutions by means of the S metric is influenced by
the reference point. Generally, the ranking of different sets by means of the S metric
is sensitive to its choice. Knowles and Corne [KC02, KC03] gave an example with two
Pareto fronts, A and B, in the two dimensional case. They showed either S(A) < S(B) or
S(B) < S(A) depending on the choice of the reference point. Nevertheless, the S metric
was used in several comparative studies of EMOA, e.g. [DMM03b, DMM03a, Zit99].
Note that the contribution of the extremal points to the hypervolume measure depends
on the choice of the reference point.

However, until recently, the hypervolume has never been used as a selection criterion.
Fleischer [Fle03] attributes this to the fact that the time consumption of existing algo-
rithms for computing the hypervolume measure scales exponentially. The operational
time complexity of the recursive procedure described by Knowles and Corne [KC03] was
O(knf+1) with k being the number of solutions in the non-dominated subset of the pop-
ulation and nf being the number of objectives (dimensionality of the solution space).
Though it seems that for high dimensions the computation of the hypervolume seems
to be expensive, for moderate dimensions and small populations its computation can be
affordable, especially in the context of time consuming evaluations.

Fleischer [Fle03] proved that the detection of a set that maximizes S is equivalent to the
detection of the pareto-optimal set for any finite search space. On the basis of these new
results, Fleischer suggested to recast the multi-objective optimization problem as a single-
objective optimization problem and to employ single-objective optimization algorithms
for finding a set of solutions that maximizes the S metric.

Knowles and Corne also recognized the advantages of using the hypervolume measure as
integral part of multi-objective optimization algorithms. In [KC03] suggested an adaptive
archiving strategy, they termed AAS , based on the hypervolume measure. It processes
a sequence of solutions by trying to integrate them one by one into an archive with
bounded size, thereby possibly discarding solutions from the archive or the currently
processed solution. The adaptive archiver can be employed to process the sequence of
solutions generated by an EMOA. The update of the archive is described in algorithm 8
and 9: Given an archive At and a new solution x, the new archive At+1 is given by the
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Algorithm 8 AA∆S .

1: P0 ← � {Initialize archive}
2: t← 0
3: repeat

4: xt+1 ← get() {Get next individual from stream of solutions}
5: Pt+1 ← reduce∆S(Pt ∪ {xt+1}) {Select a maximum of µ individuals for the new

archive}
6: t← t+ 1
7: until stop criterium reached

Algorithm 9 reduce∆S(Q).

1: Q′ ← nd(Q ∪ {x}) {reduce to non-dominated subset}
2: if |Q′| = µ+ 1 then

3: for all x ∈ Q′ do

4: ∆S(x, R`)← S(R`)− S(R` \ {x})
5: end for

6: x← arg minx∈Q′[∆S(x, Q′)] {detect element of Q′ with lowest ∆S(x, R`)}
7: Q′′ ← Q′ \ {x} {eliminate detected element}
8: else

9: Q′′ ← Q′

10: end if

11: return Q′′

non-dominated subset of At ∪ {x}, or, if the size of this set exceeds the maximum bound
µ, the subset of size µ of At ∪ {x} that covers the maximal hypervolume. This subset
is computed in the reduce∆S procedure by eliminating the element the hypervolume
of which contributes least to the hypervolume. A polynomial time implementation of
this update procedure for the general multi-objective problem was proposed by Knowles,
Corne and Fleischer [KCF03]. Later, in subsection 6.3.5, a simplified version of this
procedure for the two-objective case is devised.

6.3.2 S metric selection

Emmerich, Beume, and Naujoks [EBN05] proposed a new selection operator for EMOA by
combining the archiving procedure by Knowles and Corne [KC03] with the non-dominated
sorting procedure by Deb [Deb01]. The resulting steady-state EMOA was termed SMS-
EMOA. Instead of maintaining an archive that is separate from the EA the SMS-EMOA
directly employs the hypervolume measure to decide whether individuals are selected in
the replacement or not.

Algorithm 10 describes the generational loop of the SMS-EMOA. There is not much of a
difference to a standard (µ+1)-EA, except that the replace∆S procedure was introduced
as a replacement operator. This procedure is described in Algorithm 11. First, the
partitions of the population Pt ∪ {xt+1} with respect to the non-domination level are
computed using the fast non-dominated sorting algorithm by Deb et al. [DAPM00b].
Afterwards, one individual is discarded from the worst ranked front. Whenever this front
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Algorithm 10 SMS-EMOA.

1: P0 ← initialize() {Initialize random start population of µ individuals}
2: t← 0
3: repeat

4: xt+1 ← generate(Pt) {Generate one offspring by variation operators}
5: Pt+1 ← replace∆S(Pt ∪ {xt+1}) {Select µ individuals for the new population}
6: t← t+ 1
7: until stop criterium reached

Algorithm 11 replace∆S(Q).

1: {R1, .., R`} ← non-dominated-sort(Q) {all ` partitions of Q in increasing order}
2: for all x ∈ R` do

3: ∆S(x, R`)← S(R`)− S(R` \ {x})
4: end for

5: x← arg minx∈R`
[∆S(x, R`)] {detect element of R` with lowest ∆S(x, R`)}

6: Q′ ← Q \ {x}
7: return Q′

comprises m` > 1 individuals, the individual x ∈ R` that minimizes

∆S(x, R`) := S(R`)− S(R` \ {x}) (6.3.7)

is eliminated. Thereby, it is guaranteed that the subset of size m` − 1 of R` remains in
the population that covers the maximal hypervolume compared to all m` possible subsets
(for a proof we refer to Knowles et al. [KC03]). With regard to the replacement operator
this also implies that the covered hypervolume of the population Pt cannot decrease by
application of replace∆S , i. e. for algorithm 10 we can state the invariant:

S(Pt) ≤ S(replace∆S(Pt ∪ {qt+1})). (6.3.8)

6.3.3 Theoretical characteristics of the S metric selection

The algorithm presented is very similar to the adaptive archiver AAS presented by
Knowles et al. [KC03]. However, there is an important difference between instantiations
of AAS and the SMS-EMOA: Since AAS is a class of archivers, non-dominated solutions
are always discarded. This is not the case for the SMS-EMOA. In the latter algorithm
the population provides the basis for variations obtained with the variation operators. In
order to provide a good diversity of solutions for the variation procedures, and thus avoid
stagnation, too small population sizes should be avoided. This is achieved by keeping the
population size constant, even for the price of accepting dominated solutions.

Nevertheless, some theoretical characteristics of AAS are inherited by the SMS-EMOA.
The first one is the fact that the SMS-EMOA produces a series of populations with
S(Pt+1) ≤ S(Pt). It has been proven, that this characteristic is sufficient to prove that
the SMS-EMOA converges in probability to non-dominated solutions in nd(S), provided
that the search operators generate each solution in S with a finite probability.
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Another characteristic that is preserved from the AAS algorithm is, that the SMS-EMOA
converges in probability to a local optimum for the optimization problem. A local op-
timum means that no replacement of a solution in Pt by any other solution in S would
yield in an improvement with regard to S(Pt+1). By means of empirical investigations,
Knowles et al. [KC03] came to the conclusion that the points of local optima of the S-
Metric are “well distributed”. They used the term “well distributed” in an intuitive way,
meaning that a set of solutions covers interesting regions of the Pareto front. Further
support for their appreciation is provided in subsection 6.3.4.

A common objection to the hypervolume measure is that it critically depends on the
choice of the reference point and the scaling of the search space. The particular hyper-
volume measure for a set of points actually depends on the distance to the reference
point and its position relative to the entire solution space. It might also turn out that
the reference point gets infeasible. This would be the case, if a point is found during the
course of optimization that does not dominate the reference point. To circumvent these
problems, in the SMS-EMOA an infinite reference point

ymax = (∞, . . . ,∞)
︸ ︷︷ ︸

nf times

(6.3.9)

is chosen by default. Of course, this decision entails that there is no more comparable
value for S(M) anymore for any set of solutions M , because this value turns out to be
infinite. However, the increase in hypervolume S(M ∪{x})−S(M) can well take a finite
value, if x is non-extremal. Here, an extremal solution is sought as an solution for that at
least one of its objective function values takes its minimum w.r.t. an entire solution set.
Since there is no meaningful value for ∆S for extremal solutions, it has been suggested
in [EBN05] that extremal solutions are always ranked best, like it is done in crowding
distance sorting.

Furthermore, the SMS-EMOA method is independent from the scaling of the objective
space, in the sense that the order of solutions is not changed by multiplying the objective
functions with a constant scalar vector. This is obvious since our metric value itself is a
sum of products.

6.3.4 Comparison of the difference in hypervolume to the crowding

distance

At first sight, the conceptual design of the SMS-EMOA looks very similar to that of
the NSGA-II. However, there are some important differences. First of all, the NSGA-II
typically works with the (µ+ µ) selection, whereas the SMS-EMOA employs the (µ+ 1)
selection. Another difference that deserves attention is the measure employed to compare
solutions of the same rank of non-dominance, namely the crowding distance and the
increase in hypervolume.

Let us now compare the crowding distance measure, that functions as ranking criterion for
solutions of equal Pareto rank in NSGA-II, to the hypervolume based measure ∆S that
gets employed for ranking solutions in the SMS-EMOA. Recall, the crowding distance
was chosen for the purpose to distribute solution points uniformly on the Pareto front.
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In contrast to this, selection by means of the ∆S criterion distributes them in a way that
maximizes the covered hypervolume. A solution set distributed in the latter way will
provide a better result for the practitioner, since it concentrates the solution in regions
of the Pareto front where good compromise solutions are found without losing extremal
points.

In order to further clarify this appreciation, let us discuss the example illustrated in figure
6.2.3. Here, a set P of non-dominated solutions is depicted in a two dimensional solution
space. The left hand side figure shows the lines, the lengths of which contribute to the
sum for the crowding distance and thus determine the ranking of the solutions in the
NSGA-II. The right hand side figure depicts the same solutions, and their corresponding
value of ∆S , which is given by the area of the attached rectangles. Note that for the
crowding distance the value of a solution xi depends on its neighbors and not directly
on the position of the point itself, in contrast to ∆S(x, P ). In both cases the extremal
solutions are ranked best, provided we choose a sufficiently large reference point for the S
metric. Concerning the inner points of the front, x5 outperforms x4 in figure 6.3.5, if the
crowding distance is used as a ranking criterion. On the other hand, x4 outperforms x5, if
∆S gets employed. This indicates that good compromise solutions, that are located near
knee-points of convex parts of the Pareto fronts are given better ranks in the SMS-EMOA
than in the NSGA-II algorithm. Practically, solution x5 is less interesting than solution
x4, since in the vicinity of x5 little gains in objective f2 can only be achieved at the price
of large concessions with regard to objective f1. Thus, the new approach might lead to
more interesting solutions. This is of particular importance, if the decision maker is only
interested in a small, limited number of solutions in the pareto-optimal set.

6.3.5 Implementation

Before the SMS-EMOA is studied by means of computer experiments, let us spend a few
more words on its implementation. Fleischer’s algorithm could be used for the determina-
tion of the hypervolume metric in any dimension. However, in two and three dimensions
more efficient procedures can be found, that will be outlined next.

Two objective functions

For the case of two objective functions, a straightforward procedure for ∆S(x, R`) (cf.
algorithm 11) can be implemented to determine the solution which contributes least to
the current hypervolume of the entire set of points. We take the points of the worst-
ranked partition (due to non-dominated sorting) and sort them ascending concerning
their value of the first objective function f1 and get a sequence that is additionally
sorted in descending order concerning the f2 values, because the points are mutually
non-dominated. In the two objective case, the dominated area of each solution is shaped
like a rectangle. The difference concerning f1 between a point xi and its successor xi+1

in the sorted sequence represents the width of this rectangle while the distance of point
xi to its predecessor xi−1 in the f2 values equals its height (see figure 6.2.3, right). The
product of these two differences equals ∆S , the hypervolume only dominated by solution
xi. This is actually the rectangle spanned by the point xi and the corner of the Pareto
front generated from point xi−1 and xi+1 without point xi.
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Figure 6.3.5: Ranking due to crowding distance.
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Figure 6.3.6: Ranking due to hypervolume measure of solutions on the Pareto front. The
circumference of the boxes touching neighboring solutions are the ranking
criterion. The numbers assigned to the solutions indicate their rank.
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Algorithm 12 Hypervolume(R`) for nf = 2.

1: l ← |R`| {number of solutions on the worst ranked partition due to non-dominated
sorting.}

2: R` ← sort(R`, f1) {sort elements of R concerning their f1 value}
3: ∆S(R`[1])←∞; ∆S(R`[l])←∞ {boundary points are always kept}
4: for all i ∈ {2, ..., l− 1} do

5: {for all inner points of the front}
6: ∆S(R`[i])← (R`[i+ 1].f1 − R`[i].f1) · (R`[i− 1].f2 − R`[i].f2)
7: {rectangle of the hypervolume only dominated by R`[i]}
8: end for

The runtime complexity of the hypervolume procedure in the case of two objective func-
tions is governed by the sorting algorithm and so is O(µ·logµ) if all points lie on the same
non-dominated front. As in the case with two objective functions, the hypervolume of
a new point can only influence that of the two neighboring solutions in the population
and since only these points have to be updated. One can decrease the runtime by using
a suitable data structure.

Three objective functions

The computation of ∆S(R`[i]) gets significantly more complex for three objective func-
tions, since the removal of a node can have a non-local influence on the dominated hy-
pervolume. A simple way to deal with this problem is to use existing algorithms for the
computation of the dominated hypervolume. For three dimensions the best known algo-
rithm [Fle03] has a running time of O(k3). Thus, the repeated computation of ∆S(R`[i])
for each point i ∈ {1, . . . , k} would have a running time O(k4). Next, with algorithm 13,
we propose a new algorithm that computes ∆S(R`[i]) with a runtime complexity O(k3).

A first intuition was to look on the dominated set from a bird’s eye perspective (−f3

is considered to be the height) and to investigate separately k2 cells, the coordinates of
which are given by first and the second objective function values of the solutions in R`

and the reference point (cf. figure 6.3.8 and 6.3.7). To each of these cells we can attach
a height (cf. figure 6.3.7). The height could be the minimal value of the third objective
function among all solutions in R` that dominate the points of a cell in the first two
objective function values. In this case, the described volume equals the hypervolume
dominated by R`.

Algorithm 13 first partitions the search space into the aforementioned cells Bi,j :=

[
(
ai

bj

)

,
(
ai+1

bj+1

)

[, i ∈ {1, . . . , k}, j ∈ {1, . . . , k}, whereas the coordinates ai and bj corre-

spond to the sorted function values of the first and second objective function, respectively.

In the second part of the algorithm, for each cell Bi,j the lowest function value for f3

is computed among all solutions that weakly dominate Bi,j with regard to the first two
objective function values. This value is stored in the variable h1(i, j). In addition, we
compute h2(i, j), the value of which is the second lowest function value of f3 for all
solutions in R` that dominate the rectangle Bi,j in the first two objective function values.

In the third part of algorithm 13 the values of h1 and h2 are used in order to compute
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Algorithm 13 Hypervolume(R`) for nf = 3

1: k ← |R`|
2: {Part 1: Initialize cell coordinates (cf. figure 6.3.8)}
3: (a1, . . . , ak)← sort (R`[1].f1, . . . , R`[k].f1) in ascending order
4: (b1, . . . , bk)← sort (R`[1].f2, . . . , R`[k].f2) in ascending order
5: bk+1 = ymax

1 , bk+1 = ymax
2

6: {Part 2: Compute h1(i, j) and h2(i, j), i, j ∈ {1, . . . , k}2}
7: for all (i, j) ∈ {1, . . . , k} do

8: h1(i, j)← ymax
3 ; h2(i, j)← ymax

3

9: end for

10: for all t ∈ {1, . . . , k} do

11: for all (i, j) ∈ {1, . . . , k}2 do

12: if R`[t].f1 ≤ ai ∧R`[t].f2 ≤ bj then

13: {Update lowest and second lowest height for the cell}
14: if R`[t].f

(t)
3 ≤ h1(i, j) then

15: h2(i, j)← h1(i, j) {Second lowest height}
16: h1(i, j)← R`[t].f3 {Lowest height}
17: else

18: if R`[t].f3 < h2(i, j) then

19: h2(i, j)← R`[t].f3 {Lowest height}
20: end if

21: end if

22: end if

23: end for

24: end for

25: {Part 3: Sum up partial volume loss due to the removal of R`[t], t = 1, . . . , k.}
26: for all t ∈ {1, . . . , k} do

27: ∆St ← 0
28: for all (i, j) ∈ {1, . . . , k}2 do

29: if R`[t].f1 ≤ ai ∧R`[t].f2 ≤ bj ∧ R`[t].f3 = h1(i, j) then

30: {The height of the cell is determined by solution t}
31: ∆St ← ∆St + (ai+1 − ai) · (bi+1 − bi) · (h2(i, j)− h1(i, j))
32: end if

33: end for

34: end for

35: {Return index of solution that least contributes to the dominated hypervolume}
36: return arg min(∆S1, . . . ,∆Sk)
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Figure 6.3.7: Visualization of the 3D-volume dominated by some points y(1), . . . , y(4).
The values a1, . . . , a5, b1, . . . , b5 denote grid coordinates as used in the
block partitioning of algorithm 13.
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Figure 6.3.8: Partitioning of hypervolume in algorithm 13. The value of the height h1 of
each partially dominated cell after the execution of the algorithm is placed
in its middle. For the given example, assume R`[1].f3 < R`[3].f3 < R`[2].f3.
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the loss in hypervolume, whenever the t-th solution y(t) := R`[t] would be removed from
R`, in other words the part of the dominated hypervolume that is exclusively dominated
by the t-th solution. Note, that the volume of a box in our partitioning reduces only if
the value of h1(i, j) equals the value of the third objective function of the solution that
is removed. In that case the second best value has to be chosen for the height of the
box in order to determine the box-shaped dominated volume with projection Bi,j that
remains, whenever only y(t) is removed. Hence, the volume reduces by the volume of the
intersection of that new box and the old box, the value of which can now be computed
by (ai+1 − ai) · (bj+1 − bj) · (h2(i, j)− h1(i, j)).

