195 research outputs found

    Reliable Transmission of Short Packets through Queues and Noisy Channels under Latency and Peak-Age Violation Guarantees

    Get PDF
    This work investigates the probability that the delay and the peak-age of information exceed a desired threshold in a point-to-point communication system with short information packets. The packets are generated according to a stationary memoryless Bernoulli process, placed in a single-server queue and then transmitted over a wireless channel. A variable-length stop-feedback coding scheme---a general strategy that encompasses simple automatic repetition request (ARQ) and more sophisticated hybrid ARQ techniques as special cases---is used by the transmitter to convey the information packets to the receiver. By leveraging finite-blocklength results, the delay violation and the peak-age violation probabilities are characterized without resorting to approximations based on large-deviation theory as in previous literature. Numerical results illuminate the dependence of delay and peak-age violation probability on system parameters such as the frame size and the undetected error probability, and on the chosen packet-management policy. The guidelines provided by our analysis are particularly useful for the design of low-latency ultra-reliable communication systems.Comment: To appear in IEEE journal on selected areas of communication (IEEE JSAC

    Optimal Adaptive Random Multiaccess in Energy Harvesting Wireless Sensor Networks

    Full text link
    Wireless sensors can integrate rechargeable batteries and energy-harvesting (EH) devices to enable long-term, autonomous operation, thus requiring intelligent energy management to limit the adverse impact of energy outages. This work considers a network of EH wireless sensors, which report packets with a random utility value to a fusion center (FC) over a shared wireless channel. Decentralized access schemes are designed, where each node performs a local decision to transmit/discard a packet, based on an estimate of the packet's utility, its own energy level, and the scenario state of the EH process, with the objective to maximize the average long-term aggregate utility of the packets received at the FC. Due to the non-convex structure of the problem, an approximate optimization is developed by resorting to a mathematical artifice based on a game theoretic formulation of the multiaccess scheme, where the nodes do not behave strategically, but rather attempt to maximize a \emph{common} network utility with respect to their own policy. The symmetric Nash equilibrium (SNE) is characterized, where all nodes employ the same policy; its uniqueness is proved, and it is shown to be a local maximum of the original problem. An algorithm to compute the SNE is presented, and a heuristic scheme is proposed, which is optimal for large battery capacity. It is shown numerically that the SNE typically achieves near-optimal performance, within 3% of the optimal policy, at a fraction of the complexity, and two operational regimes of EH-networks are identified and analyzed: an energy-limited scenario, where energy is scarce and the channel is under-utilized, and a network-limited scenario, where energy is abundant and the shared wireless channel represents the bottleneck of the system.Comment: IEEE Transactions on Communication

    Age-of-Information Dependent Random Access for Massive IoT Networks

    Full text link
    As the most well-known application of the Internet of Things (IoT), remote monitoring is now pervasive. In these monitoring applications, information usually has a higher value when it is fresher. A new metric, termed the age of information (AoI), has recently been proposed to quantify the information freshness in various IoT applications. This paper concentrates on the design and analysis of age-oriented random access for massive IoT networks. Specifically, we devise a new stationary threshold-based age-dependent random access (ADRA) protocol, in which each IoT device accesses the channel with a certain probability only when its instantaneous AoI exceeds a predetermined threshold. We manage to evaluate the average AoI of the proposed ADRA protocol mathematically by decoupling the tangled AoI evolution of multiple IoT devices and modeling the decoupled AoI evolution of each device as a Discrete-Time Markov Chain. Simulation results validate our theoretical analysis and affirm the superior age performance of the proposed ADRA protocol over the state-of-the-art age-oriented random access schemes.Comment: Accepted to appear at INFOCOM 2020 Workshop on Age of Informatio
    • …
    corecore