511 research outputs found

    Aggregating partial rankings with applications to peer grading in massive online open courses

    Get PDF
    We investigate the potential of using ordinal peer grading for the evaluation of students in massive online open courses (MOOCs). According to such grading schemes, each student receives a few assignments (by other students) which she has to rank. Then, a global ranking (possibly translated into numerical scores) is produced by combining the individual ones. This is a novel application area for social choice concepts and methods where the important problem to be solved is as follows: how should the assignments be distributed so that the collected individual rankings can be easily merged into a global one that is as close as possible to the ranking that represents the relative performance of the students in the assignment? Our main theoretical result suggests that using very simple ways to distribute the assignments so that each student has to rank only k of them, a Borda-like aggregation method can recover a 1 - O(1/k) fraction of the true ranking when each student correctly ranks the assignments she receives. Experimental results strengthen our analysis further and also demonstrate that the same method is extremely robust even when students have imperfect capabilities as graders. Our results provide strong evidence that ordinal peer grading cam be a highly effective and scalable solution for evaluation in MOOCs

    Optimizing positional scoring rules for rank aggregation

    Get PDF
    Nowadays, several crowdsourcing projects exploit social choice methods for computing an aggregate ranking of alternatives given individual rankings provided by workers. Motivated by such systems, we consider a setting where each worker is asked to rank a fixed (small) number of alternatives and, then, a positional scoring rule is used to compute the aggregate ranking. Among the apparently infinite such rules, what is the best one to use? To answer this question, we assume that we have partial access to an underlying true ranking. Then, the important optimization problem to be solved is to compute the positional scoring rule whose outcome, when applied to the profile of individual rankings, is as close as possible to the part of the underlying true ranking we know. We study this fundamental problem from a theoretical viewpoint and present positive and negative complexity results and, furthermore, complement our theoretical findings with experiments on real-world and synthetic data

    Catch Me if I Can: Detecting Strategic Behaviour in Peer Assessment

    Full text link
    We consider the issue of strategic behaviour in various peer-assessment tasks, including peer grading of exams or homeworks and peer review in hiring or promotions. When a peer-assessment task is competitive (e.g., when students are graded on a curve), agents may be incentivized to misreport evaluations in order to improve their own final standing. Our focus is on designing methods for detection of such manipulations. Specifically, we consider a setting in which agents evaluate a subset of their peers and output rankings that are later aggregated to form a final ordering. In this paper, we investigate a statistical framework for this problem and design a principled test for detecting strategic behaviour. We prove that our test has strong false alarm guarantees and evaluate its detection ability in practical settings. For this, we design and execute an experiment that elicits strategic behaviour from subjects and release a dataset of patterns of strategic behaviour that may be of independent interest. We then use the collected data to conduct a series of real and semi-synthetic evaluations that demonstrate a strong detection power of our test

    Aggregating Incomplete Pairwise Preferences by Weight

    Get PDF

    What makes a great MOOC? An interdisciplinary analysis of student retention in online courses

    Get PDF
    Massive Open Online Courses (MOOCs) have experienced rapid expansion and gained significant popularity among students and educators. Although the broad acceptance of MOOCs, there is still a long way to go in terms of satisfaction of students\u27 needs, as witnessed in the extremely high drop-out rates. Working toward improving MOOCs, we employ the Grounded Theory Method (GTM) in a quantitative study and explore this new phenomenon. In particular, we present a novel analysis using a real-world data set with user-generated online reviews, where we both identify the student, course, platform, and university characteristics that affect student retention and estimate their relative effect. In the conducted analysis, we integrate econometric, text mining, opinion mining, and machine learning techniques, building both explanatory and predictive models, toward a more complete analysis. This study also provides actionable insights for MOOCs and education, in general, and contributes to the related literature discovering new findings

    Robust Plackett–Luce model for k-ary crowdsourced preferences

    Full text link
    © 2017, The Author(s). The aggregation of k-ary preferences is an emerging ranking problem, which plays an important role in several aspects of our daily life, such as ordinal peer grading and online product recommendation. At the same time, crowdsourcing has become a trendy way to provide a plethora of k-ary preferences for this ranking problem, due to convenient platforms and low costs. However, k-ary preferences from crowdsourced workers are often noisy, which inevitably degenerates the performance of traditional aggregation models. To address this challenge, in this paper, we present a RObust PlAckett–Luce (ROPAL) model. Specifically, to ensure the robustness, ROPAL integrates the Plackett–Luce model with a denoising vector. Based on the Kendall-tau distance, this vector corrects k-ary crowdsourced preferences with a certain probability. In addition, we propose an online Bayesian inference to make ROPAL scalable to large-scale preferences. We conduct comprehensive experiments on simulated and real-world datasets. Empirical results on “massive synthetic” and “real-world” datasets show that ROPAL with online Bayesian inference achieves substantial improvements in robustness and noisy worker detection over current approaches
    • …
    corecore