The running time of the algorithm is O(k3). This running time is governed by updating
the values of h1 and of h2 for all points in the set. Since an update has to be made for
each of the k points in R`, the procedure needs a total running time of O(k3). Since we
have stored the second best function values of f3 for Bi,j, we can update h1 within one
scan over the Bi,j boxes, taking a running time of O(k2) for each point, for which the
exclusively dominated hypervolume has to be determined. Hence, the total running time
remains O(k3). This is considerably lower than the running time O(k4) for the repeated
call of Fleischer’s algorithm [Fle03] for subsets of R`.

More than three objectives

For more than three objectives, the algorithm proposed by Knowles, Corne and Fleischer
[KCF03] should be used, that is a modified version of Fleischer’s algorithm [Fle03] for
the efficient calculation of the hypervolume. However, the running time of this algorithm
grows exponentially with the number of objectives, why the choice of the hypervolume
measure as selection criterion should be handled with care for more than three objectives.

6.3.6 Distribution of solutions

In order to get an impression on how the SMS-EMOA distributes solutions on Pareto
fronts of different curvature, we conducted a study on simple but high dimensional test
functions. The aim was to observe the algorithms behavior on convex, concave and linear
Pareto fronts. For the study we propose the following family of simple generic functions:

f1(x) = (
n∑

i=1

|xi|)γ · n−γ , f2(x) := (
n∑

i=1

|xi − 1|)γ · n−γ,x ∈ [0, 1]d (6.3.10)

The extremal solutions of these two-dimensional functions (which we will abbreviate
EBN) are given by x∗

1 = (0, . . . , 0)T , f1(x
∗
1) = 1, f2(x

∗
1) = 0 and x∗

2 = (1, . . . , 1)T ,
f1(x

∗
2) = 0, f2(x

∗
2) = 1. It is proven in appendix A.7 that the Pareto fronts can be

described by the following function:

y2(y1, γ) = (1− y1/γ
1 )γ, γ > 0, y1 ∈ [0, 1] (6.3.11)

Thus, the choice of the parameter γ determines the characteristics of the curvature for
the Pareto fronts of these functions.

Curvature of Pareto front strongly convex convex linear concave
EBN parameter γ γ = 4 γ = 2 γ = 1 γ = 0.5
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Figure 6.3.9: This figure visualizes the different solution sets for the SMS-EMOA with
a population size of 30 on Pareto fronts of different curvature. In order
to achieve different shapes of the Pareto front the 20-D EBN family of
functions was employed with different values for γ (cf. expression 6.3.10).
For each setting of γ, 20000 evaluations of the two objective functions were
conducted, in order to obtain the displayed population.

An interesting feature of the EBN class of functions is, that the Pareto optimal set is
given by the hypercube Cd = [0, 1]d (appendix A.7). Thus, if Cd is chosen as the search
space, the only relevant selection criterion is the distribution of points on the Pareto
front.

The results presented in figure 6.3.9 demonstrate that the solutions are not always dis-
tributed in a uniformly spaced way on the Pareto front. Rather, the SMS-EMOA con-
centrates solutions in regions where the Pareto front has knee-points. Furthermore, the
results demonstrate that the SMS-EMOA produces a good approximation for concave
Pareto fronts (γ = 0.5), where it also avoids a high sampling frequency for extremal solu-
tions. Finally, it has been found that the SMS-EMOA distributes points almost uniformly
on linear Pareto fronts (γ = 1).

6.3.7 Results on standard benchmarks

The SMS-EMOA has been tested on several test problems from literature, aiming at com-
parability to recent papers of Deb et al. presenting their ε-MOEA approach [DMM03b,
DMM03a]. For example, exactly the same variation operators (polynomial mutation,
simulated binary crossover, uniform initialization) and their parametrization have been
used to test the approach. The test problems named ZDT1, ZDT2, ZDT3, ZDT4 and
ZDT6 from [DMM03a, ZDT00] have been considered. The parameters and reference
points were chosen according to the ones given in [DMM03b, DMM03a]. The popula-
tion size was set to µ=100, and 20000 evaluations of the two objective functions were
conducted for each run. For reasons of comparability we copied the results for the hyper-
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volume measure and the convergence achieved in [DMM03a] to table 6.3.1. All algorithms
listed in [DMM03a], namely NSGA-II, C-NSGA-II, SPEA, and ε-MOEA, have been com-
pared to the SMS-EMOA.

The hypervolume or S metric of the set of non-dominated points is calculated as described
above, using the same reference point as in [DMM03b, DMM03a]. As proposed by Deb
et al. [DMM03b], the convergence measure is the average closest Euclidean distance to a
point of the true pareto-optimal front. Note that the convergence measure is calculated
concerning a set of 1000 equally distributed solution of the true Pareto front. Therefore,
even pareto-optimal points do not have a convergence value of zero, except those being
equal to one of the 1000 points in the sample.

The SMS-EMOA is ranked best concerning the S metric in all functions but ZDT6.
Concerning the convergence measure, it has two first, two second and one third rank.
According to the sum of ranks of the two measures on each function, one can state that
the SMS-EMOA provides best results on all considered functions, except for ZDT6, where
it is outperformed by SPEA2 (table 6.3.1). With regard to the sum of achieved ranks
over all functions (table 6.3.2), the SMS-EMOA obtains best results concerning both
the convergence measure (with 9) and the S metric (with 6). Summing up, concerning
this benchmark and performance measures, the SMS-EMOA can be regarded as the best
algorithm.

Let us now go into details about the different benchmark functions observed: ZDT1 has
a smooth convex Pareto front (cf. appendix A.1). On this problem all algorithms achieve
nearly optimal metric values. ZDT4 (cf. appendix A.4)is a multimodal function with
multiple parallel Pareto fronts, whereas the best front is equivalent to that of ZDT1.
On the basis of the given values from [DMM03b, DMM03a], it can be assumed that
all algorithms, including the SMS-EMOA, achieved to pass the second front with most
solutions and aimed at the first front. ZDT2 has a smooth concave front and the SMS-
EMOA has nearly optimal hypervolume (cf. appendix A.2). This resolves doubts that
the SMS-EMOA succeeds in concave regions, that might be casted, because it is well
known that the S metric favors convex regions. ZDT3 has a discontinuous Pareto front
(cf. appendix A.3)that consists of five slightly convex parts. Here, the SMS-EMOA is
little better concerning the S metric than the ε-MOEA and significantly better concerning
the convergence. ZDT6 has a concave Pareto front that is equivalent to that of ZDT2,
except the differences that the front is truncated to a smaller range and that points
are non-uniformly spaced. The SMS-EMOA is ranked second on both measures, only
outperformed by SPEA2, which obtained worse results on the other easier functions.

The performance concerning the S metric is a very encouraging result, even though
good results have been expected, because the S metric itself served as selection criterion.
However, one should not forget, that the new approach is a rather simple one with only
one population and it is steady-state, resulting in a low selection pressure. Neither there
are any special variation operators fitted to the selection strategy, nor it is tuned for
performance in any way. All these facts would normally imply not that good results.
The good results in the convergence measure are maybe more surprising. It is worth to
know, that for all but ZDT4, where the optimum is located exactly in the middle of the
search space, optimal values lie at the boundaries of the search space, which simplifies
the exact optimization. The SMS-EMOA, like many other algorithms, sets values that
exceed the bounds of the search space exactly on these bounds. This allows on the
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ZDT functions for good convergence without adaptation of the mutation jump length.
However, since we used the same variation operators as in ε-MOEA, the good results for
the SMS-EMOA have been achieved in a fair scenario.

As it has been said before, the SMS-EMOA is well-suited for the integration of metamodel.
The reason for this is mainly, that integral criteria like the ExI and the PoI can be easily
formulated on the basis of ∆S . Accordingly, the SMS-EMOA has been considered as a
basic algorithm for the metamodel-assisted design optimization with multiple objectives.

6.4 Conclusions

A brief introduction into Pareto optimization was given. Besides an introduction to
the NSGA-II algorithm, the SMS-EMOA has been proposed as a new algorithm. This
algorithm uses the hypervolume measure in its selection criterion. The motivation for
introducing a new algorithm was to make a generalization of filters based on criteria of
improvement possible.

The SMS-EMOA has been tested on the standard ZDT benchmark with two objective
functions. It turned out to be superior to results published earlier on this benchmark
with well established EMOA variants (e. g. SPEA, ε-MOEA, and NSGA-II). Only for the
ZDT6 function SPEA performed slightly better than the SMS-EMOA with regard to the
convergence metric.

Efficient computational procedures for the SMS-EMOA have been proposed for problems
with two and three objective functions. In particular we proposed methods that compute
differences in the dominated hypervolume that are asymptotically faster than the methods
published so far. Furthermore the distribution of solutions for this algorithm on Pareto
fronts with different curvature (convex, concave, linear) has been measured. It turned
out that knee points and extremal solutions are well covered.

It shall also be remarked, that for the latter analysis a new family of multi-objective test
problems has been introduced, namely the EBN family of functions. Also we conducted
a rigorous analysis of this problem family that allows to gradually adjust the curvature
of the Pareto front by means of a single parameter.

Very recently, the SMS-EMOA was studied on problems with three objectives. For these
new results we refer to Naujoks et al. ([NBE]). The results prove that the approach
outperforms established algorithms like NSGA-II and SPEA-II on standard benchmarks,
using the convergence as well as the hypervolume metric as a performance measure.
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Test- Convergence measure S measure
function Algorithm Average Std. dev. Rank Average Std. dev. Rank

ZDT1 NSGA-II 0.00054898 6.62e-05 3 0.8701 3.85e-04 5
C-NSGA-II 0.00061173 7.86e-05 4 0.8713 2.25e-04 2
SPEA2 0.00100589 12.06e-05 5 0.8708 1.86e-04 3
ε-MOEA 0.00039545 1.22e-05 1 0.8702 8.25e-05 4
SMS-EMOA 0.00044394 2.88e-05 2 0.8721 2.26e-05 1
true Pareto front 0 0 0 0.8761 - 0

ZDT2 NSGA-II 0.00037851 1.88e-05 1 0.5372 3.01e-04 5
C-NSGA-II 0.00040011 1.91e-05 2 0.5374 4.42e-04 3
SPEA2 0.00082852 11.38e-05 5 0.5374 2.61e-04 3
ε-MOEA 0.00046448 2.47e-05 4 0.5383 6.39e-05 2
SMS-EMOA 0.00041004 2.34e-05 3 0.5388 3.60e-05 1
true Pareto front 0 0 0 0.5427 - 0

ZDT3 NSGA-II 0.00232321 13.95e-05 3 1.3285 1.72e-04 3
C-NSGA-II 0.00239445 12.30e-05 4 1.3277 9.82e-04 5
SPEA2 0.00260542 15.46e-05 5 1.3276 2.54e-04 4
ε-MOEA 0.00175135 7.45e-05 2 1.3287 1.31e-04 2
SMS-EMOA 0.00057233 5.81e-05 1 1.3295 2.11e-05 1
true Pareto front 0 0 0 1.3315 - 0

ZDT4 NSGA-II 0.00639002 0.0043 4 0.8613 0.00640 2
C-NSGA-II 0.00618386 0.0744 3 0.8558 0.00301 4
SPEA2 0.00769278 0.0043 5 0.8609 0.00536 3
ε-MOEA 0.00259063 0.0006 2 0.8509 0.01537 5
SMS-EMOA 0.00251878 0.0014 1 0.8677 0.00258 1
true Pareto front 0 0 0 0.8761 - 0

ZDT6 NSGA-II 0.07896111 0.0067 4 0.3959 0.00894 5
C-NSGA-II 0.07940667 0.0110 5 0.3990 0.01154 4
SPEA2 0.00573584 0.0009 1 0.4968 0.00117 1
ε-MOEA 0.06792800 0.0118 3 0.4112 0.01573 3
SMS-EMOA 0.05043192 0.0217 2 0.4354 0.02957 2
true Pareto front 0 0 0 0.5427 - 0

Table 6.3.1: Results of SMS-EMOAon ZDT Test-suite.

Convergence measure S measure
Algorithm Ranks

∑
of ranks Ranks

∑
of ranks

NSGA-II 3 1 3 3 4 14 5 5 3 1 5 19
C-NSGA-II 4 2 4 2 5 17 2 3 5 4 4 18
SPEA2 5 5 5 4 1 20 3 3 4 2 1 13
ε-MOEA 1 4 2 1 3 11 4 2 2 5 3 16
SMS-EMOA 2 3 1 1 2 9 1 1 1 1 2 6

Table 6.3.2: Ranks and sum of ranks from table 6.3.1.
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7 Metamodel-assisted multi-objective
optimization

Every generalization is dangerous, especially this one.

S. L. Clemens

In this chapter it is discussed how metamodeling techniques can be integrated into the
NSGA-II and SMS-EMOA. In section 7.1, we discuss general aspects of the integration
of metamodels into these EMOA. Then, in section 7.2, we focus on the generalization
of filters used for pre-screening solutions. Finally, the metamodel-assisted EMOA are
evaluated on test problems (section 7.3).

7.1 Introduction

The integration of filters based on metamodels into the NSGA-II can be done in a similar
manner than for the MAES. From the offspring generated by the variation operators, only
a subset is precisely evaluated and considered in the replacement. All other individuals
are rejected by the filter. If filters are employed that let pass always a constant number
of ν offspring individuals, the modified NSGA-II will be termed a (µ, κ, ν < λ)-NSGA-II.
A simple design for a filter would be to compute the predictions and then select the ν
best solutions due to non-dominated sorting. However, more sophisticated procedures
can be sought, that also make use of confidence information. Different possibilities will
be discussed in the subsequent sections.

For the SMS-EMOA, not only the evaluation procedure, but also the generation procedure
needs to be adapted. This is due to the fact that the SMS-EMOA is a steady state
EMOA, and hence only one individual is generated and evaluated in each iteration. It
proves to be a good strategy (cf. [EBN05]) to produce a surplus of λ individuals and then
extract the most promising solution by means of a filter based on metamodels. Only this
single solution is considered in the replacement. The resulting strategy will be termed a
(µ+ 1 < λ)-SMS-EMOA.

The basic procedure of the (µ+ λ)-MA-SMS-EMOA as proposed by Emmerich, Beume,
and Naujoks [EBN05] is outlined in algorithm 14. After initialization of a database of
results, from which a start population is randomly extracted, the generational loop starts.
In each iteration t, an individual is chosen from the population Pt. Then, λ offspring
individuals are generated by application of the mutation operator to this individual.
After this, the most promising solution among all candidate solutions is chosen by means
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of approximate objective function evaluations. This solution is evaluated by the time
consuming simulator and considered in the replacement.

Algorithm 14 Metamodel-assisted SMS-EMOA.

1: P0 ← init() {Initialize and evaluate start population of µ individuals}
2: D ← P0 {Initialize database}
3: t← 0
4: repeat

5: Draw xt randomly out of Pt
6: xt,i = mutate(xt), i = 1, . . . , λ {Generate λ solutions via mutation}
7: approximate(D,xt,1, . . . ,xt,λ) {Approximate results with local metamodels}
8: xt+1 ← filter(xt,1, . . . ,xt,λ) {Detect ’best’ approximate solution}
9: evaluate xt+1

10: D ← D ∪ {xt+1}
11: Pt+1 ← reduce(Pt ∪ {xt+1}) {Select new population}
12: t← t+ 1
13: until stop criterion reached

Having explained the basic generational loop of the metamodel-assisted EMOA, the ques-
tion remains open of how to select a subset of promising solutions from a set of individuals.
This topic is addressed in the next section.

7.2 Generalization of IPE-filters

The generalization of the IPE-filters, that were introduced in section 4.2, to multi-
objective optimization is addressed in this section. Promising solutions according to
the Pareto dominance relation (cf. expression 6.1.1) are sought. Moreover, an increase
of the diversity of the non-dominated set is envisaged. Similarly to the constrained case,
a multivariate (nf -dimensional) distribution for each point x ∈ S is provided by the
gaussian random field model. By default we assume independency of the predictive mul-
tivariate distributions, but, whenever it seems suitable, we shall also examine the case of
correlated multivariate distributions.

Figure 7.2.1 visualizes the predictive probability densities for three approximated solu-
tions in a two-dimensional solution space. Whenever we make the assumption of inde-
pendent output variables (cf. section 5.4), the vector ŷ(x) shall denote the mean value
of the nf -dimensional gaussian distribution and ŝ(x) the vector of standard deviations
attributed to the predictions.

The main difficulty in the generalization of the pre-screening procedures to the multi-
objective case is that the notions of best found solution and of improvement, if attributed
to a single solution, stop making sense in the context of Pareto optimization with conflict-
ing objectives, because we have to deal with incomparable solutions. In order to resolve
this problem, in the presence of incomparable solutions the contribution of the solutions
to the diversity or to the increase in the hypervolume measure (S metric) shall govern
the choice of promising candidate solutions.
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Figure 7.2.1: Example for the prediction of solutions in a solution space with two objec-
tives: The picture visualizes the probability density functions of the predic-
tive distributions for three search points x1, x2 and x3 for a two-objective
problem. The black points mark the mean values ŷ of the probability den-
sity functions. The white points mark the lower confidence bounds and the
rectangles depict confidence interval boxes, symmetrically surrounding the
mean value approximations. By comparison of the predictive distribution
with the precise solution vectors of the current population (here given by
the red points), promising solutions can be detected (cf. section 7.2).

