19,216 research outputs found

    LIMEtree: Interactively Customisable Explanations Based on Local Surrogate Multi-output Regression Trees

    Get PDF
    Systems based on artificial intelligence and machine learning models should be transparent, in the sense of being capable of explaining their decisions to gain humans' approval and trust. While there are a number of explainability techniques that can be used to this end, many of them are only capable of outputting a single one-size-fits-all explanation that simply cannot address all of the explainees' diverse needs. In this work we introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree, which employs surrogate multi-output regression trees. We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME). Our method comes with local fidelity guarantees and can produce a range of diverse explanation types, including contrastive and counterfactual explanations praised in the literature. Some of these explanations can be interactively personalised to create bespoke, meaningful and actionable insights into the model's behaviour. While other methods may give an illusion of customisability by wrapping, otherwise static, explanations in an interactive interface, our explanations are truly interactive, in the sense of allowing the user to "interrogate" a black-box model. LIMEtree can therefore produce consistent explanations on which an interactive exploratory process can be built

    Opening the black-box of artificial intelligence predictions on clinical decision support systems

    Get PDF
    Cardiovascular diseases are the leading global death cause. Their treatment and prevention rely on electrocardiogram interpretation, which is dependent on the physician’s variability. Subjectiveness is intrinsic to electrocardiogram interpretation and hence, prone to errors. To assist physicians in making precise and thoughtful decisions, artificial intelligence is being deployed to develop models that can interpret extent datasets and provide accurate decisions. However, the lack of interpretability of most machine learning models stands as one of the drawbacks of their deployment, particularly in the medical domain. Furthermore, most of the currently deployed explainable artificial intelligence methods assume independence between features, which means temporal independence when dealing with time series. The inherent characteristic of time series cannot be ignored as it carries importance for the human decision making process. This dissertation focuses on the explanation of heartbeat classification using several adaptations of state-of-the-art model-agnostic methods, to locally explain time series classification. To address the explanation of time series classifiers, a preliminary conceptual framework is proposed, and the use of the derivative is suggested as a complement to add temporal dependency between samples. The results were validated on an extent public dataset, through the 1-D Jaccard’s index, which consists of the comparison of the subsequences extracted from an interpretable model and the explanation methods used. Secondly, through the performance’s decrease, to evaluate whether the explanation fits the model’s behaviour. To assess models with distinct internal logic, the validation was conducted on a more transparent model and more opaque one in both binary and multiclass situation. The results show the promising use of including the signal’s derivative to introduce temporal dependency between samples in the explanations, for models with simpler internal logic.As doenças cardiovasculares são, a nível mundial, a principal causa de morte e o seu tratamento e prevenção baseiam-se na interpretação do electrocardiograma. A interpretação do electrocardiograma, feita por médicos, é intrinsecamente subjectiva e, portanto, sujeita a erros. De modo a apoiar a decisão dos médicos, a inteligência artificial está a ser usada para desenvolver modelos com a capacidade de interpretar extensos conjuntos de dados e fornecer decisões precisas. No entanto, a falta de interpretabilidade da maioria dos modelos de aprendizagem automática é uma das desvantagens do recurso à mesma, principalmente em contexto clínico. Adicionalmente, a maioria dos métodos inteligência artifical explicável assumem independência entre amostras, o que implica a assunção de independência temporal ao lidar com séries temporais. A característica inerente das séries temporais não pode ser ignorada, uma vez que apresenta importância para o processo de tomada de decisão humana. Esta dissertação baseia-se em inteligência artificial explicável para tornar inteligível a classificação de batimentos cardíacos, através da utilização de várias adaptações de métodos agnósticos do estado-da-arte. Para abordar a explicação dos classificadores de séries temporais, propõe-se uma taxonomia preliminar, e o uso da derivada como um complemento para adicionar dependência temporal entre as amostras. Os resultados foram validados para um conjunto extenso de dados públicos, por meio do índice de Jaccard em 1-D, com a comparação das subsequências extraídas de um modelo interpretável e os métodos inteligência artificial explicável utilizados, e a análise de qualidade, para avaliar se a explicação se adequa ao comportamento do modelo. De modo a avaliar modelos com lógicas internas distintas, a validação foi realizada usando, por um lado, um modelo mais transparente e, por outro, um mais opaco, tanto numa situação de classificação binária como numa situação de classificação multiclasse. Os resultados mostram o uso promissor da inclusão da derivada do sinal para introduzir dependência temporal entre as amostras nas explicações fornecidas, para modelos com lógica interna mais simples
    corecore