7 research outputs found

    Forecasting Dengue, Chikungunya and Zika cases in Recife, Brazil: a spatio-temporal approach based on climate conditions, health notifications and machine learning

    Get PDF
    Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated forecasting models to predict the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public policies for health promotion and sanitation

    Host movement, transmission hot spots, and vector-borne disease dynamics on spatial networks

    Full text link
    We examine how spatial heterogeneity combines with mobility network structure to influence vector-borne disease dynamics. Specifically, we consider a Ross-Macdonald-type disease model on nn spatial locations that are coupled by host movement on a strongly connected, weighted, directed graph. We derive a closed form approximation to the domain reproduction number using a Laurent series expansion, and use this approximation to compute sensitivities of the basic reproduction number to model parameters. To illustrate how these results can be used to help inform mitigation strategies, as a case study we apply these results to malaria dynamics in Namibia, using published cell phone data and estimates for local disease transmission. Our analytical results are particularly useful for understanding drivers of transmission when mobility sinks and transmission hot spots do not coincide.Comment: A few minor notation typos. 1) Figure 1, N_{i} corrected to N_{i}^{h}. 2) Typo in vector equations, system 2.1. N_{i} corrected to N_{i}^{h} and I_{i} corrected to I_{i}^{h} 3) On page 10, \mu_{v,i} corrected to \mu{i}^{v

    Review of Importance of Weather and Environmental Variables in Agent-Based Arbovirus Models

    Get PDF
    The study sought to review the works of literature on agent-based modeling and the influence of climatic and environmental factors on disease outbreak, transmission, and surveillance. Thus, drawing the influence of environmental variables such as vegetation index, households, mosquito habitats, breeding sites, and climatic variables including precipitation or rainfall, temperature, wind speed, and relative humidity on dengue disease modeling using the agent-based model in an African context and globally was the aim of the study. A search strategy was developed and used to search for relevant articles from four databases, namely, PubMed, Scopus, Research4Life, and Google Scholar. Inclusion criteria were developed, and 20 articles met the criteria and have been included in the review. From the reviewed works of literature, the study observed that climatic and environmental factors may influence the arbovirus disease outbreak, transmission, and surveillance. Thus, there is a call for further research on the area. To benefit from arbovirus modeling, it is crucial to consider the influence of climatic and environmental factors, especially in Africa, where there are limited studies exploring this phenomenon
    corecore