7.2.1 Mean value and lower confidence bound filters

First, let us discuss the generalization of the mean value and lbω filter for the NSGA-
II algorithm. The pre-selection procedure that was first mentioned and evaluated by
Emmerich and Naujoks [EN04a, EN04b] is both simple and effective. In the metamodel-
assisted NSGA-II for all λ offspring individuals x1, . . . ,xλ the mean value ŷ(x) is deter-
mined. Then the subset of the most promising ν solutions is detected by non-dominated
sorting on the predicted values. Instead of using ŷ as pre-screening function, also

lbω(x) = y(x)− ω · ŝ(x) (7.2.1)

can be employed as a pre-screening function. In correspondence with the single objec-
tive case, this procedure will be termed lower confidence bound (lbω) filter. Both, the
predicted solution vectors for the mean value filter and the lower confidence bound filter
are visualized for the example in figure 7.2.1. Again, the idea behind this choice is, to
reward solutions that are placed in unexplored regions of the search space, in order to
prevent premature stagnation of the search. The parameter ω scales the quantity of this
reward. The results of Emmerich and Naujoks [EN04a] indicated that in the presence
of multiple objectives this strategy leads not only to a higher robustness but also to a
better coverage of the Pareto front.

The values of lbω can be interpreted as lower confidence confidence bounds for the true
solution vector. Similar to the constrained case (expression 5.4.16), we can adjust the
confidence level of this lower confidence bound by means of

pα = Φ(−ω)nf ,Φ(y) =
1

2
(1 + erf(

y√
2
)). (7.2.2)
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Here, pα measures the probability that all objective function values are higher than the
corresponding values of the lower confidence bound, assuming, of course, that the model
assumptions are valid.

The ŷ and lbω filters can also be generalized for the SMS-EMOA. It is not sufficient to
employ the increase in hypervolume ∆S as a criterion, since this would not provide a
criterion for selecting a new solution, if the approximations of all candidate solutions are
dominated and thus non of them increases the hypervolume. Instead, we need a criterion
that provides also a rank for dominated candidate solutions.

A possible approach to solve this problem is to modifying the non-dominated sorting
procedure again: Let Gt denote the set of generated solutions from which we want to
obtain the most promising candidate solution (cf. algorithm 14). For each x ∈ Gt, we
determine the partitions of equal dominance rank R1(x), . . . , R`(x) of the set Pt ∪ {x}.
Next, each partition is sorted by the ∆S criterion. After these two steps, a non-dominance
rank r(x) and the contribution in hypervolume ∆S(x, R(r(x))) for x in the partition of rank
r(x), is detected. After having computed the two values r and ∆S for each individual
x ∈ Gt, the pairs (r(xi),−∆S(x, R(r(xi)))), i = 1, . . . , |Gt| are sorted lexicographically.
Then, the best ranked solution is selected by the IPE-filter.

In particular, among the non-dominated offspring solutions this procedure selects the
solution that maximizes S(P ∪ {x})− S(P ).

Now, by replacing the predicted vector ŷ(x) by the lower confidence bound vector lbω(x)
(cf. figure 7.2.1), we can generalize also the lbω filters. Here, we are more optimistic about
the outcome of the experiment, meaning that, in general, we assume a larger increase in
hypervolume measure of the population, whenever a particular new solution is selected.
The difference in the estimated increase, compared to the mean value, depends again on
the degree of uncertainty and on the choice of ω.

7.2.2 Filters based on measures of improvement

Next, we consider the generalization of filters that work with criteria based on a measure
of improvement. The definition of an improvement will be based on the hypervolume
measure. Thus, the resulting filters are predisposed for the application within the SMS-
EMOA. However, as it will be shown later, they may also be used in the pre-screening
algorithm of the metamodel-assisted NGSA-II, though, this might imply the introduction
of a reference point for the latter algorithm.

We define that any new point that is non-dominated by all points in a set of solutions
P = {x1, . . . ,xm} is an improvement with regard to this set. Furthermore, the impact
of an improvement is measured by the gain in dominated hypervolume, if the solution
would be added to P . Let A denote the set of output vectors for search points in P , i. e.
A := {y(x)|x ∈ P}. Then the improvement measure reads:

I(y) := S({y} ∪A)− S(A). (7.2.3)

Since the integration of non-dominated points always increases the hypervolume of a set,
I(y) takes a positive value, iff y is non-dominated by solutions in P . Otherwise, the value
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of I(y) is zero. Based on this definition, the criteria for improvement can be generalized
as discussed in the following subsections.

Probability of improvement

The probability of improvement (PoI) criterion has been proposed by Ulmer et al. [USZ03]
for single-objective optimization. Now, it shall be generalized for multi-objective opti-
mization.

Let H(A) denote the non-dominated subspace of Rnf

Hf(A) := {y ∈ R
nf +ng |y � A} (7.2.4)

and PDFx denote the probability density function of the predictive gaussian distribution
for a new point x. The probability that the new point is an improvement, i. e. it is
non-dominated by A, is then given by the integral of PDFx over the non-dominated
region

PoI(x) =

∫

y∈Hf (A)

PDFx(y)dy. (7.2.5)

When working with independent predictive distributions (cf. section 5.4), we can compute
this value from the mean values ŷ and standard deviations ŝ of the predictive distribution.
For the unconstrained case ng = 0 we get:

PoI(x) :=

∫

y∈Hf (A)

nf∏

i=1

ϕ(
yi − ŷi
ŝi

)dy. (7.2.6)

For the constrained multi-objective case we can extend this expression to

PoI(x) :=

∫

y∈Hf (A)

nf∏

i=1

ϕ(
yi − ŷi
ŝi

) ·
nf +ng
∏

i=nf

ϕ(
−ŷi
ŝi

)dy. (7.2.7)

This expression combines the probability that a solution is non dominated with regard
to its objective function values (first factor in the integral) with the probability that
a solution is feasible (second factor in the integral). For a motivation of the second
part of the integrand we refer to section 5.4.2, where the treatment of constraints in
improvement-based filters gets fully explicated.

The computation of the PoI can be done by means of a modified version of Fleischer’s
algorithm [Fle03] for computing the hypervolume measure. One by one, this algorithm
lops off nf -dimensional hyper-boxes from the dominated subspace until the space has
been reduced to the empty set. Given an infinite reference point ymax = (∞, . . . ,∞)T ,
by means of Fleischer´s algorithm the dominated hypervolume gets partitioned into a
set of closed and half-open interval hyperboxes1. Instead of summing up the Lebesgue
measures of the hyper-boxes the finite probabilities that a solution is placed inside one
of the hyper-boxes is summed up. Now, the probability of improvement can be obtained
as PoI(x) = 1− pd.

1Some of the coordinates can take the value ∞.
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To put things into more concrete terms, let us denote the sequence of interval hyper-boxes
lopped off by Fleischer’s algorithm as B1, . . . , Bm and denote the lower bound edges of
these boxes with

(bmini,1 , . . . , bmini,nf
)T , i = 1, . . . , m (7.2.8)

and their upper bound edges with

(bmaxi,1 , . . . , bmaxi,nf
)T , i = 1, . . . , m. (7.2.9)

Moreover, let us assume that the infinite reference point y∞ is chosen. Then the integral
for the PoI reads:

PoI(x) := 1−
m∑

i=1

∫

y∈Bi

PDFx(y)dy. (7.2.10)

Working with mutually independent distributions (cf. section 5.4), we get

PoI(x) := 1−
m∑

i=1

∫

y∈Bi

nf∏

j=1

ϕ(
yj − ŷj
ŝj

)dy (7.2.11)

= 1−
m∑

i=1

nf∏

j=1

Φ(
bmaxi,j − ŷj

ŝj
)− Φ(

bmini,j − ŷj
ŝj

). (7.2.12)

Now, with expression 7.2.12, we have a formula that can be directly computed. A welcome
characteristic of the discovered expression is that it does not demand for a finite reference
point, the choice of which would be up to the user.

Given independent outputs (cf. section 5.4), expression 7.2.12 can be easily generalized
to the constrained case by multiplying it with the probability that a solution is feasible:

PoI(x) := (1−
m∑

i=1

nf∏

j=1

(Φ(
bmaxi,j − ŷj

ŝj
)− Φ(

bmini,j − ŷj
ŝj

)))

nf+ng
∏

i=nf+1

Φ(
−ŷi
ŝi

). (7.2.13)

Still, this term can be directly computed. Summing up, it has been found that both in
the unconstrained case and in the constrained case, the value of the PoI can be computed
by means of a direct formula.

The running time complexity for computing expression 7.2.13 is governed by the running
time complexity of Fleischer’s algorithm. Accordingly, we obtain the running time com-
plexity O(k3 · n2

f + ng) with k being the number of non-dominated solutions in P . The
first addend stems from Fleischer’s algorithms, while the second addend describes the
computation time for the probability that the new solution is feasible.

Provided s(x) > 0, the probability of improvement takes always positive values greater
than zero. Thus, unlike for the mean value and lower confidence bound criterion, domi-
nated solutions can easily be compared to non-dominated solutions. This makes the PoI
criterion applicable in a straightforward manner as a ranking criterion for a filter with
fixed output-size.

Like in the single-objective case, it might also be a problem with the PoI filter in the
multi-objective case, that the probability of improvement criterion has the tendency to
favor very small improvements to larger improvements. For example, if the PoI indicates
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that a solution has a probability of improvement of 0.5, it does not matter, whether this
improvement is large or very small. Generally, one would consider the second option as
favorable.

Thus, as an alternative measure, the expected improvement might be considered, that
takes into account not only the probability but also the quantity of possible improvements.

Expected improvement

Based on the improvement measure (expression 7.2.3), the expected improvement is de-
scribed as:

ExI(x) =

∫

y∈]−y∞,ymax]

PDFx(y) · I(y)dy, (7.2.14)

where y∞ ∈ Rnf denotes the vector (∞, . . . ,∞)T . If we would choose an infinite reference
point, this expression would also be infinite, provided ŝ is greater than zero. The only
choice we have is to restrict the solution space by choosing a finite reference point ymax for
the computation of the hypervolume (cf. expression 6.3.1). For most practical problems
in multi-objective optimization it is very easy to find a rough restriction for the solution
space. However, it is often difficult to normalize a restricted solution space a-priori. Thus,
the improvement measure might easily be biased towards measuring improvements to one
of the objectives. Accordingly, a quantitative interpretation of the ExI criterion should
be handled with care.

In contrast to the PoI (expression 7.2.4), the integrand in expression 7.2.14 is not solely
the gaussian probability density function, but it includes further factors that stem from
the improvement measure I(y). This is the reason, why even in the case of integrations
over a rectangular region, the integral cannot be factorized into one-dimensional integrals.
As a consequence, no direct formula can be given for the expected improvement.

Instead of providing a closed expression , numerical integration techniques shall be em-
ployed, in order to compute the ExI. An algorithm to compute the ExI, that is comparably
easy to implement, is monte carlo integration. This integration method can be imple-
mented by means of the following procedure: A large sample y1, . . . ,ym is drawn from
the gaussian distribution with mean ŷ and ŝ.

Based on this sample, we compute the expected value by

ExI(x) ≈ 1

m

m∑

i=1

I(yi). (7.2.15)

Note that the reference point needs to be chosen sufficiently large, to avoid samples outside
the box [−y∞,ymax]. The generation of gaussian distributed samples for an independent
gaussian distribution can be simply done by adding a standard normal distributed pseudo-
random number scaled by the standard deviation ŝi(x) to each vector position of ŷ(x).
If PDFx is a multivariate distribution that does not factorize, the Metropolis algorithm
can be used instead to generate samples ([Wei00], pp. 27).
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An error estimate for the monte carlo estimate is given by:

(
1

m

m∑

i=1

I(yi))− ExI(x) ≈ S2/m. (7.2.16)

Here the variance S2 is defined as

S2 =
1

m− 1

m∑

i=1

(I(yi)−
1

m

m∑

i=1

I(yi))
2. (7.2.17)

This result can directly be obtained from the theory of monte carlo integration ([Wei00],
pp. 11). Regardless of the dimension of the search space, the error scales like 1/

√
m. Bet-

ter error bounds can be obtained by variance reducing techniques described in ([Wei00],
pp. 13).

We shall not stick to the details of numerical integration here. Rather, we remark that a
precise estimation of the expected improvement measure might be very time consuming.
However, it is still possible to use rough estimates of the ExI in order to pre-screen
solutions, and in practice this might also yield good results. Moreover, in low dimensional
spaces and/or for small population sizes, the computation of the improvement is fast and
thus a large number of samples can be evaluated, yielding in small approximation errors.

Provided we model constraint functions independently from objective functions, we can
easily generalize to the constrained multi-objective problem. This can be done in the
same way as it has been done for the PoI, i. e. by multiplying the ExI expression for the
unconstrained case with the probability that a solution is feasible.

Again, there are several possibilities of how to employ the ExI as a filter criterion in an
EMOA. A simple method would be to rank solutions by means of the ExI and select a
user-defined number of ν best solutions. For the SMS-EMOA, that always evaluates a
single solution per generation, choosing ν = 1 seems to be the adequate way of how to
design such a filter.

7.2.3 Filters with adaptive output-size

Simple constructions for filters with adaptive output-size are the generalized MLI- and
LBIω-filter. The most likely improvement measures the gain in hypervolume that is
realized with the highest probability, i. e.

MLI(x) = S({ŷ(x)} ∪A)− S(A) (7.2.18)

In contrast to the MLI, the potential improvement LBIω takes into account the standard
deviation ŝ of the approximation:

LBIω(x) = S({ŷ(x)− ω · ŝ(x)} ∪A)− S(A). (7.2.19)

Both criteria can be applied for filtering solutions, accepting only solutions with values
greater than zero. In case of the LBIω criterion, this means that we would dismiss
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non-dominated solutions with probability of 1 − pα(ω). Recall, that pα(ω) denotes the
confidence level, the value of which can be adjusted by means of expression 7.2.2.

Moreover, versions of the ExI and PoI filter with adaptive output size can be sought. In
order to allow for an adaptive output size, a threshold value τ can be provided that has
to be surpassed by the solutions in order to get accepted. As in the single-objective case,
such parameterized filters will be termed PoIτ - and ExIτ -filter.

A conceptual drawback of the ExIτ -filter is, that a constant value of τ for the ExIτ might
not be a guarantee for a good performance in all stages of the search. Typically, in
the starting phase of the Pareto optimization large values of the threshold seem to be
appropriate, in order to move the population quickly towards the Pareto front. Later,
small values for the expected improvement should also be accepted, since this allows for
a refinement.

Adaptation problems like these are not to be faced when working with the PoIτ -filter,
because the probability of improvement is invariant to the absolute value of the hyper-
volume increment. However, the PoIτ -filter might accept too many small improvements,
since it is often easier to obtain a success when using only a small step size. This might
slow down the convergence in the beginning of the search and even lead to pre-mature
convergence.

Unlike in the single-objective case, in Pareto optimization the LBIω-filter is not equivalent
to PoIτ -filters with a threshold probability of p = Φ(−ω). Neither is the MLI-filter
equivalent to the PoIτ filter with a threshold value of τ = 0.5. Situations where the
PoIΦ(−ω) filter accepts solutions that are rejected by the LBIω-filter can be considered,
as well as situations where the PoIΦ(−ω) filter rejects solutions that are accepted by the
LBIω-filter. An example for both situations an example is given in figure 7.2.2.

7.2.4 Interval filters

Interval based filters for multi-objective optimization have been suggested by Emmerich
et. al. [EN04a] where they have been applied for the optimization of airfoil shapes.
We will not go into details here. Rather, we note that the design of these filters is
straightforward, if we consider confidence interval boxes rather than confidence intervals
and compare upper and lower confidence bound vectors as we did for the constrained
case 5.4.4.

Note that theorem 2 and 3 can be generalized to the multi-objective case (replace scalar
upper and lower bounds by vector valued upper and lower bound for interval boxes),
while theorem 4 does no longer hold, since it is based on the linear ordering of solu-
tions. Accordingly, we have to use the modified version of algorithm 6 and 7 in order to
determine output sets of the filters.

As an example let us consider the set of three solutions given in figure 7.2.1. Set µ = 1
and let us also consider the solutions on the ’old’ pareto front. In that case solution
x2 will be rejected by the Rω-filter , since its lower bound edge is dominated by one of
the old solutions. None of the solutions would be accepted by the Pω-filter , since all of
the solutions are potentially dominated by one of the precisely evaluated ’old’ solutions,
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Figure 7.2.2: Comparison of the MLI and the PoI0.5 criterion in the multi-objective case.
y1,y2 and y3 denote non-dominated points of the current population. More-
over, ŷ denotes the predicted output value, ŝ1 and ŝ2 denote standard de-
viations attributed to the prediction. In the first example (left) the PoI0.5
criterion rejects the new point while the MLI criterion does not. Contrary
to this, in the second example the MLI rejects the new solution while the
PoI0.5 criterion does not.

even under the condition that all random variables realize within the confidence interval
boxes.

It turned out in the studies [EN04a] that the filters are not very effective for speeding
up search. Either they hardly select any solution (in case of the Pω-filter ) or they
hardly reject any solution (in case of the Rω-filter ). However, as from a theoretical
point of view the design of these filters seem to be interesting, we still hope to find a
scenario of metamodel-assisted optimization, where they are useful. However, in such a
scenario, the separability of sets must be much easier as that seems to be the case for the
approximations given in the typical populations of the MAES.

7.3 Studies on artificial test problems

Next, experimental studies with the metamodel-assisted EMOA on artificial test problems
will be discussed. These studies are meant to prove the feasibility of the new approach on
simple test problems. Later, in chapter 8, we assess the performance of the metamodel-
assisted EMOA on representative test-problems from design optimization.

