7,488 research outputs found

    Agent Modeling as Auxiliary Task for Deep Reinforcement Learning

    Full text link
    In this paper we explore how actor-critic methods in deep reinforcement learning, in particular Asynchronous Advantage Actor-Critic (A3C), can be extended with agent modeling. Inspired by recent works on representation learning and multiagent deep reinforcement learning, we propose two architectures to perform agent modeling: the first one based on parameter sharing, and the second one based on agent policy features. Both architectures aim to learn other agents' policies as auxiliary tasks, besides the standard actor (policy) and critic (values). We performed experiments in both cooperative and competitive domains. The former is a problem of coordinated multiagent object transportation and the latter is a two-player mini version of the Pommerman game. Our results show that the proposed architectures stabilize learning and outperform the standard A3C architecture when learning a best response in terms of expected rewards.Comment: AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE'19

    Improving Search through A3C Reinforcement Learning based Conversational Agent

    Full text link
    We develop a reinforcement learning based search assistant which can assist users through a set of actions and sequence of interactions to enable them realize their intent. Our approach caters to subjective search where the user is seeking digital assets such as images which is fundamentally different from the tasks which have objective and limited search modalities. Labeled conversational data is generally not available in such search tasks and training the agent through human interactions can be time consuming. We propose a stochastic virtual user which impersonates a real user and can be used to sample user behavior efficiently to train the agent which accelerates the bootstrapping of the agent. We develop A3C algorithm based context preserving architecture which enables the agent to provide contextual assistance to the user. We compare the A3C agent with Q-learning and evaluate its performance on average rewards and state values it obtains with the virtual user in validation episodes. Our experiments show that the agent learns to achieve higher rewards and better states.Comment: 17 pages, 7 figure

    Mutual Alignment Transfer Learning

    Full text link
    Training robots for operation in the real world is a complex, time consuming and potentially expensive task. Despite significant success of reinforcement learning in games and simulations, research in real robot applications has not been able to match similar progress. While sample complexity can be reduced by training policies in simulation, such policies can perform sub-optimally on the real platform given imperfect calibration of model dynamics. We present an approach -- supplemental to fine tuning on the real robot -- to further benefit from parallel access to a simulator during training and reduce sample requirements on the real robot. The developed approach harnesses auxiliary rewards to guide the exploration for the real world agent based on the proficiency of the agent in simulation and vice versa. In this context, we demonstrate empirically that the reciprocal alignment for both agents provides further benefit as the agent in simulation can adjust to optimize its behaviour for states commonly visited by the real-world agent

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore