419 research outputs found

    Aggregation of Affine Estimators

    Full text link
    We consider the problem of aggregating a general collection of affine estimators for fixed design regression. Relevant examples include some commonly used statistical estimators such as least squares, ridge and robust least squares estimators. Dalalyan and Salmon (2012) have established that, for this problem, exponentially weighted (EW) model selection aggregation leads to sharp oracle inequalities in expectation, but similar bounds in deviation were not previously known. While results indicate that the same aggregation scheme may not satisfy sharp oracle inequalities with high probability, we prove that a weaker notion of oracle inequality for EW that holds with high probability. Moreover, using a generalization of the newly introduced QQ-aggregation scheme we also prove sharp oracle inequalities that hold with high probability. Finally, we apply our results to universal aggregation and show that our proposed estimator leads simultaneously to all the best known bounds for aggregation, including ℓq\ell_q-aggregation, q∈(0,1)q \in (0,1), with high probability

    Sharp Oracle Inequalities for Aggregation of Affine Estimators

    Get PDF
    We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures such as least square regression, kernel ridge regression, shrinking estimators and many other estimators used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate

    Pac-bayesian bounds for sparse regression estimation with exponential weights

    Get PDF
    We consider the sparse regression model where the number of parameters pp is larger than the sample size nn. The difficulty when considering high-dimensional problems is to propose estimators achieving a good compromise between statistical and computational performances. The BIC estimator for instance performs well from the statistical point of view \cite{BTW07} but can only be computed for values of pp of at most a few tens. The Lasso estimator is solution of a convex minimization problem, hence computable for large value of pp. However stringent conditions on the design are required to establish fast rates of convergence for this estimator. Dalalyan and Tsybakov \cite{arnak} propose a method achieving a good compromise between the statistical and computational aspects of the problem. Their estimator can be computed for reasonably large pp and satisfies nice statistical properties under weak assumptions on the design. However, \cite{arnak} proposes sparsity oracle inequalities in expectation for the empirical excess risk only. In this paper, we propose an aggregation procedure similar to that of \cite{arnak} but with improved statistical performances. Our main theoretical result is a sparsity oracle inequality in probability for the true excess risk for a version of exponential weight estimator. We also propose a MCMC method to compute our estimator for reasonably large values of pp.Comment: 19 page

    Kullback-Leibler aggregation and misspecified generalized linear models

    Full text link
    In a regression setup with deterministic design, we study the pure aggregation problem and introduce a natural extension from the Gaussian distribution to distributions in the exponential family. While this extension bears strong connections with generalized linear models, it does not require identifiability of the parameter or even that the model on the systematic component is true. It is shown that this problem can be solved by constrained and/or penalized likelihood maximization and we derive sharp oracle inequalities that hold both in expectation and with high probability. Finally all the bounds are proved to be optimal in a minimax sense.Comment: Published in at http://dx.doi.org/10.1214/11-AOS961 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sparse Estimation by Exponential Weighting

    Full text link
    Consider a regression model with fixed design and Gaussian noise where the regression function can potentially be well approximated by a function that admits a sparse representation in a given dictionary. This paper resorts to exponential weights to exploit this underlying sparsity by implementing the principle of sparsity pattern aggregation. This model selection take on sparse estimation allows us to derive sparsity oracle inequalities in several popular frameworks, including ordinary sparsity, fused sparsity and group sparsity. One striking aspect of these theoretical results is that they hold under no condition in the dictionary. Moreover, we describe an efficient implementation of the sparsity pattern aggregation principle that compares favorably to state-of-the-art procedures on some basic numerical examples.Comment: Published in at http://dx.doi.org/10.1214/12-STS393 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Solution of linear ill-posed problems by model selection and aggregation

    Full text link
    We consider a general statistical linear inverse problem, where the solution is represented via a known (possibly overcomplete) dictionary that allows its sparse representation. We propose two different approaches. A model selection estimator selects a single model by minimizing the penalized empirical risk over all possible models. By contrast with direct problems, the penalty depends on the model itself rather than on its size only as for complexity penalties. A Q-aggregate estimator averages over the entire collection of estimators with properly chosen weights. Under mild conditions on the dictionary, we establish oracle inequalities both with high probability and in expectation for the two estimators. Moreover, for the latter estimator these inequalities are sharp. The proposed procedures are implemented numerically and their performance is assessed by a simulation study.Comment: 20 pages, 2 figure
    • …
    corecore