7.3.1 Metamodel-assisted non-dominated sorting genetic algorithm

Firstly, we will discuss the behavior of the metamodel-assisted NSGA-II. The feasibility
of this is proven on the 10-dimensional generalized Schaffer problems A.6 proposed by
Emmerich [Emm05]. For these problems, the Pareto front curvature depends on the
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choice of the parameter γ. By setting γ > 1, a convex Pareto front is the solution of the
problem. Whenever γ < 1, the Pareto front is concave. By setting γ = 1, the Pareto front
gets linear. Discussion on measures for the convexity of Pareto fronts and its relevance
for Pareto optimization can be found in [Bow76, CC77, AP96].

Figure 7.3.3 (convex Pareto front), figure 7.3.4 (linear Pareto front), and figure 7.3.5 (con-
cave Pareto front) display results on differently shaped Pareto fronts. For the statistical
comparison, 50% attainment surfaces were calculated. Here, 50% attainment surfaces are
defined as follows:

Let P1, . . . , Pn denote n pareto front approximations obtained with the same algorithm
but different random seeds. Then a point y ∈ P1∪· · ·∪PN belongs to the 50% attainment
surface, if and only if y � Pi1∧ . . . y � PiK for any subset Pi1, . . . , Pik of k = (n− 1)/2
approximations to Pareto optimal sets. In the 50% attainment surface plots we consider
only non-dominated solutions among the solutions that belong to the 50%-attainment
surface. The motivation to use these points for average plots is that they mark the
boundary of the space covered by the Pareto set in at least half of the run.

This corresponds to the non-constructive definition of Fonseca, who stated that 50%
attainment surface consist of ’goal vectors, which each on its own, would have a 50%
chance of being attained’ ([Fon95], page 107).

All experiments have been conducted with an initial step-size of 1. The (20 + 20 < 100)-
NSGA-II (with mean value, lbω, ExI and PoI filter) was opposed to the (20 + 100)-
NSGA-II and the (20 + 20)-NSGA-II. The same variation procedure to that used in the
single-objective ES was employed. In the multi-objective case, a larger population size
was used, in order capture a greater variety of solutions.

On the average, pre-screening through the mean value is less successful than that through
the confidence information. The ExI criterion yields the best performance, followed by
the LBI and PoI criteria. In particular, on the concave and linear problems, the ExI
criterion leads to significantly better results. However, we note that - unlike the PoI
and the LBI criteria - the performance of the ExI criterion depends on the choice of the
reference point, which was set to fmax = (20, 20)T for the given problems. Furthermore,
the cost for computing the ExI criterion is significantly higher than that associated with
the LBI and PoI filter. Hence, the two latter criteria should be considered as efficient pre-
screening alternatives. In all problems examined, the performance deviation between all
metamodel-assisted NSGA-II and the two versions of the standard NSGA-II is significant.

In addition, different variants of the NSGA-II and its metamodel-assisted NSGA-II, were
tested on the ZDT1 and ZDT2 function. For all tested variants of the metamodel assisted
NSGA-II the remaining non-dominated hypervolume in the box [fmin, fmax] was measured,
meaning that lower values of the remaining hypervolume measure correspond with a
better performance of the algorithm. For the ZDT1 and ZDT2 function the values for
the fmin = (0, 0)T and fmax = (10, 10)T was set.

The convergence history of different MA-EMOA versions on these functions is described in
figures 7.3.6 and 7.3.7. All results are averaged runs for the metamodel-assisted NSGA-
II with different pre-screening criteria. For each strategy variant 20 runs have been
performed and the median of the non-dominated hypervolume of all solutions found so
far was measured after each 50 evaluations of the two objective functions. The results
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Figure 7.3.3: Approximation to a convex Pareto front. The 50% attainment surface on
the 10-dim. generalized Schaffer problem with γ = 2 is displayed (10 runs,
1000 evaluations).

on this problem indicate that the lbω filter performs very satisfactory for convex and
concave problems. On average, pre-screening through the mean value is less successful
than pre-screening using the lower confidence bound criterion. It also seems that the use
of the integral-based PoI and ExI criteria lead to worse results than the use of the lower
confidence bound criterion. The margin between the results obtained with the lower
bound filter and the other strategies is most significant for the concave problem. This
can be explained by the characteristic of the lbω filter to reward solutions in unexplored
regions of the search space and therefore also of the solution space.

In addition, figures 7.3.6 - 7.3.7 allow to compare the convergence dynamics of the tested
algorithms. The acceleration due to the use of metamodels is especially high in the
beginning of the run. In the long run the EMOA without metamodel-assistance catch up
and only EMOA, using the lbω filter, can keep their margin.

7.3.2 Metamodel-assisted S-metric selection algorithm

So far, the metamodel-assisted SMS-EMOA has been tested on examples from airfoil
design optimization [EBN05, NBE05] part of them will be discussed in chapter 8. Next,
we present a test study on the EBN family of functions (cf. appendix [EBN05]),in order to
assess the quality of results on Pareto fronts of different curvature. The initial population
was equal for each run and sampled in the search space S = [0, 10]10.
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Figure 7.3.4: Approximation to a linear Pareto front. The 50% attainment surface on
the 10-dim. generalized Schaffer problem with γ = 1 is displayed (10 runs,
1000 evaluations).

Table 7.3.1 provides a detailed description of the results. It summarizes the results of five
runs for each combination of an algorithm and a test problem. Each run was stopped after
1000 evaluations of the vector valued objective function. From the small figures in the
convergence value it can be concluded that almost all strategies managed to come close
to the Pareto front. Table provides 7.3.2 a summary of this table, focussing on relative
rankings of the strategy. Here it gets apparent that the metamodel-assisted EMOA
using the lbω filter almost always performs better than other EMOA, if the dominated
hypervolume is taken as the performance measure. Another observation that has been
made was that the EMOA using the PoI criterion in the pre-selection tends to concentrate
search points in a certain region. Though this leads to a much better convergence, this
strategy fails to achieve a good value for the hypervolume and thus to provide a good
coverage of the region near the Pareto front. The behavior of the mean value criterion
and of the ExI criterion is characterized by a similar behavior. As a conclusion, we found
that in order to achieve a diverse set on the Pareto front the LBI criterion seems to be
best suited.

It has to be admitted, that the number of results presented is far from being sufficient
in order to cover all common situations in which multi-objective MAES might be used.
However, the results prove that the assistance by a metamodel can accelerate standard
EMOA and also the SMS-EMOA. It also became apparent that the explorative power
of the metamodel-assisted EMOA is especially high if the lbω criterion is employed, that
best serves to reward solutions in yet unexplored regions of the search space.
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Test- Convergence measure S measure
function Algorithm Average Std. dev. Rank Average Std. dev. Rank

strongly nokrig 0.0007 0.0001 2 0.9738 0.0033 4
convex Mean 0.0014 0.0019 5 0.9782 0.0031 2
(γ = 4) lb 0.0009 0.0001 3 0.9798 0.0011 1

PoI 0.0002 0.0002 1 0.9711 0.0041 5
ExI 0.0013 0.0008 4 0.9781 0.0024 3

convex nokrig 0.0011 0.0001 1 0.9781 0.0024 3
(γ = 2) Mean 0.0012 0.0002 2 0.7860 0.0163 3

Lb 0.0015 0.0009 4 0.7921 0.0087 1
Poi 0.0012 0.0002 2 0.7659 0.0141 4
ExI 0.0013 0.0002 3 0.7900 0.0078 2

linear Nokrig 0.0013 0.0001 2 0.4048 0.0130 5
(γ = 1) Mean 0.0013 0.0003 2 0.4348 0.0105 2

Lb 0.0013 0.0003 2 0.4363 0.0130 1
PoI 0.0012 0.0002 1 0.4038 0.0183 4
ExI 0.0015 0.0005 3 0.4303 0.0141 3

concave nokrig 0.0009 0.0002 2 0.1556 0.0065 5
(γ = 1

2
) Mean 0.0015 0.0006 4 0.1720 0.0066 1

Lb 0.0010 0.0001 3 0.1712 0.0046 2
PoI 0.0008 0.0001 1 0.1560 0.0061 4
ExI 0.0009 0.0001 2 0.1690 0.0081 3

Table 7.3.1: Results of various metamodel-assisted SMS-EMOA on the EBN family of
multi-objective test functions.

Convergence measure S measure
Algorithm Ranks

∑
of ranks Ranks

∑
of ranks

Nokrig 2 1 2 2 7 4 5 5 5 19
Mean 5 2 2 4 13 2 3 2 1 8
Lb 3 4 2 2 11 1 1 1 2 5

PoI 2 1 1 1 5 4 4 4 5 17
ExI 2 3 3 4 12 3 2 3 3 11

Table 7.3.2: Ranks and sum of ranks from table 7.3.1.
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Figure 7.3.5: Approximation to a concave Pareto front. The 50% attainment surface on
the 10-dim. generalized Schaffer problem with γ = 0.5 is displayed (10 runs,
1000 evaluations).

7.4 Conclusions

The NSGA-II algorithm as well as the SMS-EMOA were augmented with metamodel-
assistance. For the first time criteria like the probability of improvement and the expected
improvement have been generalized for Pareto optimization. This was possible by defin-
ing the improvement by means of the increase in the dominated hypervolume of the
current population. In particular the generalization of the PoI criterion turned out to
be very elegant, because neither it demanded for a reference point, nor did it matter if
the expected value ŷ(x) of newly generated points x is part of the non-dominated set
of the current elite population. A conceptual comparison of the new criteria have been
given that revealed that some of the invariant properties of the IPE filters get lost when
it comes to multi-objective optimizations. So are the equivalence of the MLI criterion
to the PoIτ criterion with τ = 0.5. First results on 10-D problems of different curvature
(convex, linear, quadratic) have been conducted in order to assess the performance of
the proposed algorithms. It was found that rewarding solutions with large confidence
margins helps to achieve an improved coverage of the Pareto fronts. However, there is a
trade-off between achieving a good value of the convergence metric and achieving a good
coverage of the Pareto fronts. In the next chapter, further examples for the application
of metamodel-assisted optimization methods will be given.
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Figure 7.3.6: Median of the non-dominated hypervolume value of different EA on the
10-D ZDT1 function.
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Figure 7.3.7: Median of the non-dominated hypervolume of different EA on the 10-D
ZDT2 function.
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8 Applications in industrial design
optimization

The final test of a theory is its capacity to solve the problem which
originated it.

G.B. Dantzig

Finally, some results in industrial design optimization are reported. These results provide
examples for the successful application of metamodel-assisted evolutionary algorithms for
real-world problems. The case studies were carried out in collaboration with partners from
industry and engineering departments in academia. They provided evaluation tools and
defined the goals of the optimization studies.

In the engineering domain, the term design optimization usually refers to optimization
studies carried out in the detailed engineering stage of a project. In contrast to the con-
ceptual engineering phase the requirements on the accuracy of computer models applied
in this phase are very high. Thus evaluations of designs on a computer tend to be very
time consuming and may take several minutes or even hours.

In section 8.1 we report on applications of the MAES in single-objective optimization. A
problem from electromagnetic compatibility design serves as an example for this problem
domain. Then, in section 8.2, we turn to single-objective optimization with constraints,
discussing the optimization of a gas turbine blade casting process. Moreover, section 8.3
presents results on an airfoil re-design problem with two objective functions. Finally, in
section 8.3.2, the design optimization of an airfoil geometry is presented, dealing with
three objectives as well as with nonlinear constraints.

8.1 Single-objective design optimization

The metamodel-assisted evolution strategy was applied in three fields of single-objective
design optimization. First, we report on results in the domain of electromagnetic com-
patibility design. Then, we turn to problems in metal forging, and finally we discuss
studies that were conducted in airfoil design.
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8.1.1 Electromagnetic compatibility design

The connection of high voltage cables is done by a sleeve. In the connection area the geom-
etry of the sleeve can be changed to improve the electromagnetic compatibility (EMC).
By doing so, technical restrictions of maximal field forces have to be kept. The field force
can be controlled by using layers of different materials and geometry. Free parameters in
such a configuration are for example the thickness of the layers and the expansion of the
chambers.

External conductor

Isolation

Internal conductor

Field control layers

Figure 8.1.1: Schematic cuts through a high voltage sleeve that is used for connecting
cables. In order to control the electromagnetic field, Field control layers
consisting of different materials are integrated into the sleeve. They are
part of the isolation that separates the internal conductor from the external
conductor.

In collaboration with the Electrical Engineering Department of the University of Dort-
mund a study on the shape optimization of a sleeve was conducted. Our aim in the
case study was to find a geometry that leads to an improved quality of the sleeve with
regard to its electromagnetic compatibility. A set of 10 design variables was identified.
All design variables were related to the geometry of the sleeve. Figure 8.1.2 explains the
meaning of these parameters. The set of geometry parameters was subdivided into five
radial sizing parameters (rs1, rs2, ri, ra, rf) and five axial sizing parameters (as, aa, af1,
af2, a0).

To be comparable with previous studies, the design variables have been restricted by
means of interval bounds:

sizing variable lower bound /[m] upper bound /[m]
ri 0.00265 0.00515
ra 0.01404 0.02945
rf 0.06686 0.077
rs1 0.09502 0.09696
rs2 0.03357 0.04144
af1 0.01545 0.075991
af2 0.119641 0.170552
aa 0.193052 0.215582
as 0.263373 0.271323
a0 0.00462 0.01467

In the evolutionary algorithm, every time an infeasible solution was sampled, it was
rejected and sampled anew, unless λ feasible solutions were generated.
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Figure 8.1.2: An axial cut through a high voltage sleeve. Five radial sizing parameters
(rs1, rs2, ri, ra, rf) and five axial sizing parameters (as, aa, af1, af2, a0)
determine the geometry of the sleeve.

The evaluation of the design was based on finite integration methods that solve the
Maxwell equations, given the boundary conditions of the problem that resulted from the
geometry and material parameters. A detailed description of the simulation procedures
is found in [Var03]. In order to accelerate the evaluation procedure, the computation
method makes use of the rotational symmetry of the sleeve. Despite this effort on de-
creasing computational time, the simulator-based evaluation of the objective function still
took about 10 minutes on the available computing system (Pentium III, 600 MHz). This
was orders of magnitudes higher than the effort for an approximate objective function
evaluation and made the use of metamodeling techniques attractive.

The objective in our case study was to minimize the maximal value of the electromagnetic
field along the 0.95 equipotential line [Var03]. This value is an important indicator of
the electromagnetic field compatibility. After each finite element simulation, the quality
value was calculated from the values of the electromagnetic field. For all positions of a
finite element mesh the electromagnetical field potential was computed. Then for the
grid positions that are nearest to the 95% equipotential line, the maximum of the field
force was detected. Figure 8.1.5 displays the equipotential lines for an example solution.

For the geometry optimization several variants of the ES were tested. The averaged
results for twenty runs with the (5, 5, 100)-ES and the (5, 5, 5 < 100)-MAES with lower
confidence bound and mean value filter are displayed in figure 8.1.3. The best results
were found with the (15 + 15 < 100)-MAES. While the strategy using a mean value
criterion for pre-screening already found a good result, the use of the lower confidence
bound criterion further improved it. The reliability of the MAES on this problem was
tested by repeating the run 10 times, with different random seeds. In the series of runs
we observed a low deviation from the average behavior. Figure 8.1.4 displays the 0.25
and 0.75 quartiles of the observed fitness histories.

Finally, we took a closer look at the obtained result. The electromagnetic field force along
the 95% equipotential line, the maximum of which had to be minimized, is displayed in
figure 8.1.6. A significant reduction of the maximal field force of about 7% in comparison
to the baseline design was achieved.

In conclusion, the results on this test problem indicated, that the MAES is an interesting
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Figure 8.1.3: Averaged histories for different strategies for the electromagnetic compatibility
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Figure 8.1.4: The median, 25th and 75th percentile of the observed histories.
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Simulation Initial Adjoint quasi-Newton method (5 + 5 < 25)-MAES
Coarse mesh 1.48 1.22 (-18%) 1.18 (-20%)
Fine mesh 1.52 1.26 (-17%) 1.23 (-19%)

Table 8.1.1: Numerical results from the optimization of a forging process with the MAES
reported in [DF04]. A coarse grained model was used during the optimization
run. The finally obtained solution was re-evaluated by means of a fine grained
model. The re-evaluation took about 40 hours of time for each design. The
results indicate the good performance of the MAES in comparison to a quasi-
Newton method.

approach for optimization in the field of electromagnetic compatibility. Despite these
encouraging first results, further studies will be needed, in order to establish the MAES
as a tool in the field of electromagnetic compatibility design.

8.1.2 Metal forging design

The MAES was used for other optimization studies with a single-objective as well. Studies
for 3D forging design were conducted by Fourment, Do and Larroussi [DFL04], using the
MAES implementation that has been proposed in chapter 4. In contrast to the problems
that were described previously, they solved a very low dimensional problem with only
three variables and a low number of 40 objective function evaluations. For the solution of
their problem they performed 10 generations with a (1+4 < 20)-MAES. Three parameters
that determine the shape of an piece of metal (cf. figure 8.1.7 and figure 8.1.8) were due
to optimization. They found a much better result than with a problem specific gradient-
based method.

The simulations during the optimization run were carried out with a coarse grained
computer model that needed about one hour for a single objective function evaluation.
The final result was verified by means of a fine grained computer model that needed 40
hours for a single objective function evaluation. In the verification step it turned out that
not only the numerical value obtained for the coarse grained model improved significantly,
but also the value obtained with the fine grained model. Recently, new results on this
problem were reported by Fourment and Do [DF04]. In figure 8.1.1 some of these recent
results are displayed. These results reconfirm the high performance of the MAES for this
problem domain.

