2,648 research outputs found

    Comparison of group recommendation algorithms

    Get PDF
    In recent years recommender systems have become the common tool to handle the information overload problem of educational and informative web sites, content delivery systems, and online shops. Although most recommender systems make suggestions for individual users, in many circumstances the selected items (e.g., movies) are not intended for personal usage but rather for consumption in groups. This paper investigates how effective group recommendations for movies can be generated by combining the group members' preferences (as expressed by ratings) or by combining the group members' recommendations. These two grouping strategies, which convert traditional recommendation algorithms into group recommendation algorithms, are combined with five commonly used recommendation algorithms to calculate group recommendations for different group compositions. The group recommendations are not only assessed in terms of accuracy, but also in terms of other qualitative aspects that are important for users such as diversity, coverage, and serendipity. In addition, the paper discusses the influence of the size and composition of the group on the quality of the recommendations. The results show that the grouping strategy which produces the most accurate results depends on the algorithm that is used for generating individual recommendations. Therefore, the paper proposes a combination of grouping strategies which outperforms each individual strategy in terms of accuracy. Besides, the results show that the accuracy of the group recommendations increases as the similarity between members of the group increases. Also the diversity, coverage, and serendipity of the group recommendations are to a large extent dependent on the used grouping strategy and recommendation algorithm. Consequently for (commercial) group recommender systems, the grouping strategy and algorithm have to be chosen carefully in order to optimize the desired quality metrics of the group recommendations. The conclusions of this paper can be used as guidelines for this selection process

    On social networks and collaborative recommendation

    Get PDF
    Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimedia-enriched data that are enhanced both by explicit user-provided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a user-based collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.</p

    A Graph-Neural-Network-Based Social Network Recommendation Algorithm Using High-Order Neighbor Information

    Get PDF
    Social-network-based recommendation algorithms leverage rich social network information to alleviate the problem of data sparsity and boost the recommendation performance. However, traditional social-network-based recommendation algorithms ignore high-order collaborative signals or only consider the first-order collaborative signal when learning users&rsquo; and items&rsquo; latent representations, resulting in suboptimal recommendation performance. In this paper, we propose a graph neural network (GNN)-based social recommendation model that utilizes the GNN framework to capture high-order collaborative signals in the process of learning the latent representations of users and items. Specifically, we formulate the representations of entities, i.e., users and items, by stacking multiple embedding propagation layers to recursively aggregate multi-hop neighborhood information on both the user&ndash;item interaction graph and the social network graph. Hence, the collaborative signals hidden in both the user&ndash;item interaction graph and the social network graph are explicitly injected into the final representations of entities. Moreover, we ease the training process of the proposed GNN-based social recommendation model and alleviate overfitting by adopting a lightweight GNN framework that only retains the neighborhood aggregation component and abandons the feature transformation and nonlinear activation components. The experimental results on two real-world datasets show that our proposed GNN-based social recommendation method outperforms the state-of-the-art recommendation algorithms
    corecore