6,099 research outputs found

    Construction of aggregation operators with noble reinforcement

    Full text link
    This paper examines disjunctive aggregation operators used in various recommender systems. A specific requirement in these systems is the property of noble reinforcement: allowing a collection of high-valued arguments to reinforce each other while avoiding reinforcement of low-valued arguments. We present a new construction of Lipschitz-continuous aggregation operators with noble reinforcement property and its refinements. <br /

    From Group Recommendations to Group Formation

    Full text link
    There has been significant recent interest in the area of group recommendations, where, given groups of users of a recommender system, one wants to recommend top-k items to a group that maximize the satisfaction of the group members, according to a chosen semantics of group satisfaction. Examples semantics of satisfaction of a recommended itemset to a group include the so-called least misery (LM) and aggregate voting (AV). We consider the complementary problem of how to form groups such that the users in the formed groups are most satisfied with the suggested top-k recommendations. We assume that the recommendations will be generated according to one of the two group recommendation semantics - LM or AV. Rather than assuming groups are given, or rely on ad hoc group formation dynamics, our framework allows a strategic approach for forming groups of users in order to maximize satisfaction. We show that the problem is NP-hard to solve optimally under both semantics. Furthermore, we develop two efficient algorithms for group formation under LM and show that they achieve bounded absolute error. We develop efficient heuristic algorithms for group formation under AV. We validate our results and demonstrate the scalability and effectiveness of our group formation algorithms on two large real data sets.Comment: 14 pages, 22 figure

    Regression and Learning to Rank Aggregation for User Engagement Evaluation

    Full text link
    User engagement refers to the amount of interaction an instance (e.g., tweet, news, and forum post) achieves. Ranking the items in social media websites based on the amount of user participation in them, can be used in different applications, such as recommender systems. In this paper, we consider a tweet containing a rating for a movie as an instance and focus on ranking the instances of each user based on their engagement, i.e., the total number of retweets and favorites it will gain. For this task, we define several features which can be extracted from the meta-data of each tweet. The features are partitioned into three categories: user-based, movie-based, and tweet-based. We show that in order to obtain good results, features from all categories should be considered. We exploit regression and learning to rank methods to rank the tweets and propose to aggregate the results of regression and learning to rank methods to achieve better performance. We have run our experiments on an extended version of MovieTweeting dataset provided by ACM RecSys Challenge 2014. The results show that learning to rank approach outperforms most of the regression models and the combination can improve the performance significantly.Comment: In Proceedings of the 2014 ACM Recommender Systems Challenge, RecSysChallenge '1

    TruGRC: Trust-Aware Group Recommendation with Virtual Coordinators

    Full text link
    © 2018 Elsevier B.V. In recent years, an increase in group activities on websites has led to greater demand for highly-functional group recommender systems. The goal of group recommendation is to capture and distill the preferences of each group member into a single recommendation list that meets the needs of all group members. Existing aggregation functions perform well in harmonious and congruent scenarios, but tend not to generate satisfactory results when group members hold conflicting preferences. Moreover, most of current studies improve group recommendation only based on a single aggregation strategy and explicit trust information is still ignored in group recommender systems. Motivated by these concerns, this paper presents TruGRC, a novel Trust-aware Group Recommendation method with virtual Coordinators, that combines two different aggregation strategies: result aggregation and profile aggregation. As each individual's preferences are modeled, a virtual user is built as a coordinator to represent the profile aggregation strategy. This coordinator provides a global view of the preferences for all group members by interacting with each user to resolve conflicting preferences. Then, we also model the impact from group members to the virtual coordinator in accordance with personal social influence inferred by trust information on social networks. Group preferences can be easily generated by the average aggregation method under the effect of the virtual coordinator. Experimental results on two benchmark datasets with a range of different group sizes show that TruGRC method has significant improvements compared to other state-of-the-art methods
    • …
    corecore