8.1.3 Applications in aerospace and turbo-machinery design

Further case studies in single-objective optimization with the MAES have been carried out
in collaboration with A. Giotis and K. Giannakoglou from the National Technical Univer-
sity Athens on applications in the application domain of aerospace and turbo-machinery
design [EGÖ+02, GEN+01]. The case study reported in [EGÖ+02] dealt with the re-
design of an airfoil. In the test runs performed, the MAES using the lower confidence
bound pre-screening outperformed the MAES that worked with mean value pre-screening.
In Giotis et al. [GEN+01] the MAES was applied for the design of a turbine blade in
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Figure 8.1.7: Metal forming simulation with FORGE-3DTM: The figure on the left hand
side shows the 3D visualization of the initial piece of metal before it gets
compressed in the forging device. The figure on the right hand side depicts
the piece of metal in an intermediate stage of the forging process.

Figure 8.1.8: Deformed piece of metal after the forging process. It is desired that the
form of the piece of metal adapts to the shape of the preform.
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Figure 8.2.9: A gas turbine blade before (left) and after (right) the casting process.

a compressor cascade. They compared its performance to a metamodel-assisted genetic
algorithm. The genetic algorithm was a real-coded genetic algorithm with truncation
selection and a constant mutation step-size. The results indicated a better performance
of the approach based on evolution strategies, which they explained by the capability of
the latter algorithm to adapt its mutation step-size.

In section 8.3 and section 8.3.2 further results on airfoil optimization are discussed. There,
the focus is on multi-objective problem formulations.

8.2 Optimization of a casting process for gas-turbine

blades

Another example for the successful application of metamodel-assisted evolution strate-
gies is the optimization of gas turbine blade casting processes, that was carried out in
collaboration with the research institute ACCESS e.V., Aachen, whose area of expertise
is the simulation and optimization of solidification processes.

8.2.1 Problem definition

During the manufacturing of a gas turbine, the casting of turbine blades is the most ex-
pensive process. This makes an optimization of this process very interesting for industry.
The highest gas turbine efficiency is achieved today with single-crystal (SX) and direc-
tionally solidified (DS) blading material, commonly produced in a Bridgman furnace. A
sketch of this solidification process is given in figure 8.2.10. Basically, the turbine blade is
withdrawn slowly from a radiation heater and the blading material solidifies gradually on
its surface. Both, the heating temperatures and the withdrawal speed can be controlled
by the casting engineer during the process. It is also possible to control it automatically
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Figure 8.2.10: Schematic drawing of the Bridgman casting process. The turbine blade
is slowly withdrawn from a radiation heater. As it leaves the heater, the
surface is rapidly cooled down by water cooling and radiation, causing the
superalloy mould on its surface to solidify in a directional manner.

by describing the changing withdrawal velocity by a poly-line with eleven parameters.

The design optimization aimed at the minimization of the total process time subject to
several constraints that stem from the quality requirements for the material. A constraint
was also formulated for the overall process time, in order keep the process time within a
reasonable range. In summary, the following constraint functions were formulated:

• The total process time should not exceed 5000 seconds.

• The probability for freckles1 formation should stay below a threshold value for each
node. In our studies we demand for a probability of zero.

• Dendritic crystal growth should be achieved, i. e. the G/v value should stay below
600. Here G denotes the temperature gradient in withdrawal direction, and v
denotes the solidification speed (cf. figure 8.2.11).

• The local curvature of the solidification front should be kept within a predefined
range (cf. figure 8.2.11, right) for each node. The angle between the normal vector
and the vector in direction of the withdrawal should stay below 20 degrees.

The latter three constraints are local constraints, meaning that they are computed for
every node of the finite volume mesh. Since the mesh comprises a large number of about
50000 nodes, it had been decided to integrate the information on local constraint viola-
tions. This was done by computing a single constraint value for each of the three classes

1Freckles are small defects of the blading material on the turbine blade’s surface.
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Figure 8.2.11: Visualization of two local constraints. The figure on the left hand side
shows the G/v criterion, where G denotes the temperature gradient and v
the solidification front speed, both measured in the direction of the with-
drawal. The value of G/v needs to be in a certain range in order to guar-
antee the desired dendritic growth. The figure on the right hand side
visualizes the curvature constraint. In order to achieve the desired fine
grained structure on the surface, the local curvature of the solidification
fronts (liquidus isotherms) should stay below a certain threshold value.

of local constraints. Emmerich and Jakumeit [EJ03], proposed to count the number of
bad nodes on the surface of the turbine blade. By bad nodes they denoted those nodes
for which local constraints were violated.

An improved version of this penalizing procedure was suggested by Emmerich and Jaku-
meit [EJ04]. There, they weighted each ’bad’ node by its control volume, and thereby
put more emphasize to constraint violations in larger control volumes. Furthermore,
distinct weighting factors were attributed to the three different types of local constraints,
reflecting their different importance [EJ04]. The sum of total weights of the nodes serve
as penalty term for the objective function.

8.2.2 Optimization algorithms

First, studies were conducted for the optimization of a dummy blade, i. e. a blade with a
simplified geometry. The complete design evaluation of one process variant for the casting
of this blade lasted one hour, in contrast to eight hours running time for the evaluation
of an blade casting process for a blade with realistic geometry.

Various optimization strategies have been tried for the optimization of the dummy blade:

• Kriging Monte Carlo strategy [JHN05]
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• Downhill simplex strategy by Nelder and Mead [Sch95]

• Evolution strategy with derandomized step size control (DES)

• Metamodel-assisted DES (MA-DES)

The evolution strategy with derandomized step size control that was used here, differed
from the evolution strategy that was introduced in section 3.5 by the way it adapts the
mutation step-sizes. The cumulative step-size adaptation algorithm (CSA) of Ostermeier
et al. [OGH94] was applied here, that allows the adaptation of individual standard
deviations for very small population sizes (e. g. µ = 1, λ = 7). We will not go into
details about this procedure here, since a sufficiently detailed explanation of the CSA
would extend the scope of this section. However, it shall be noted that the metamodel
was integrated in the same manner than described in chapter 4. In each generation, the
subset of ν = 4 most promising solutions among the λ offspring was chosen, evaluated
precisely, and considered for selection. The resulting algorithm was termed metamodel-
assisted DES (MA-DES). Two different versions of the MAES were tried: The MAES
with mean value pre-screening and the MAES with lower confidence bound pre-screening.

8.2.3 Numerical results

In figure 8.2.12 the convergence dynamics of the four different optimization strategies
are described. The MA-DES variants clearly outperform the conventional DES and the
downhill simplex algorithm. Note that the use of confidence value does not lead to a
better result for this example.

It can also be seen that the choice of the confidence factor ω = 0 leads to slightly better
results. An objective function value below 5000 cannot be found by any optimization
strategy, i. e. no point was found, with none of the constraints violated. It is very likely
that the change of the withdrawal profile is not enough to gain a turbine blade without
’bad’ nodes.

The best solutions found for each strategy are depicted in figure 8.2.13. On each turbine
blade the nodes with too high curvature or too low freckle tendency are marked with a
specific color. Freckles can not be found on this simple turbine blade geometry. Clearly,
the MA-DES could reduce the size of the regions with bad nodes best while keeping the
process time below 5000 seconds.

More recent results for a realistic turbine blade with the weighted penalty function are
reported by Emmerich and Jakumeit [EJ04]. The casting process was improved signifi-
cantly leading to a process time that is about 20% lower than the design suggested by an
expert. Again, the MAES outperformed other optimization strategies, like the downhill
simplex.

8.3 Airfoil design optimization

Next, we present results with the metamodel-assisted SMS-EMOA(subsection 8.3.1) and
metamodel-assisted NSGA-II (subsection 8.3.2) applied in multi-point airfoil design.
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Figure 8.2.12: A comparison of different conventional and metamodel-assisted optimiza-
tion strategies for optimization of the Bridgman casting process. The ob-
jective function value is plotted for each of the 100 precise evaluations.
The metamodel-assisted strategies are significantly faster in the beginning
of the search. The metamodel-assisted evolution strategies also lead to
better final results.

8.3.1 Two-objective NACA airfoil re-design problem

The NACA airfoil re-design test-case is a well known test case from literature (cf. Naujoks
et al. [NWTW02]). Two-objective functions need to be minimized simultaneously for
this problem. They stem from the task to re-design two target airfoils that themselves
are nearly optimal for given flow conditions. These flow conditions can be taken from
table 8.3.1.

For both flow conditions the pressure distribution around the airfoil has been calculated.
All design and simulation conditions, e. g. the flow models and mesh generation methods,
have been fixed for the study. The following two-dimensional design problem had to be
solved by the optimization:

f1,2(s) =

∫ 1

0

(Cp(s)− Cp,target1,2
(s))2ds→ min (8.3.1)

Here Cp denotes the pressure distribution along the airfoil, with s being the arc-length.

In order to compare results, the found Pareto front approximations were averaged by
means of a method described by Naujoks et al. [NWTW02]. A brief explanation of this
method shall be given next: A bisector is drawn through the positive quadrant of the
search space and equidistant lines that are parallel to this bisector are considered. In each
run the points on the Pareto front with the shortest distance to these lines are considered
for the calculation of the averaged front. If we receive at least three points out of five runs
within a predefined maximum distance, these points are averaged to become a member
of the averaged front. The resulting points of five runs from our studies can be seen next
to the Pareto front of the runs in the lower right part of figure 8.3.14. This procedure
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Figure 8.2.13: Comparison of the best turbine blades found with the different optimiza-
tion strategies introduced in subsection 8.2.2. The ”bad” points are due to
a too high curvature, to low G/v value or both are plotted. The formation
of freckles was not observed in this simple turbine blade.

does not reward high densities of points on the Pareto front, but could lead the engineer
to focus on designs with significant changes.

In a case study the SMS-EMOA, the classical NSGA-II and the metamodel-assisted
versions of the SMS-EMOA have been compared. Five runs for each algorithm in the
comparison have been evaluated. In the left hand part of figure 8.3.15 the different dotted
sets describe three out of the five Pareto fronts received from the different runs utilizing
SMS-EMOA without function approximations. The line describes the received averaged
Pareto front.

Figure 8.3.15 compares the averaged fronts received using SMS-EMOA with and without
fitness function approximations. In addition, the best result achieved with a metamodel-
assisted NSGA-II (taken from [EN04a]) has been included.

A clear superiority of the algorithms utilizing metamodels can be recognized. The av-
eraged front without metamodel integration is the worst front all over the search space
except for the upper left corner, the extreme f2 flank of the front. In most other regions
the SMS-EMOA with lbω filter seems to perform better than the other algorithms shortly
followed by the results from the metamodel-assisted NSGA-II with lbω filter. The SMS-
EMOA with mean value criterion yielded the worst front among those obtained with
metamodel-assisted EA.

In the extreme f2 flank of the front the results seem to be turned upside down. Here,
the averaged front from runs without model integration achieved the best results. This
result might be caused by the averaging technique. One run achieved outstanding results
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Case High lift Low drag

Property

M∞ [−] 0.20 0.77
Rec [−] 5 · 106 107

α [0] 10.8 1.0

Table 8.3.2: Summarized design conditions for high lift (starting phase) and low drag
(stationary phase). M∞ denotes the Mach number. From the given Mach
numbers, we conclude that both flight conditions are subsonic. Rec denotes
the dimensionless Reynolds number (c=chord length). Finally, α denotes the
angle of attack.
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Figure 8.3.14: Example for averaging Pareto fronts.

here, that led to an unbalanced average point that is better than the averaged points of
the other algorithms. This extreme effect could be avoided by averaging over much more
than five runs.

Notice, that the lower lbω filter yielded better results than the mean value filter. This was
also observed in [EN04a] and seems to be a general achievement, where more attention
should be drawn to.

8.3.2 Multi-objective optimization with constraints: The RAE 2822
test case

Next, we discuss results on the RAE 2822 airfoil optimization with three flow conditions.
This test case is particularly challenging, since it has more than two objectives and several
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cruise off-design 1 off-design 2

M 0.734 0.754 0.680
Re 6.5 · 106 6.2 · 106 5.7 · 106

α 2.8 2.8 1.8
transition 3% 3% 11%

Table 8.3.3: Flow conditions for the RAE 2822 airfoil design problem.

implicit and explicit constraints. Over and above, it has already been studied extensively
in literature. As it is shown next, it was possible to further improve the best design found
for this problem by means of the metamodel-assisted NSGA-II.

The flow around the baseline design, the RAE 2822 airfoil, is calculated with respect to
three different flow conditions, yielding different values for drag, lift and pitching moment
for each of the flow conditions. The task is to minimize the drag values Ci

d while not losing
lift and keep the pitching moment within a 2 % range. Here i ∈ {1, 2, 3} corresponds
to the three given flow conditions, one for cruising and two more off-design conditions.
These conditions can be taken from table 8.3.3.

The aerodynamic constraints for lift Ci
l and pitching moment Ci

m read:

• ∀i ∈ {1, 2, 3} : Ci
l ≥ Cl,base with Cl,base being the lift coefficient of the baseline
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RAE 2822 airfoil.

• ∀i ∈ {1, 2, 3} : Ci
m within +/- 2% of the pitching moment Cm,base of the baseline

RAE 2822 airfoil.

Furthermore, geometrical constraints have been defined:

• The thickness of the airfoil at 5% should be greater than or equal to the thickness
at 5% of the baseline geometry.

• The maximum thickness should be greater than or equal to the maximum thickness
of the baseline geometry.

• The leading edge radius should be greater than or equal to 90% of the leading edge
radius of the baseline geometry.

• The trailing edge angle should be greater than or equal to 80% of the trailing edge
angle of the baseline geometry.

The geometrical information about a proposed airfoil can be received from the simulation
software just after the airfoil shape is generated. The whole time-consuming procedure of
solving the flow and all post-processing tasks are not required to receive this information.
Accordingly, the geometrical constraints are treated differently from the aeronautical
ones, that require the costly flow calculation. This different treatment is described in
detail later.

Again, the airfoil parametrization was done using Bezier weighting points. The y coordi-
nates of these points serve as parameters for the optimization method. To be comparable
with previous studies, three Bezier weighting points have been used for both surfaces of
the airfoil, resulting in an optimization problem with 6 degrees of freedom. All other
configurations and parameters concerning mesh generation, flow models in use are kept
constant during the current investigation.

Note that for the RAE 2822 problem the geometrical constraint can be evaluated by a
simple preliminary check. Therefore, they have been treated in a special way. Solutions
were sampled for several times by the variation operators unless a feasible solution subject
to the geometrical constraints was obtained or the maximal sampling number of 1000
was exceeded. In the latter case the violation of an implicit constraint is reported to the
EA and this constraint function was treated in the standard way proposed for implicit
constraints. The same procedure was implemented for both strategies, the metamodel-
assisted NSGA-II and standard NSGA-II, in order to generate a higher ratio of feasible
individuals.

The results of the study are summarized in figure 8.3.16 and figure 8.3.17. They demon-
strate that the solution quality of the NSGA-II using metamodels is much higher than
that for the standard NSGA-II. By using the metamodel-assisted EMOA succeeded to
improve the diversity as well as the precision of the convergence to the Pareto front.
Compared to the results achieved with the mean value filter the application of the lbω
filter lead to a further improvement.
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By means of metamodel-assistance it was possible to obtain a significantly higher number
of feasible solutions in all five cases of the RAE 2822 problem (see figure 8.3.2). Further-
more, it was possible to find an improvement for the baseline design of the RAE 2822 test
case. For x∗ = (−0.000290, −0.000193, 0.000125, −0.000043, 0.000562, −0.000120) the
vector of objective function values f1(x

∗) = 0.022266, f2(x
∗) = 0.029198, f3 = 0.011615

clearly dominates that of the baseline design, that had been non-dominated by all solu-
tions for this problem known so far.

8.4 Summary and conclusions

In all reported test cases the MAES outperformed the optimization tools that were for-
merly applied on these problems as well as standard implementations of the ES.

The results prove the applicability of the MAES even for difficult problem formulations
with multiple constraints and more than two objectives.

Another important observation was, that for the application problems the acceleration of
the MAES was particular high in the first iterations. In the long run, usually the standard
ES versions reached similar quality values. The use of the confidence information in the
lower confidence bound MAES usually made the MAES more robust and led to better
final results. For the multi-objective problems, it also helped to get a high coverage of
the Pareto front.

We note that customized versions of the MAES have now been integrated in commercial
optimization packages like FORGE-3DTM and CASTSTM where it is used frequently and
with high success for the solution of optimization tasks as an alternative to gradient-based
methods.
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Figure 8.3.16: Results for airfoil shape optimization on the RAE test case. The up-
per figure displays the number of feasible solutions, i. e. solutions with
no constrained violations, obtained with the metamodel-assisted NSGA-II
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Figure 8.3.17: Scatter plot matrix for the three-objective RAE Airfoil Optimization. Each
plot depicts projections from three-objective solutions space into a two-
objective subspace. The data points in each particular plot denote pareto-
optimal solutions obtained from 5 runs with the same strategy compared
with the baseline design.
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9 Summary and outlook

Our knowledge can only be finite, while our ignorance must necessarily be infinite.

Karl Popper

Gaussian random field metamodels (GRFM) were proposed for accelerating evolutionary
optimization in the presence of time-consuming black box evaluations of deterministic
computer models. We considered (constrained) single-objective optimization, as well as
multi-objective optimization with conflicting objectives.

