5,223 research outputs found

    TruGRC: Trust-Aware Group Recommendation with Virtual Coordinators

    Full text link
    © 2018 Elsevier B.V. In recent years, an increase in group activities on websites has led to greater demand for highly-functional group recommender systems. The goal of group recommendation is to capture and distill the preferences of each group member into a single recommendation list that meets the needs of all group members. Existing aggregation functions perform well in harmonious and congruent scenarios, but tend not to generate satisfactory results when group members hold conflicting preferences. Moreover, most of current studies improve group recommendation only based on a single aggregation strategy and explicit trust information is still ignored in group recommender systems. Motivated by these concerns, this paper presents TruGRC, a novel Trust-aware Group Recommendation method with virtual Coordinators, that combines two different aggregation strategies: result aggregation and profile aggregation. As each individual's preferences are modeled, a virtual user is built as a coordinator to represent the profile aggregation strategy. This coordinator provides a global view of the preferences for all group members by interacting with each user to resolve conflicting preferences. Then, we also model the impact from group members to the virtual coordinator in accordance with personal social influence inferred by trust information on social networks. Group preferences can be easily generated by the average aggregation method under the effect of the virtual coordinator. Experimental results on two benchmark datasets with a range of different group sizes show that TruGRC method has significant improvements compared to other state-of-the-art methods

    Comparison of group recommendation algorithms

    Get PDF
    In recent years recommender systems have become the common tool to handle the information overload problem of educational and informative web sites, content delivery systems, and online shops. Although most recommender systems make suggestions for individual users, in many circumstances the selected items (e.g., movies) are not intended for personal usage but rather for consumption in groups. This paper investigates how effective group recommendations for movies can be generated by combining the group members' preferences (as expressed by ratings) or by combining the group members' recommendations. These two grouping strategies, which convert traditional recommendation algorithms into group recommendation algorithms, are combined with five commonly used recommendation algorithms to calculate group recommendations for different group compositions. The group recommendations are not only assessed in terms of accuracy, but also in terms of other qualitative aspects that are important for users such as diversity, coverage, and serendipity. In addition, the paper discusses the influence of the size and composition of the group on the quality of the recommendations. The results show that the grouping strategy which produces the most accurate results depends on the algorithm that is used for generating individual recommendations. Therefore, the paper proposes a combination of grouping strategies which outperforms each individual strategy in terms of accuracy. Besides, the results show that the accuracy of the group recommendations increases as the similarity between members of the group increases. Also the diversity, coverage, and serendipity of the group recommendations are to a large extent dependent on the used grouping strategy and recommendation algorithm. Consequently for (commercial) group recommender systems, the grouping strategy and algorithm have to be chosen carefully in order to optimize the desired quality metrics of the group recommendations. The conclusions of this paper can be used as guidelines for this selection process

    Hybrid group recommendations for a travel service

    Get PDF
    Recommendation techniques have proven their usefulness as a tool to cope with the information overload problem in many classical domains such as movies, books, and music. Additional challenges for recommender systems emerge in the domain of tourism such as acquiring metadata and feedback, the sparsity of the rating matrix, user constraints, and the fact that traveling is often a group activity. This paper proposes a recommender system that offers personalized recommendations for travel destinations to individuals and groups. These recommendations are based on the users' rating profile, personal interests, and specific demands for their next destination. The recommendation algorithm is a hybrid approach combining a content-based, collaborative filtering, and knowledge-based solution. For groups of users, such as families or friends, individual recommendations are aggregated into group recommendations, with an additional opportunity for users to give feedback on these group recommendations. A group of test users evaluated the recommender system using a prototype web application. The results prove the usefulness of individual and group recommendations and show that users prefer the hybrid algorithm over each individual technique. This paper demonstrates the added value of various recommendation algorithms in terms of different quality aspects, compared to an unpersonalized list of the most-popular destinations

    From Group Recommendations to Group Formation

    Full text link
    There has been significant recent interest in the area of group recommendations, where, given groups of users of a recommender system, one wants to recommend top-k items to a group that maximize the satisfaction of the group members, according to a chosen semantics of group satisfaction. Examples semantics of satisfaction of a recommended itemset to a group include the so-called least misery (LM) and aggregate voting (AV). We consider the complementary problem of how to form groups such that the users in the formed groups are most satisfied with the suggested top-k recommendations. We assume that the recommendations will be generated according to one of the two group recommendation semantics - LM or AV. Rather than assuming groups are given, or rely on ad hoc group formation dynamics, our framework allows a strategic approach for forming groups of users in order to maximize satisfaction. We show that the problem is NP-hard to solve optimally under both semantics. Furthermore, we develop two efficient algorithms for group formation under LM and show that they achieve bounded absolute error. We develop efficient heuristic algorithms for group formation under AV. We validate our results and demonstrate the scalability and effectiveness of our group formation algorithms on two large real data sets.Comment: 14 pages, 22 figure
    corecore