52,588 research outputs found

    Risk Adjustment and Reinsurance: A Work Plan for State Officials

    Get PDF
    Outlines the decisions and actions states need to take to implement the risk adjustment and reinsurance provisions of the 2010 health reform law, including risk adjustment model, reinsurance parameters, stakeholder engagement, and program administration

    Tracking Chart 2002 Adidas Group, El Salvador 01032209A

    Get PDF
    This document is part of a digital collection provided by the Martin P. Catherwood Library, ILR School, Cornell University, pertaining to the effects of globalization on the workplace worldwide. Special emphasis is placed on labor rights, working conditions, labor market changes, and union organizing.FLA_2002_AdidasGroup_TC_El_Salvador_01032209A.pdf: 13 downloads, before Oct. 1, 2020

    Tracking Chart 2002 Nike, El Salvador 01032209A

    Get PDF
    This document is part of a digital collection provided by the Martin P. Catherwood Library, ILR School, Cornell University, pertaining to the effects of globalization on the workplace worldwide. Special emphasis is placed on labor rights, working conditions, labor market changes, and union organizing.FLA_2002_Nike_TC_El_Salvador_01032209A.pdf: 12 downloads, before Oct. 1, 2020

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A cognitive architecture for emergency response

    Get PDF
    Plan recognition, cognitive workload estimation and human assistance have been extensively studied in the AI and human factors communities, resulting in many techniques being applied to domains of various levels of realism. These techniques have seldom been integrated and evaluated as complete systems. In this paper, we report on the development of an assistant agent architecture that integrates plan recognition, current and future user information needs, workload estimation and adaptive information presentation to aid an emergency response manager in making high quality decisions under time stress, while avoiding cognitive overload. We describe the main components of a full implementation of this architecture as well as a simulation developed to evaluate the system. Our evaluation consists of simulating various possible executions of the emergency response plans used in the real world and measuring the expected time taken by an unaided human user, as well as one that receives information assistance from our system. In the experimental condition of agent assistance, we also examine the effects of different error rates in the agent's estimation of user's stat or information needs

    Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    Full text link
    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components \revised{either exactly or approximately}. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information

    Implementing the Duty Trip Support Application

    Get PDF
    We are in the process of developing an agent and ontology-based Duty Trip Support application. The goal of this paper is to consider issues arising when implementing such a system. In addition to the description of our current implementation, which is also critically analyzed, other possible approaches are considered as well.software agents, agent systems, ontologies, transport objects, agent-non-agent integration.

    PaPaS: A Portable, Lightweight, and Generic Framework for Parallel Parameter Studies

    Full text link
    The current landscape of scientific research is widely based on modeling and simulation, typically with complexity in the simulation's flow of execution and parameterization properties. Execution flows are not necessarily straightforward since they may need multiple processing tasks and iterations. Furthermore, parameter and performance studies are common approaches used to characterize a simulation, often requiring traversal of a large parameter space. High-performance computers offer practical resources at the expense of users handling the setup, submission, and management of jobs. This work presents the design of PaPaS, a portable, lightweight, and generic workflow framework for conducting parallel parameter and performance studies. Workflows are defined using parameter files based on keyword-value pairs syntax, thus removing from the user the overhead of creating complex scripts to manage the workflow. A parameter set consists of any combination of environment variables, files, partial file contents, and command line arguments. PaPaS is being developed in Python 3 with support for distributed parallelization using SSH, batch systems, and C++ MPI. The PaPaS framework will run as user processes, and can be used in single/multi-node and multi-tenant computing systems. An example simulation using the BehaviorSpace tool from NetLogo and a matrix multiply using OpenMP are presented as parameter and performance studies, respectively. The results demonstrate that the PaPaS framework offers a simple method for defining and managing parameter studies, while increasing resource utilization.Comment: 8 pages, 6 figures, PEARC '18: Practice and Experience in Advanced Research Computing, July 22--26, 2018, Pittsburgh, PA, US

    Silver-based Microbial Check Valve for Spacecraft Potable Water Systems

    Get PDF
    As human space exploration increases, the development of a more efficient potable water treatment system suited for spacecraft becomes crucial. This Waste-management Education Research Consortium (WERC) challenge was designed to explore the viability of microbial control through the utilization of silver ions as a biocide for possible integration into the Tranquility Node 3 water purification system aboard the International Space Station (ISS). Current systems using iodine risk causing hyperthyroidism from overexposure; however, silver can be safely ingested without this side effect. After researching silver delivery methods including electrochemical ion production, controlled release, or a combination of the two, our team decided to design a controlled release system capable of meeting the constraints listed in the problem statement. By using a membrane similar to those within dialysis devices a system was designed to deliver silver ions to a stream of water that requires arguably no power and is exceptionally lightweight. While the silver delivery system fulfilled the constraints of the WERC problem statement, our team also examined the use of resins like those contained in the current Microbial Check Valve (MCV). Resin substitutes capable of selective silver sorption are recommended as replacements for those within the current MCV to prevent backwards microbial diffusion through the system. Multiple designs will be presented in this paper. First, our membrane-controlled release silver delivery system (SDS) is presented to specifically address the WERC Task 1 deliverables. Second, a proposed upgrade to the ISS water system is described that replaces the ion exchange resin beds with silver-selective media prevent microbial contamination of water in the potable water system of the spacecraft. Given the extreme lightweight nature of the SDS, nil power requirement, and minor modification to the existing system, Hogs In Space has delivered a highly effective method to deliver and control silver based on the WERC Task 1 requirements
    corecore