Chapter 2 dealt with a discussion of gaussian random field metamodels. Statistical as-
sumptions and computational aspects were discussed in the context of modeling the out-
put of deterministic functions. We pointed out that the number of training points mainly
determines the computational effort for the calibration and prediction procedures. In
order to speed-up the metamodel, so-called local metamodels were proposed, that work
with a reduced training set existing of spatial neighbors of the input vector. Moreover, we
conceptually compared metamodeling techniques. In particular, we established a close
relationship between radial basis function networks and gaussian random field metamod-
els for the prediction of single and multiple outputs. It turned out, that gaussian random
field metamodels extend the capabilities of (standard) radial basis function networks by
providing calibration procedures for their correlation parameters, as well as by computing
variances for the predictive distributions. Both features come at a computational cost,
which cannot be neglected if the number of training points is high and precise function
evaluations are comparably cheap.

Next, in chapter 3 an introduction of single-objective optimization was given. Firstly, we
summarized some recent results on the black-box complexity of single-objective optimiza-
tion. The results clarify, that both the dimensionality and the smoothness of the objective
function determines the difficulty for optimization in the worst case. In the remainder of
the chapter we reviewed some optimization techniques with a focus on methods that use
metamodels or function approximations in order to accelerate search. The survey reveals
that apart from recently proposed metamodel-assisted evolutionary algorithms there is
a long history of deterministic optimization methods, such as bayesian optimization and
model-assisted pattern search, that apply metamodels. Many concepts originally intro-
duced for deterministic methods were later transferred into the context of evolutionary
optimization. This holds also for some of the methods we developed within this thesis.
In addition, chapter 3 introduced evolution strategies and pointed out their merits and
limitations in the application domain of design optimization.

In chapter 4, we proposed metamodel-assisted evolution strategies (MAES) for single-
objective optimization. As a key concept we introduced filters that are procedures that

174



draw a subset of ν promising individuals from the offspring population. Only this subset
is considered for precise evaluation and, subsequently, in the replacement. All proposed
filters consider predictions of the precise objective function value. Local gaussian random
field metamodels, trained from all precise evaluations that are available, provide these
predictions and also a confidence measure related to each predictions.

Section 4.3 provided first steps towards a general convergence theory of the MAES. Firstly,
we proved for filters with ν > 0 the global convergence of the corresponding MAES on
regular functions with probability of one as the number of iterations approaches infinity.
Concerning the convergence dynamics, which is the more important question in practice,
we pointed out that amongst other difficulties the loss of the Markov property makes it
difficult, if not impossible, to analyze the dynamical behavior of the MAES analytically.
However, in section 4.3 by making an idealized assumption about the quality of the pre-
dictions, we derived some simple expressions for the speed-up of the MAES as compared
to the standard ES.

The remainder of chapter 4 focussed mainly on the development of different kind of filters
and the study of the algorithms that use these filters. Firstly, we proposed filters that
select a subset of constant size ν from the offspring population. These filters pre-screen
the population by means of scalar criteria based on the prediction and then select the ν
best individuals. Besides the mean value filter that makes only use of the predicted value,
with the lower confidence bound (lbω) filter, the expected improvement (ExI) filter, and
the probability of improvement (PoI) filter we introduced also filters that take consider
the confidence measure attributed to each prediction. In addition, filters with a variable
output size are introduced. Whereas the Rω-filter aims at a high recall, the Pω-filter
aims at a high precision of the selected subset with regard to the relevant solutions.
Both filters rely upon the idea to use two-sided confidence bounds for the predictions,
and thus are classified as interval filters. In addition, with the most likely improvement
(MLI) and the lower confidence bound improvement (LBI) we identified straightforward
generalizations of the mean value and lbω filter, that result in an output set of variable
size. Note, that the application of the ExI and lbω filter were proposed by the author of
this thesis [EGÖ+02], as well as the filters with variable output size, whereas the mean
value filter (e.g. [GGP00], [Jin05]) and the probability of improvement filter [USZ03]
were contributed by others. Finally, a brief discussion of stochastic selection methods in
noisy optimization methods and related to the design of filters for the MAES.

The comparison of filters was carried out in three stages. Firstly, conceptual relation-
ships between filters were deduced from their design. Secondly, empirical studies were
conducted in order to gain insights into the behavior of the algorithms using the respective
filters on different types of artificial test problems. As a final test of their applicability,
some of the most promising algorithms were applied on real-world optimization problems.

The theoretical analysis revealed some interesting relationships between different types
of filters. Firstly, we studied in more detail the influence of the variance of the predictive
distribution on the filter. Whereas the lbω filter always rewards solutions with a high
variance (describing the uncertainty of the prediction), for the PoI and ExI filter it de-
pends on the difference between the predicted value and the so-far best found function
value f tbest, whether they reward a high variance or not. For filters with adaptive output
size we pointed out invariant permeability relationships. These allows to establish general
relationships between subsets selected by different filters without knowing the particular
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input population (section 4.2). Moreover, we established a mapping between the LBIω
and MLI filters and a threshold version of the PoI filter.

Various indicator measures were developed to observe the behavior of the MAES and
to learn about its functioning. In order to measure the capability of a filter to select
the relevant offspring individuals, we proposed the usage of recall and precision measures
borrowed from the theory of information retrieval. Besides, the quality of the sorting
achieved with the proposed pre-selection criteria has been measured. For this, an indica-
tor based on the number of sorted pairs was proposed. Over and above, cross-validation
and y ∼ y as well as y ∼ lbω diagrams were proposed to judge upon the numerical quality
of uncertain predictions.

The proposed indicators alongside with common performance measures for the history of
the best found function values were used for empirical studies on artificial test problems,
including smooth quadratic problems, as well as discontinuous and multimodal prob-
lems. Some of the results from the empirical studies of the algorithm’s performance are
highlighted as follows:

• MAES with constant output size almost ever significantly outperformed counter-
parts of the standard ES on the test problems with 5 up to 20 dimensions.

• On local optimization problems the online training of the metamodel is sufficiently
fast to allow for a high precision approximation of the optimum. This holds for all
tested filters, including those using confidence measures.

• Filters with constant output size that made use of confidence measure, namely the
mean value, lbω, PoI and ExI filter, were more reliable on multimodal functions.

• The behavior of filters with adaptive output size was rather instable. Filters with
high precision tended to converge to local optima in multimodal optimization. Fil-
ters with high recall suffered from a very low local progress, which may be explained
by the large number of individuals evaluated in each generation.

The analysis of the behavior of the filters and the metamodels during the run provided us
with further valuable insights. By means of the precision and recall measures it has been
verified that the MAES filters approximately behave how they are expected to behave due
to their design. The plots of the number of inversion indicators suggest that the sorting
of offspring populations was almost always significantly better than random sorting. As
expected, the sorting based on the mean value criterion yielded the lowest number of
inversions. An important observation was that the number of sorted pairs was higher for
the mean value filter also on multimodal problems where it got stuck in local optima.
This means, that despite the relatively high quality of the metamodel it has not been
possible to find a better approximation to the global optimum. We concluded, that filters
that stress on a good emulation of the EA are not necessarily filters that lead to the best
performing algorithms on the more difficult test cases. Moreover, the good behavior of
strategies using the confidence measure cannot be explained, by the assumption that
sampling in unknown regions helps to increase the model quality. Rather, it is likely that
the intelligent use of the confidence measure helps to lead the search into unexplored but
promising regions of the search space.
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In chapter 5 and 7 the filters developed for single-criterion optimization have been gen-
eralized for the more complex problem definitions of constrained and multi-objective op-
timization. For the constrained optimization straightforward generalizations have been
suggested. First results, mainly for constant size output filters, were obtained on Keane’s
problem and on two application problems indicate the applicability of these extensions.

The generalization of the filter concepts to Pareto optimization with and without nonlin-
ear constraints turned out to be considerably more difficult. Here, pre-selection criteria
have to take account the improvement in the diversity of the non-dominated set of the
current population and also in its convergence to the Pareto front. The hypervolume
measure turned out to be a well-suited indicator that integrates both aspects in one
scalar value. Since currently no EMOA used the hypervolume measure in its selection
procedure, a new EMOA has been developed, called SMS-EMOA, that selects new indi-
viduals of a population by means of their contribution to the dominated hypervolume.
This EMOA yielded superior results on standard test-suites (ZDT1 - ZDT4, ZDT6) for
multi-objective optimization, even without assistance of a metamodel.

The idea to use a hypervolume metric in the context of multi-objective optimization is
relatively new. So, efficient procedures had to be developed for computing hypervolume
differences in the aforementioned algorithmic approach. Procedures were developed for
the computation of the hypervolume differences in two- and three-dimensional solution
spaces. For three dimensional sets the developed algorithm was significantly faster than
state-of-the-art algorithms for this task.

After introducing this new EMOA in chapter 6 (and also the classical NSGA-II algorithm)
the filters suggested for the single criterion case were generalized and integrated into the
SMS-EMOA and NSGA-II (cf. chapter 7). The obtained metamodel-assisted EMOA have
been tested both on simple artificial test functions and on challenging practical problems
from airfoil design. It turned out that the criteria using uncertainty measures differ much
more in the multi-objective problem domain than they do in the single-objective problem
domain. In particular, it has been found that the lbω criterion leads to the best results
with regards to the coverage of the Pareto front and its dominated hypervolume, while
the generalized probability of improvement (PoI) criterion and the mean value criterion
led to a good convergence, but tend to concentrate the population in a small region of
the Pareto front.

In order to measure the properties of the proposed EMOA, we introduced two multi-
objective function families which are scalable with respect to their dimension, namely
the EBN family of functions and the generalized Schaffer problem. Both were analyzed
in a rigorous manner, and it has been found that the curvature of their Pareto front can
be gradually adjusted, in order to achieve concave, linear, and convex Pareto fronts.

Last but not least, applications in industrial design have been tackled. The survey com-
prised a wide range of subject areas including airfoil shape design, turbine blade casting,
forging, and electromagnetic compatibility design. Single-objective, as well as multi-
objective and constrained problems were tackled in this study. The results were very
encouraging, and even complex nonlinear problems, dealing with multiple constraints
and objectives were solved better than with state-of-the-art methods, like gradient based
search methods, standard evolutionary algorithms, or pattern search methods.
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Before looking at future extensions some recommended parameter settings for the MAES
shall be provided for the practitioner: Based on the lessons learned in this thesis, we
recommend the use of the MAES versions that utilize either the PoI filter or the lbω
filter. The latter offers an extra parameter that allows us to scale between a fast local
progress or a high robustness. A recommended setting is ω = 2.0. Far more effective
for increasing the local convergence speed, however, is a reduction of ν. Note, that for
both measures that increase the local progress, we have to pay the price that a premature
stagnation on multimodal landscapes gets more likely. For constrained optimization, we
recommend the usage of the lower bound and PoI filter, too, though our evidence is still
based on a very small test set, and further studies on artificial landscapes are encouraged
for the future.

In multi-objective optimization there seems to be an advantage for the ExI filter and
the lbω filter with ω ≈ 2. Since for the lbω filter computational procedures are more
simple and do not require a problem specific reference point, this strategy could be a
good starting point for practical applications. Furthermore, there are now already some
studies that underpin the robustness of this criterion in practise. Whenever a small
population is used and a distribution on the Pareto front is desired that emphasizes knee
points, the use of the SMS-EMOA in favor of the NSGA-II as basic EMOA is strongly
recommended.

As a parameter setting, for the problems studied in this thesis a (5 + 20 < 100)-MAES
proved to be a good default value for the MAES parametrization. For multi-objective and
constrained optimization µ was increased to 15 and 20, respectively, in order to achieve a
higher diversity in the population. For optimization with a far smaller budget than 1000
precise evaluations smaller population sizes, as well as output sizes ν of the filters, should
be considered. From experiences with practical optimization problems a ratio µ/ν ≈ 4
proved to be a reasonable choice. The number of training points for the metamodel
should be chosen proportionally to the dimensions of the search space. In this work
we mainly worked with only 2d training points and already achieved quite good results.
However, for practical applications a further increase of the number of training points is
recommended.

9.1 Outlook

Though we belief that this work contributes to a deeper understanding and to an extension
of the scope for metamodel-assisted design optimization, we also believe that there are
still many open research questions. Obviously, the MAES approach would benefit from
a further extension of experimental results on artificial and practical optimization prob-
lems going alongside with further studies of control parameters. An interesting approach
for the tuning of algorithm parameters has been recently proposed by Bartz-Beielstein
[BB05]. It would be interesting to apply this approach to the MAES for different opti-
mization scenarios.

Another direction for future research is to apply GRFM as a data analysis tool for ana-
lyzing scattered data from optimization. A first step in this direction has been made in
[Zho05]. Here metamodels were used to interpolate results from a database of (costly)
objective function evaluations obtained during an optimization run. By means of the
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proposed technique global and local properties of the objective function were estimated
from the given data.

Furthermore, applications of the MAES in industrial design are envisaged. For example,
the MAES is used in an ongoing project to optimize cooling designs for solidification
processes, thereby using the GRFM as a difference model for modeling the deviation
between a coarse grained and a fine grained model of the process. Moreover, the modeling
of noisy objective function evaluations and the integration of techniques for dealing with
noisy responses could extend the scope of the method significantly. For example physical
experiments could be considered as evaluation functions, then. A starting point for could
be recent work on noisy optimization with evolutionary algorithms and response surface
models [BT05].

A particularly challenging endeavor would be to transfer the ideas of metamodel-assisted
optimization for applications in discrete search spaces. GRFM with a single correlation
parameter make no use of the vector field structure of Rd but only of the metric defined on
S. Provided an appropriate distance measure that yields a strongly correlated landscape
is established on the search space, GRFM, or similar metamodels, could also be used
for the prediction of function values in discrete search spaces. Techniques on how to
define problem-specific distance functions for complex search spaces that lead to strongly
correlated landscapes have for example been derived by Emmerich et al. [EGS01]. There,
the idea was to use a distance measure based on the minimal sum of weighted minimal
moves that are needed to transform one solution into another solution. As possible
applications of discrete metamodel-assisted EA the accelerated simulator-based synthesis
of truss constructions, the automatic parametrization of algorithms, the synthesis of
energy production processes, or the de-novo design of proteins could be envisioned.
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A Multi-objective test functions

A.1 ZDT1 problem

The ZDT1 problem is described as

f1(x) = x1 (A.1.1)

f2(x) = g(x)[1−
√

x1/g(x)] (A.1.2)

g(x) = 1 +
9

n− 1

n∑

i=d

xi (A.1.3)

x ∈ [0, 1]d (A.1.4)

xi ∈ [0, 1], i = 0, . . . , d (A.1.5)

The problem has a convex Pareto front. Its optima are given by x1 ∈ [0, 1] and xi =
0, i = 2, . . . , d.

A.2 ZDT2 problem

The ZDT2 problem is described as

f1(x) = x1 (A.2.6)

f2(x) = g(x) · [1− (x1/g(x))2] (A.2.7)

g(x) = 1 +
9

n− 1

d∑

i=2

xi (A.2.8)

x ∈ [0, 1]d (A.2.9)

This problem has a concave Pareto front. Its optima are given by x1 ∈ [0, 1] and xi =
0, i = 2, . . . , d.
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A.3 ZDT3 problem

The ZDT3 problem is described as

f1(x) = x1 (A.3.10)

f2(x) = g(x)
(

1−
√

x1/g(x))− x1/g(x) sin(10πx1)
)

(A.3.11)

g(x) = 1 +
9

n− 1

n∑

i=2

xi (A.3.12)

x ∈ [0, 1]d (A.3.13)

This problem has a non-convex Pareto front. Its optima are given by x1 ∈ [0, 1] and
xi = 0, i = 2, . . . , d.

A.4 ZDT4 problem

The ZDT4 problem is described as

f1(x) = x1 (A.4.14)

f2(x) = g(x)(1− (xi/g(x))2) (A.4.15)

g(x) = 1 + 10(n− 1) +
n∑

i=2

(x2
i − 10 cos(4πxi)) (A.4.16)

x ∈ [0, 1]× [−5, 5]d−1 (A.4.17)

This problem has many local Pareto fronts. Its optima are given by x1 ∈ [0, 1] and
xi = 0, i = 2, . . . , d.

A.5 ZDT6 problem

The ZDT6 problem is described as

f1(x) = 1− exp−4x1 sin(6πx1)
6 (A.5.18)

f2(x) = g(x)(1− (f1(x)/g(x))2) (A.5.19)

g(x) = 1 +
9

n− 1

n∑

i=2

xi (A.5.20)

x ∈ [0, 1]d (A.5.21)

This problem is characterized by a low density of solutions near the Pareto front. Its
optima are given by x1 ∈ [0, 1] and xi = 0, i = 2, . . . , d.
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A.6 Generalized Schaffer problem

The generalized Schaffer function is described as

f1(x) :=
1

γ
(

d∑

i=1

x2
i )
γ → min, f2(x) :=

1

γ
(

d∑

i=1

(1− xi)2)γ → min (A.6.22)

x ∈ [0, 10]d (A.6.23)

The curvature of the Pareto front is scalable by means of the parameter γ. The equation
describing the Pareto front reads

y2 = (1− y1/2γ
1 )2γ , y1 ∈ [0, 1]. (A.6.24)

Thus, γ = 0.5 results in a linear Pareto front, γ < 0.5 in concave Pareto fronts, and γ >
0.5 in convex Pareto fronts. The Pareto fronts are axis-symmetric to the bi-sector. The
extremal points of this function are given by (y1, y2)

T = (0, 1)T and (y1, y2)
T = (1, 0)T .

An analysis of this function, including the derivation of equation A.6.24, was provided
by Emmerich [Emm05].

A.7 Analysis of the EBN family of functions

With expression 6.3.10 we introduced the EBN family of functions. For the reader’s
convenience, we will repeat the definition here:

fγ1 (x) = (

n∑

i=1

|xi|)γ · n−γ → min, fγ2 (x) := (

n∑

i=1

|xi − 1|)γ · n−γ → min

x ∈ R
d

The EBN function family, first proposed in [EBN05], is scalable in dimension and by
choosing the parameter γ the curvature of its Pareto front can be controlled. In particular,
values of γ < 1 result in a concave Pareto front, whereas values > 1 result in a concave
Pareto front.

