2 research outputs found

    Multiagent Optimization Approach to Supply Network Configuration Problems With Varied Product-Market Profiles

    Full text link
    IEEE This article demonstrates the application of a novel multiagent modeling approach to support supply network configuration (SNC) decisions toward addressing several challenges reported in the literature. These challenges include: enhancing supply network (SN)-level performance in alignment with the goals of individual SN entities; addressing the issue of limited information sharing between SN entities; and sustaining competitiveness of SNs in dynamic business environments. To this end, a multistage, multiechelon SN consisting of geographically dispersed SN entities catering to distinct product-market profiles was modeled. In modeling the SNC decision problem, two types of agents, each having distinct attributes and functions, were used. The modeling approach incorporated a reverse-auctioning process to simulate the behavior of SN entities with differing individual goals collectively contributing to enhance SN-level performance, by means of setting reserve values generated through the application of a genetic algorithm. A set of Pareto-optimal SNCs catering to distinct product-market profiles was generated using Nondominated Sorting Genetic Algorithm II. Further evaluation of these SNCs against additional criteria, using a rule-based approach, allowed the selection of the most appropriate SNC to meet a broader set of conditions. The model was tested using a refrigerator SN case study drawn from the literature. The results reveal that a number of SNC decisions can be supported by the proposed model, in particular, identifying and evaluating robust SNs to suit varied product-market profiles, enhancing SC capabilities to withstand disruptions and developing contingencies to recover from disruptions

    A multi-agent optimisation model for solving supply network configuration problems

    Get PDF
    Supply chain literature highlights the increasing importance of effective supply network configuration decisions that take into account such realities as market turbulence and demand volatility, as well as ever-expanding global production networks. These realities have been extensively discussed in the supply network literature under the structural (i.e., physical characteristics), spatial (i.e., geographical positions), and temporal (i.e., changing supply network conditions) dimensions. Supply network configuration decisions that account for these contingencies are expected to meet the evolving needs of consumers while delivering better outcomes for all parties involved and enhancing supply network performance against the key metrics of efficiency, speed and responsiveness. However, making supply network configuration decisions in the situations described above is an ongoing challenge. Taking a systems perspective, supply networks are typically viewed as socio-technical systems where SN entities (e.g., suppliers, manufacturers) are autonomous individuals with distinct goals, practices and policies, physically inter-connected transferring goods (e.g., raw materials, finished products), as well as socially connected with formal and informal interactions and information sharing. Since the structure and behaviour of such social and technical sub-systems of a supply network, as well as the interactions between those subsystems, determine the overall behaviour of the supply network, both systems should be considered in analysing the overall system
    corecore