25,684 research outputs found

    Cloud-Based Optimization: A Quasi-Decentralized Approach to Multi-Agent Coordination

    Full text link
    New architectures and algorithms are needed to reflect the mixture of local and global information that is available as multi-agent systems connect over the cloud. We present a novel architecture for multi-agent coordination where the cloud is assumed to be able to gather information from all agents, perform centralized computations, and disseminate the results in an intermittent manner. This architecture is used to solve a multi-agent optimization problem in which each agent has a local objective function unknown to the other agents and in which the agents are collectively subject to global inequality constraints. Leveraging the cloud, a dual problem is formulated and solved by finding a saddle point of the associated Lagrangian.Comment: 7 pages, 3 figure

    Exploiting Chordality in Optimization Algorithms for Model Predictive Control

    Full text link
    In this chapter we show that chordal structure can be used to devise efficient optimization methods for many common model predictive control problems. The chordal structure is used both for computing search directions efficiently as well as for distributing all the other computations in an interior-point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.Comment: arXiv admin note: text overlap with arXiv:1502.0638

    Optimal Reconfiguration of Formation Flying Spacecraft--a Decentralized Approach

    Get PDF
    This paper introduces a hierarchical, decentralized, and parallelizable method for dealing with optimization problems with many agents. It is theoretically based on a hierarchical optimization theorem that establishes the equivalence of two forms of the problem, and this idea is implemented using DMOC (Discrete Mechanics and Optimal Control). The result is a method that is scalable to certain optimization problems for large numbers of agents, whereas the usual “monolithic” approach can only deal with systems with a rather small number of degrees of freedom. The method is illustrated with the example of deployment of spacecraft, motivated by the Darwin (ESA) and Terrestrial Planet Finder (NASA) missions

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    A Primal Decomposition Method with Suboptimality Bounds for Distributed Mixed-Integer Linear Programming

    Full text link
    In this paper we deal with a network of agents seeking to solve in a distributed way Mixed-Integer Linear Programs (MILPs) with a coupling constraint (modeling a limited shared resource) and local constraints. MILPs are NP-hard problems and several challenges arise in a distributed framework, so that looking for suboptimal solutions is of interest. To achieve this goal, the presence of a linear coupling calls for tailored decomposition approaches. We propose a fully distributed algorithm based on a primal decomposition approach and a suitable tightening of the coupling constraints. Agents repeatedly update local allocation vectors, which converge to an optimal resource allocation of an approximate version of the original problem. Based on such allocation vectors, agents are able to (locally) compute a mixed-integer solution, which is guaranteed to be feasible after a sufficiently large time. Asymptotic and finite-time suboptimality bounds are established for the computed solution. Numerical simulations highlight the efficacy of the proposed methodology.Comment: 57th IEEE Conference on Decision and Contro

    A Mobile Computing Architecture for Numerical Simulation

    Full text link
    The domain of numerical simulation is a place where the parallelization of numerical code is common. The definition of a numerical context means the configuration of resources such as memory, processor load and communication graph, with an evolving feature: the resources availability. A feature is often missing: the adaptability. It is not predictable and the adaptable aspect is essential. Without calling into question these implementations of these codes, we create an adaptive use of these implementations. Because the execution has to be driven by the availability of main resources, the components of a numeric computation have to react when their context changes. This paper offers a new architecture, a mobile computing architecture, based on mobile agents and JavaSpace. At the end of this paper, we apply our architecture to several case studies and obtain our first results

    Rational physical agent reasoning beyond logic

    No full text
    The paper addresses the problem of defining a theoretical physical agent framework that satisfies practical requirements of programmability by non-programmer engineers and at the same time permitting fast realtime operation of agents on digital computer networks. The objective of the new framework is to enable the satisfaction of performance requirements on autonomous vehicles and robots in space exploration, deep underwater exploration, defense reconnaissance, automated manufacturing and household automation
    corecore