The equation describing the Pareto front reads

y2 = (1− y1/γ
1 )γ, y1 ∈ [0, 1].

Next, we will provide a rigorous analysis of this function family, including a proof for
A.7.25. In particular its pareto-optimal set will be derived, accompanied by expressions
for the functions describing the Pareto front.

We start with the analysis of the instance with γ = 1, and later we generalize the results
for arbitrary γ > 0.

Lemma 7. The Pareto-optimal set of the d-dimensional EBN function with γ = 1 is
given by [0, 1]d ⊂ R

d
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We will prove this lemma by first providing a number of propositions. From these propo-
sitions, the validity of lemma 7 can be easily concluded.

Let us prove that there is no non-dominated point outside of [0, 1]d:

Proposition 2. Every x ∈ Rd − [0, 1]d is dominated by at least one point x′ ∈ Rd.

To prove this, it suffices to prove the existence of a point x′ with x′ ≺ x for all x ∈
Rd − [0, 1]d, i. e.

x ∈ R
d − [0, 1]d ⇒

∃x′ ∈ R
d : (f1(x

′) ≤ f1(x) and f2(x
′) < f2(x)) (A.7.25)

or

∃x′ ∈ R
d : (f1(x

′) < f1(x) and f2(x
′) ≤ f2(x)). (A.7.26)

Proof. In order to prove the disjunction stated above, we will first provide a set L1 ⊆ Rd

for which the first part of the disjunction (expression A.7.25) always evaluates to true,
and then provide a set L2 ⊆ Rd for which the second part of the disjunction (expression
A.7.26) always evaluates to true. The union of these sets, L1 ∪ L2, will then include all
points in Rd, except [0, 1]d.

First, we will determine a set L1 for which condition A.7.25 holds. It can be simply
verified that, x ∈ L1 implies A.7.25, if we define

L1 := {x ∈ R
d|∃t ∈ [0, 1]d : (f1(x

′) = f1(x) and f2(x
′) < f2(x) and x′1 = · · · = x′d = t)

︸ ︷︷ ︸

Cond1

}.

(A.7.27)
holds,

Whenever condition Cond1 is true this implies

f1(x) = f1(x
′) =

d∑

i=1

|x′i| =
d∑

i=1

|t| =
d∑

i=1

t = d · t. (A.7.28)

Hence, t = f1(x)/d. Moreover, Cond1 implies

f2(x
′) =

d∑

i=1

(1− x′i) = d · (1− t) = d · (1− f1(x)/d) = d− f1(x). (A.7.29)

Hence, if Cond1 holds, also
d− f1(x) < f2(x) (A.7.30)

has to be true. Regardless the choice of x ∈ Rd, the value of f2(x) is always greater than
zero. Hence, the condition is fulfilled for all f1(x) > d. This condition definitely holds
for all x ∈ Rd − [−1, 1]d. Thus condition A.7.25 holds, at least, for x ∈ Rd − [−1, 1]d.

In a similar manner, let us now determine a set L2 ∈ x for which x ∈ L2 implies A.7.25.
Such a set is given by

L2 = {x ∈ R
d|∃t ∈ [0, 1]d : (f1(x

′) < f1(x) and f2(x
′) = f2(x) and x′1 = · · · = x′d = t)

︸ ︷︷ ︸

Cond2

}.

(A.7.31)
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Since |1− t| = 1 − t for t ∈ [0, 1], for all t and x that make Cond2 in expression A.7.31
evaluate true we are allowed to write

f2(x) =
d∑

i=1

|1− t| =
d∑

i=1

(1− t) = d · (1− t). (A.7.32)

Hence, we get
t = 1− f2(x)/d (A.7.33)

Furthermore, we have to make sure that f1(x
′) < f1(x) is fulfilled for the given choice of

x′. Making use of |t| = t for t ∈ [0, 1], we obtain:

f1(x
′) =

d∑

i=1

x′i =

d∑

i=1

t = d · t < f1(x). (A.7.34)

Now, by substituting t from A.7.33, the qualifying condition for x reads:

d− f2(x) < f1(x) (A.7.35)

Clearly, f1(x) is greater than 0. Hence, the condition f1(x
′) < f1(x) is fulfilled for all

f2(x) > d and thus for all x ∈ Rd− [0, 2]d. Accordingly, all solutions in L2 := Rd− [0, 2]d

are dominated by at least one x′ ∈ Rd.

Summing up, each point in

L1 ∪ L2 = (Rd − [−1, 1]d) ∪ (Rd − [0, 2]d) = R− [0, 1]d (A.7.36)

is dominated by some point in [0, 1]d.

Hence, only solutions within the interval [0, 1]d remain as candidates for non-dominated
solutions.

As an auxiliary result we prove

Proposition 3. Let l : [0, 1] 7→ Rd be defined as l(t) := t · (1, . . . , 1)T . For every solution
vector (f1(x), f2(x))T with x ∈ [0, 1]d there exists t ∈ [0, 1]. such that f1(l(t)) = f1(x)
and f2(l(t)) = f2(x).

Proof. By inserting the definitions for f1 and f2 we get the equation system:

d∑

i=1

|xi| =

d∑

i=1

|t| (A.7.37)

d∑

i=1

|1− xi| =

d∑

i=1

|1− t| (A.7.38)

Since all addends in the sums are positive or zero, we can further simplify to

d∑

i=1

xi = d · t (A.7.39)

d∑

i=1

(1− xi) = d− d · t. (A.7.40)

184



From the first expression, we obtain t =
∑d

i=1 xi/d. It remains to be proven, that for this
choice of t the second expression evaluates to true. This holds, because

d− d · t = d− d ·
d∑

i=1

xi/d = d−
d∑

i=1

xi =
d∑

i=1

(1− xi). (A.7.41)

Now, we can prove the following important result:

Proposition 4. All points x ∈ [0, 1]d are mutually non-dominated.

Proof. We prove this for L = {x|x = l(t), t ∈ [0, 1]}. For all other points in the cube [0, 1]d

proposition 3 states that they are equivalent in the solutions space to some point in L, and
hence the proposition will also hold for them. Let x = (t, . . . , t)T and x′ = (t′, . . . , t′)T

denote two distinct points in L. Then f1(x) = d · t and f2(x) = d · (1 − t). Now, given
that t ∈ [0, 1[, t′ ∈]0, 1]: f1(x) < f1(x

′) ⇔ |t| < |t′| ⇔ |1− t| < |1− t′| ⇔ f2(x) > f2(x
′).

Thus, x cannot dominate x′.

Next we can prove that all points in [0, 1]d are non-dominated.

Proposition 5. For all x ∈ [0, 1]d there exists no point in x′ ∈ Rd such that x′ ≺ x.

Proof. Points in the set [0, 1]d are mutually non-dominated, so there can be no point in
x′ ∈ [0, 1]d that dominates x. Points, x′′ ∈ Rd − [0, 1]d are dominated by some point x′

in [0, 1]d. Due to the transitivity of the Pareto preference relation, x′ ≺ x′′ would imply
x′ ≺ x which again contradicts with the mutual non-dominance of points in [0, 1]d.

Using these propositions as ’building blocks’, we can easily assemble a proof for the
lemma 7. From proposition 2 we know that points outside of [0, 1]d are not candidates
for non-dominated points. Moreover, as all points in [0, 1]d are mutually non-dominated
(proposition 4) and none of them is dominated by a point outside [0, 1]d (proposition 5),
they must necessarily be non-dominated points.

We continue with the generalization of lemma 7 for arbitrary γ > 0:

Theorem 4. The non-dominated set of the EBN problem for γ > 0 is given by [0, 1]d.
The Pareto front is described by {(y1, y2)|y1 = tγ ∧ y2 = (1− t)γ ∧ t ∈ [0, 1]}.

Proof. We recall the well known fact that applying monotonous transformations

• multiplication by means of a positive number and

• empowering of positive expressions by means of positive exponents

on both sides of equalities or inequalities are equivalence transformations. Hence the
introduction of does neither change the Pareto precedence order between points in the
search space, nor does it affect the Pareto optimal set. Hence, the Pareto optimal set
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[0, 1]d is inherited by all members of the function family with γ > 0. However, the
parameter γ influences the shape of the Pareto fronts.

Since all solutions of the Pareto front are described by the co-domain of l(t), we obtain the
expression for the Pareto front: f1(t) = (dt)γ/dγ = tγ and f2(t) = (d−dt)γ/dγ = (1− t)γ .
In order to make f2 dependent of f1 and get rid of the curve parameter t we transform
y1 = tγ to t = y

1/γ
1 and inserting the expression for t into y2 = (1− t)γ we obtain

y2(y1, γ) = (1− y1/γ
1 )γ . (A.7.42)

For γ = 1 this evaluates to the linear function y2 = 1− y2, for γ = 2 to

y2(y1, 2) = (1−√y1)
2, (A.7.43)

and for γ = 0.5 we obtain

y2(y1, 0.5) =
√

1− y2
1. (A.7.44)

The analysis of the generalized Schaffer problem (appendix A.6) can be carried out in a
similar manner. The interested reader is referred to [Emm05].
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B Related publications and history

In this section I would like to relate work that has been published previously to work
published in this thesis. Over and above, I want to acknowledge the contributions of my
co-authors. At the same time, to make the discussion more transparent, I will provide
some background information about the historical development of this thesis. Not all of
the work published is summarized in my thesis and, vice versa, a great part of my thesis
has not yet appeared in publications. Hence, this appendix might also be interesting for
those, who are searching for additional material on metamodel-assisted optimization.

Center for applied systems analysis (1999-2002)

The first publications on optimization were related to my involvement in the research
projects ’Gesamtoptimierung verfahrenstechnischer Anlagen mit naturanalogen Meth-
oden’ founded by the German Volkswagen Stiftung and ’Automatic Optimization of
Selected Chemical Processes’ founded by the German BMB+F, both situated at the
CASA/ICD, Dortmund, with partners in chemical industry, as well as academic research
institutes (ACCESS (RWTH Aachen), UMSICHT e.V. (Oberhausen) and Chair for Tech-
nical Thermodynamics (RWTH Aachen)). First publications dealt with automatized op-
timal chemical process synthesis (e. g. [Emm99, ESGG00, EGH+00, EGG+00, Emm00]
and [EGS01]). Among these first publications, I would like to highlight the article:

Michael Emmerich, Monika Grötzner, Martin Schütz: Design of graph-based evo-

lutionary algorithms: A case study for chemical process networks, Evolu-
tionary Computation, 9, 3, 329-354, 2001

In this article, guidelines for designing problem-specific evolutionary algorithms were
proposed and applied for the optimization of an chemical engineering plant. In my thesis,
this work has not been addressed in detail, though in chapter 9 the proposed method of
how to extend the MAES to discrete search spaces is based on the construction method
for metric-based evolutionary algorithms developed by the author in [EGS01].

Within the AUTO-OPTI-CHEM project I also got confronted with continuous design op-
timization problems in chemical industry. There we faced single- and multi-objective opti-
mization problems with very time consuming evaluation functions (ranging from minutes
up to several hours). Moreover, existing gradient-based optimization methods suffered
from a lack of robustness, and other methods, like for example evolution strategies, were
sought to solve these problems.
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The studies reported in the following publications were triggered by our efforts for de-
signing appropriate optimization algorithms for such problems. Three ways of how to
accelerate the evolution strategy in the presence of time consuming function evaluations:
(1) the acceleration of the step-size adaptation, (2) exploitation of parallel computing
and (3) the use of approximate function evaluations. The latter idea culminated in the
conception of the metamodel-assisted algorithms described in this thesis.

Michael Emmerich, Rafael Hosenberg: TEA - A C++ library for the design of

evolutionary algorithms, Technical Report of the Collaborative Research Center 531
Computational Intelligence, CI-106/01, University of Dortmund, January, 2001

Part of the software for this thesis was developed using the TEA library, the concep-
tual design of which is described in this paper. The credits for the authorship of this
publication go in equal parts to both co-authors.

Thomas Bäck, Michael Emmerich, Martin Schallmo: Industrial applications of

evolutionary algorithms: A comparison to traditional methods, I. C. Parmee,
P. Hajela, Optimization in Industry, 303-314, Springer, London, 2002

This was the first publication on the topic of evolutionary optimization with a small
budget of function evaluations. It compares evolution strategies to other direct opti-
mization methods on representative problems for design optimization (among others a
three-dimensional thermal design problem). This work is referred to in chapter 3 of this
thesis.

M. Schallmo contributed the discussion of the thermal design problem and parameterized
the simulator. The direct search algorithms were selected and compared by me. A general
overview on EA was contributed by Th. Bäck, who also initiated the work on this topic.

Michael Emmerich, Lars Willmes, Thomas Bäck: Asynchronous evolution strate-

gies for distributed direct optimisation, K. Giannakoglou, D.T. Tsahalis, J.
Périaux, K.D. Papailiou, T. Fogarty, Evolutionary Methods for Design, Optimization,
and Control with Applications to Industrial Problems, 53-58, CIMNE, Barcelona, 2002

As a first attempt to increase the speed of evolutionary algorithms with a limited budget
of function evaluations, we tried to exploit parallel computing resources. Various steady
state approaches that minimize idle time were compared to synchronous parallelization
schemes by means of order statistic and discrete-event simulations. The paper is refer-
enced in chapter 6, where a steady state EA is developed.Credits for the manuscript and
the work on the results go equally to the co-authors of this paper.

Alexios Giotis, Michael Emmerich, Boris Naujoks, Kyriakos Giannakoglou, Thomas
Bäck: Low-cost stochastic optimization for engineering applications, K. Gian-
nakoglou, D.T. Tsahalis, J. Périaux, K.D. Papailiou, T. Fogarty, Evolutionary Meth-
ods for Design, Optimization, and Control with Applications to Industrial Problems,
361-366, CIMNE, Barcelona, 2002
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This paper features a preliminary version of the MAES (cf. chapter 4). K. Giannakoglou
and A. Giotis were the first who proposed approximative function evaluations to accel-
erate single- and multi-objective evolutionary algorithms [GG99]. Also they were among
the first, who promoted the use of these methods in turbomachinery [Gia99] and airfoil
optimization [GG99, GGP00].

The collaboration with the LTT started 2001 within the framework of the IKY2000 bi-
lateral exchange project between the CASA/ICD e.V. and the NTU Athens (Greece),
financially supported by the German DAAD and the Greek IKY. The aim of this project,
proposed by Th. Bäck and K. Giannakoglou and me was to extend the scope of applica-
tions to process engineering problems and to integrate approximations also into evolution
strategies.

This first publication that emerged from our collaboration, already presents a first version
of an evolution strategy with approximate function evaluations. At this time, metamodels
were based on radial-basis function networks1, developed by Giannakoglou and Giotis
[GGP00]. In contrast to the MAES proposed in this thesis, the preliminary version
MAES worked with a significantly smaller population size and did not make use of any
error prediction.

Michael Emmerich, Alexios Giotis, Mutlu Özdemir, Thomas Bäck, Kyriakos Gian-
nakoglou: Metamodel-assisted evolution strategies, J. J. Merelo Guervós, P.
Adamidis, H.-G. Beyer, J. L. Fernández-Villacañas, H.-P. Schwefel, Parallel Prob-
lem Solving from Nature - PPSN VII, Proc. Seventh Int’l Conf., Granada, 361-370,
Springer, Berlin, 2002

This paper proposed the MAES as it is described in this thesis. Both ideas, to switch
from radial basis function networks to Kriging and to use the confidence information were
contributed by me. Also, I suggested to switch from a (1, 10)-ES to a (15, 100)-ES and
make a more intensive use of the metamodel for the evaluation of the offspring population.

Many detailed problems had to be solved to get a first stable version of the Kriging
emulator running. These problems were solved to a great deal by M. Özdemir, who also
worked on the visualization of results. K. Giannakoglou and A. Giotis provided a study
on a test case. Also the general framework for metamodel-integration proposed by them
was adopted. , Th. Bäck provided a study for the adaptation of step-sizes. The work on
the manuscript was shared by all authors.

Thomas Bäck, Michael Emmerich: Evolution strategies for optimisation

in engineering applications, H.A. Mang, F.G. Rammerstorfer, J. Eberhard-
steiner, Proc. Fifth World Congress on Computational Mechanics (WCCM V),
Vienna, July 7-12, 2002, Int’l, Association for Computational Mechanics, 2002,
http://wccm.tuwien.ac.at/, Paper-ID: 81284

This paper provides an overview of evolutionary strategies for applications in compu-
tational mechanics that was mainly written by Thomas Bäck. It contains a section on

1A comparison of these approximation methods to the Kriging method, the use of which was later
proposed by me, can be found in chapter 2 of this work.
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metamodel-assisted evolution strategies and its application to the optimization of an air-
foil. This part was contributed by me and it includes a comparison of the MAES to
other state-of-the art optimization methods, like pattern search and sequential quadratic
programming (cf. chapter 8).

APOMAT-COST Network (2003-2005)

The aim of the European APOMAT-COST (from: Automatic process optimization in
the material sciences) initiative was to develop and to apply numerical optimization
methodologies for automatic materials process design. The next three publications are
related to my involvement within this European network and report on the application of
metamodel-assisted evolution strategies within an industrial context. Part of this work
is reproduced in chapter 8. Also the development of constraint handling methods for
metamodel-assisted evolution strategies (chapter 5) was triggered by this project work.

Michael Emmerich, Jürgen Jakumeit: Metamodel-assisted optimisation with

constraints: A case study in material process design, G. Bugeda, J. A. Désidéri,
J. Périaux, M. Schoenauer, G. Winter, Evolutionary Methods for Design, Optimiza-
tion, and Control with Applications to Industrial Problems (CD-ROM), CIMNE,
Barcelona, 2003

This paper proposes the first constraint handling approach for metamodel-assisted evo-
lution strategies. Also we applied the MAES for the first time in the domain of turbine
blade casting.

This paper was written in equal parts by J. Jakumeit and me. I contributed the opti-
mization algorithm, the constraint handling method, and the development of the software
module QUALITY-CASTSTM for the numerical integration of local constraints functions. Be-
sides, I suggested to learn metamodels from simulator outputs (from which objective
functions can be derived) instead of modeling a penalized or aggregated function value.
J. Jakumeit initiated the project and contributed the test problem, the objective func-
tion formulation, and the interpretation of results. He contributed also a Kriging monte
carlo strategy and Nelder Mead’s simplex strategy, both of which were also tested on the
application problem. Part of the work was done during my short-term employment at
the RWTH Aachen and I would like to thank the ministry of North-Rhine Westphalia
(MSWWF) for financial support during that time.

Jürgen Jakumeit, Michael Emmerich: Optimization of a gas turbine blade cast-

ing using evolution strategies and kriging, B. Filipic, J. Silc, Proc. Int’l Conf.
Bioinspired Optimization Methods and Their Applications (BIOMA’04), 95-104, Jozef
Stefan Institute, Ljubljana, Slovenia, 2004

A follow-up of the aforementioned paper. This time, a more realistic industrial test-
case was optimized and an enhanced version of the constraint and objective function
formulation was used. The main innovation in this formulation was the weighting of
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local constraint violations with respect to their control volume (see chapter 8, the idea of
which was due to J. Jakumeit. I contributed the parts that were related to the MAES.

Jürgen Jakumeit, Michael Emmerich: Inverse modeling and numerical optimiza-

tion of heater temperatures in a Bridgman process MCWASP Conference Mod-
eling of Casting, Welding and Advanced Solidification Processes XI 2005, France, (ac-
cepted for)

This paper stands in line with the two previously mentioned publications. New test runs
were presented. This time the optimization temperature profile was the focus and the
similarity between simulated results and results from the actual production process were
compared. Accordingly, for the first time a result obtained with the metamodel-assisted
evolution strategy for the improvement of a production process in industry. My main
contribution to this paper was the delivery of the problem specific optimization algorithm
and its parallelization.

Chapter 5 and chapter 8 partly cover results from this paper.

Collaborative research center ’Computational

Intelligence’ (2003-2005)

In the year 2003 I started to work in the ’Collaborative Research Center Computational
Intelligence’ at the University of Dortmund at the Chair of Systems Analysis financed
by the German DFG in a research project led by H.-P. Schwefel. There I worked on
the operationalization of optimization methods within a multidisciplinary setting. Many
of the application problems we were working on there were multi-objective problems,
including problems with time consuming function evaluations. Most of the work on
that topic was developed in cooperation with my co-workers N. Beume and B. Naujoks.
During that time, I took the initiative to extend the MAES framework to multi-objective
optimization. For that purpose I cooperated with my co-worker B. Naujoks, who to that
time had already a profound expertise on the subject of multi-objective evolutionary
optimization and multi-point airfoil design.

Michael Emmerich, Boris Naujoks: Metamodel-assisted multiobjective optimi-

sation strategies and their application in airfoil design, I. C. Parmee, Adaptive
Computing in Design and Manufacture VI, 249-260, Springer, London, 2004

The results of this chapter are partly published in chapter 5, 7 and 8. The idea and
initiative to use the Kriging metamodels (including confidence information) also in multi-
objective optimization with metamodel-assisted evolution strategies was due to me. The
confidence interval based comparison methods in the pre-selection were also proposed
by me. A discussion of multi-objective evolutionary algorithms (NSGA-II) and different
ways of how to integrate metamodels were discussed with B. Naujoks. The evaluation of
results on the airfoil test-case was done by B. Naujoks, who also contributed a method
for averaging approximations of the Pareto fronts.
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Michael Emmerich, Boris Naujoks: Metamodel-assisted multi-objective optimi-

sation with implicit constraints and their application in airfoil design, Proc.
Int’l Conf. ERCOFTAC’04, Athens (CD-ROM), CIMNE, Barcelona, 2004

In this paper, an extension of the metamodel-assisted NSGA-II is suggested that can deal
also with (black-box) constraint functions. The results of this publications are partly
reproduced in chapter 5,7 and 8.

My idea was to treat approximate constraint functions also by means of confidence interval
boxes. The application problem and the interface to it was contributed by B. Naujoks.
All other parts were developed in equal parts by the authors.

M. Emmerich, K. Giannakoglou, B. Naujoks: Single- and multi-objective evolu-

tionary optimisation assisted by gaussian random field metamodels. IEEE
Transactions on Evolutionary Computation (TEC), 2005 (accepted for)

Chapters 2 and chapters 4 - 8 include essentially all results of this journal article. Also the
main theme of this paper, namely to emphasize on the use of confidence information and
to generalize the metamodel-assisted ES from single to constrained and multi-objective
optimization, corresponds to the main thread that runs through my thesis.

The paper was intended to provide both - an overview of our past-work and the presen-
tation of new studies on the MAES. The overview on existing work was provided in equal
parts by K. Giannakoglou and me. K. Giannakoglou proposed the initial idea of using
approximate function evaluations in the pre-selection of single- and multi-objective opti-
mization. K. Giannakoglou did pioneering on EA working with approximate evaluations,
and he derived a basic architecture of the metamodel-assisted evolutionary algorithms
(the idea of a pre-screening phase with approximate function evaluations).

I contributed the following results:

• The generalization of the filters to constrained and multi-objective optimization

• The study of the algorithms on test functions (excepting the study on the applica-
tion problem)

• The idea to distinguish between precision and recall measures when assessing the
quality of the subset selection by means of the metamodel and the formulation of
these measures

• The test problem generator for multi-objective test problems (generalized Schaffer
problem)

• The conceptual comparison of pre-screening criteria

• The derivation of multi-objective generalizations of the filters and their performance-
assessment on the generalized Schaffer problem
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Also, I conducted all test runs and implemented the optimization and metamodeling
software.

B. Naujoks contributed a study on a very representative test-problem (the RAE2822 air-
foil design) that exhausted all features of the developed metamodel-assisted evolutionary
algorithm, namely the various types of constraint-handling and the handling of multiple
objectives.

Michael Emmerich, Nicola Beume, Boris Naujoks: An EMO algorithm using the

hypervolume measure as selection criterion, C. A. Coello Coello, A. Hernández
Aguirre, E. Zitzler, Proc. Evolutionary Multi-Criterion Optimization: Third Int’l
Conference (EMO 2005), 3410, Lecture Notes in Computer Science, 62-76, Springer,
Berlin, 2005

This paper has been reproduced in large parts in chapter 7. Also one of the applications
described in chapter 8 was first published in this paper.

The work on this paper started with my idea to develop an EMOA with a selection
that is mainly based on the hypervolume measure, in order to enable a more elegant
generalization of improvement-based pre-screening criteria.

The plan to develop a completely new EMO algorithm – which not necessarily works with
metamodel-assistance – grew in discussions between all co-authors. The basic algorithm
of the SMS-EMOA and efficient implementation was a joint work to which all co-authors
contributed in equal parts, as well as the test of its performance on the ZDT and EBN
functions.

Boris Naujoks, Nicola Beume, Michael Emmerich: Multi-objective optimisation

using S-metric selection: Application to three-dimensional solution spaces,
G. W. Greenwood, Proc. 2005 Congress on Evolutionary Computation (CEC’05),
Edinburgh, UK, IEEE Press, Piscataway NJ, 2005, (in print)

This paper extends the SMS-EMOA to three-dimensional solution spaces. Part of the
algorithms published in this work are described in a similar manner in chapter 6.

The test runs and analysis (both on the DTLZ benchmark problems and the application
example) were carried out by N. Beume and B. Naujoks. Also they proposed specific
adaptations of the SMS-EMOA for three dimensions. My contribution to this work was
mainly a first version of the algorithm to compute the hypervolume measure in three
dimensions (like it has been published in chapter 6). The version of this algorithm that
has been published in this paper is an refinement of this initial algorithm credited to N.
Beume and B. Naujoks. The credits for the development of the SMS-EMOA variants for
three dimensional solution spaces and its performance analysis goes mainly to N. Beume
and B. Naujoks.

Boris Naujoks, Nicola Beume, Michael Emmerich: Metamodel-assisted SMS-

EMOA applied to airfoil optimization tasks, accepted for EUROGEN 2005,
Munich, International Conference on Design Optimization
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This paper describes the application of the metamodel-assisted SMS-EMOA to a prob-
lem in RAE airfoil optimization. Part of it is discussed in chapter 7 and 8. The inte-
gration of the metamodel-assistance into the SMS-EMOA was the main contribution by
me. Application-problem specific adaptations of this approach as well as the design and
analysis of experiments are credited to B. Naujoks and N. Beume.

Mihai-Christian Varcol Varcol and Michael Emmerich: Metamodel-assisted Evo-

lution Strategies applied in electromagnetics accepted for EUROGEN 2005,
Munich, International Conference on Design Optimization

This paper forms a part of the chapter on applications 8, and describes the application
of the MAES in the domain of electromagnetic compatibility design.

The application problem was contributed by M.-C. Varcol, who also implemented the
interface to the optimization algorithm, made problem specific adaptations of it, con-
ducted test runs and interpreted the obtained results in the context of electromagnetics.
My contribution was the disposal of the MAES. Also, I supervised M.-C. Varcol during
the planning of the test runs and the knowledge integration phase. The work on the
manuscript was shared by both authors in equal proportions.

Leiden Institute of Advanced Computer Science 2005

Michael Emmerich: A rigorous analysis of two bi-criteria problem families

with scalable curvature of the pareto fronts Leiden Institute on Advanced Com-
puter Science, 2005, LIACS TR 2005-05

The problem generators introduced in this paper were used for performance evaluation
of multi-objective optimization algorithms in chapter 6 and 7.
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Nomenclature

Abbreviations

ANN Artificial neural network, page 22

BGO Bayesian global optimization, page 37

CSA Cumulative step-size adaptation algorithm, page 164

DES Derandomized Evolution Strategy, page 164

DFPS Davidon Fletcher Powell method , page 33

EA Evolutionary algorithms, page 40

EBN Multi-objective test problems by Emmerich, Beume, and Naujoks,
page 133

EMC Electromagnetic compatibility, page 155

EMOA Evolutionary multi-objective optimization algorithm, page 120

ε-MOEA Steady-state EMOA by Deb et al., page 134

ES Evolution strategies, page 29

GPS Generalized pattern search, page 35

GRF Gaussian random fields, page 13

GRFM Gaussian random field models, page 13

IPE filter Imprecise evaluation filters, page 47

MA-DES Metamodel-assisted DES, page 164

MAEA Metamodel-assisted evolutionary algorithms , page 11

MAES Metamodel-assisted evolution strategy, page 47

NACA Test case for airfoil re-design, page 165

NSGA Non-dominated sorting algorithm , page 118

PESA Pareto evolution strategy, page 121
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RAE2822 Test-problem defined by the Royal Airforce Establishment, page 168

RBF Radial basis function, page 22

RBFN Radial basis function networks, page 22

SGO Statistical global optimization, page 37

SMS-EMOA Evolutionary multi-objective optimization algorithm using S met-
ric selection, page 118

SPEA Strength Pareto evolutionary algorithm, page 121

SX Single crystal, page 161

ZDT Test problems by Zitzler, Deb and Thiele, page 134

DS Directional solidified, page 161

Procedures and Operators

(µ, κ, λ)-ES Multi-membered evolution strategy with population size µ, off-
spring population size λ and maximal life span κ, page 41

(µ, κ, ν < λ)-MAES Metamodel assisted evolution strategy, with ν being the output
size of its filter, page 48

(µ, λ)-ES Multi-membered evolution strategy with population size µ, off-
spring population size λ and comma selection (κ = 1), page 41

(µ, λ)-ES Multi-membered evolution strategy with population size µ, off-
spring population size λ and plus selection (κ =∞), page 41

rand() Random function generator, page 79

AA∆S Archiving strategy by Knowles et al., page 124

ε-MOEA Steady-state EMOA by Deb et al., page 134

evaluate Evaluation procedure, page 41

ExI filter Expected improvement filter, page 53

filter Procedure that filters promising solutions, page 48

generate Generation of offspring population via mutation and recombina-
tion, page 42

increase age Procedure that increments age of individuals, page 41

init Initialization procedure, page 41

lbω filter Filter using the lower confidence bound criterion with confidence
factor ω = 2, page 50
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LBIω filter Lower confidence bound improvement filter with confidence factor
ω, page 55

MLI filter Most likely improvement filter, page 55

mutate Mutation procedure, page 41

Pω-filter High precision filter, page 58

PoIτ filter Filter accepting only individuals with probability of improvement
exceeding a threshold τ , page 53

recombine Recombination procedure, page 41

reduce∆S Elimination of worst element due to ∆S, page 125

replace Replacement procedure, page 41

replace∆S replacement in SMS-EMOA, page 126

Rω-filter High recall filter, page 58

terminate Procedure that checks termination criterion, page 41

ŷ filter Filter using the mean value criterion, page 50

Symbols

(.)T Transpose of a vector or matrix

a Individual (a ∈ I), page 41

β, β1, . . . , βnr
Regression function parameters for Kriging, page 17

C Correlation matrix, page 18

X Collection of evaluated search points, page 16

c Correlation function, page 15

c′ Equivalent expression for c(x), page 15

∆S(x, R) Exclusive hypervolume of S(R) covered by x, page 126

d Input vector or search space dimension, page 10

Dr Partial derivative in the notation of Schwartz, page 25

Dt Database of evaluated individuals, page 48

dt Direction vector, page 32

E(.) Mean value, page 15

` The index of the set containing elements with lowest rank of non-
domination, page 121
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erf Gaussian error function, page 114

ExI Expected improvement , page 39

F Gaussian Random Field, page 15

Fx 1-D random function of F at position x, page 15

f, f1, . . . , fnf
Objective functions, page 10

f tbest Currently best individual, page 41

fsc Optimization criterion in bayesian global optimization, page 38

g, g1, . . . , gng
Constraint functions, page 10

Gt Sampled (generated) offspring population (not yet evaluated), page 41

H Matrix of activation function values, page 24

Hf Dominated hypervolume, page 112

h Activation function for radial basis function networks, page 24

I Individual space, page 41

Invn(π) Number of inversions in permutation π, page 72

I(.) Improvement function, page 39

<κ Comparison of individuals using maximum life span κ, page 45

κ Maximal life span, page 41

k Age of an individual (in the context of ES), page 41

λ Number of offspring, page 41

Λ(M) Lebesgue Measure of a set M , page 124

λ1, . . . , λm Weights for linear predictor in GRFM, page 19

lbω Lower confidence bound , page 38

LBIω Lower bound improvement, page 55

µ Number of parents, page 41

m Number of sampled points, page 13

M∞ Mach number, page 165

Mµ(A) The µ best solutions in A, page 71

MLI Most likely improvement, page 54

∇f Gradient of f , page 32
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∇2f Hessian matrix of f , page 32

ν (Maximal) number of pre-selected individuals , page 48

nf Number of objective functions, page 10

ng Number of constraint functions, page 10

ny Response vector dimension, page 9

Ω Borel algebra over R

ω Confidence factor , page 38

Ωω Probability space, page 41

1 Vector of ones, i. e. (1, . . . , 1)T , page 18

� Empty set, page 41

Ot Evaluated offspring population, page 41

nd(R) Non-dominated subset of R, page 119

Ψ Matrix of Radial basis function weights, page 24

ψ RBF weight, page 24

Ψµ(M) Subset selection, page 59

℘(M) The set of all subsets (power set) of M ., page 63

pα Confidence level, page 57

Pt Parent population, page 41

Φ Cumulative gaussian distribution function

ϕ Density of the gaussian distribution

PoI Probability of improvement, page 52

Pr(A) Probability of event A

Qt Offspring individuals that passed the filter, page 48

R Space of real numbers , page 9

R Mean zero gaussian random field, page 17

ρ Number of individuals involved in recombination, page 41

R1, . . . , R` Sets of decreasing rank of non-domination, page 121

Rec Reynolds number (c=chord length), page 165

ŝ Conditional standard deviation, page 16
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ŝ−i Conditional standard deviation for cross-validation, page 27

s Vector of ES strategy parameters, page 41

S Search space, page 9

S(R) Hypervolume metric, page 124

σ Step-size or (in evolution strategies) standard deviation of step-
size , page 32

σmin Minimal step-size, page 67

s2 Global variance of gaussian random field metamodel, page 15

τglobal Global learning rate, page 44

τlocal Local learning rate, page 44

θ, θ1, . . . , θd Parameters of correlation function, page 15

Υµ(M) , page 58

Var(.) Variance, page 15

Ξn Standardized random variable ξn , page 72

ξn Random variable describing the number of inversions in a random
permutation of length n, page 72

x Object or input variables, page 41

xmax Upper bounds of S, page 10

xmin Lower bounds of S, page 10

xtbest Currently best individual, page 41

Y Collection of result vectors, page 13

Y Response or solution space, page 9

y output vector: y = (f1, . . . , fnf
, g1, . . . , gng

)T , page 10

ymax Reference point for the hypervolume, page 124

yf Part of y that represents objective function values, page 108

yg Part of y that represents constraint function values, page 108

ŷ Estimated output value (conditional mean), page 16

ŷ−i Estimation for cross-validation, page 27

y, y1, . . . , yny
Response or output values, page 10

ζAµ (M) Subset selection, page 58

ζBµ (M) Subset selection, page 59
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[DS78] L. C. W Dixon and G. P. Szegö. The global optimization problem: An
introduction. In L. C. W Dixon and G. P. Szegö, editors, Towards Global
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