11 research outputs found

    Scheduling policies for disks and disk arrays

    Get PDF
    Recent rapid advances of magnetic recording technology have enabled substantial increases in disk capacity. There has been less than 10% improvement annually in the random access time to small data blocks on the disk. Such accesses are very common in OLTP applications, which tend to have stringent response time requirements. Scheduling of disk requests is intended to improve their response time, reduce disk service time, and increase disk access bandwidth with respect to the default FCFS scheduling policy. Shortest Access Time First policy has been shown to outperform other classical disk scheduling policies in numerous studies. Before verifying this conclusion, this dissertation develops an empirical analysis of the SATF policy, and produces a valuable by-product, expressed as x[m] = mp, during the study. Classical scheduling policies and some well-known variations of the SATE policy are re-evaluated, and three extensions are proposed. The performance evaluation uses self-developed simulators containing detailed disk information. The simulators, driven with both synthetic and trace workloads, report the measurements of requests, such as the mean and the 95th percentile of the response times, as well as the measurements of the system, such as the maximum throughput. A comprehensive arrangement of routing and scheduling schemes is presented or mirrored disk systems, or RAIDi. The performance evaluation is based on a twodimensional configuration classification: independent queues (i.e. a router sends the requests to one of the disks as soon as these requests arrive) versus a shared queue (i.e. the requests are held in a common queue at the router and are scheduled to be served); normal data layout versus transposed data layout (i.e. the data stored on the inner cylinders of one disk is duplicated on the outer cylinders of the mirrored disk). The availability of a non-volatile storage or NVS, which allows the processing of write requests to be deferred, is also investigated. Finally, various strategies of mirrored disk declustering are compared against the basic disk mirroring. Their competence of load balancing and their reliability are examined in both normal mode and degraded mode

    Data allocation in disk arrays with multiple raid levels

    Get PDF
    There has been an explosion in the amount of generated data, which has to be stored reliably because it is not easily reproducible. Some datasets require frequent read and write access. like online transaction processing applications. Others just need to be stored safely and read once in a while, as in data mining. This different access requirements can be solved by using the RAID (redundant array of inexpensive disks) paradigm. i.e., RAIDi for the first situation and RAID5 for the second situation. Furthermore rather than providing two disk arrays with RAID 1 and RAID5 capabilities, a controller can be postulated to emulate both. It is referred as a heterogeneous disk array (HDA). Dedicating a subset of disks to RAID 1 results in poor disk utilization, since RAIDi vs RAID5 capacity and bandwidth requirements are not known a priori. Balancing disk loads when disk space is shared among allocation requests, referred to as virtual arrays - VAs poses a difficult problem. RAIDi disk arrays have a higher access rate per gigabyte than RAID5 disk arrays. Allocating more VAs while keeping disk utilizations balanced and within acceptable bounds is the goal of this study. Given its size and access rate a VA\u27s width or the number of its Virtual Disks -VDs is determined. VDs allocations on physical disks using vector-packing heuristics, with disk capacity and bandwidth as the two dimensions are shown to be the best. An allocation is acceptable if it does riot exceed the disk capacity and overload disks even in the presence of disk failures. When disk bandwidth rather than capacity is the bottleneck, the clustered RAID paradigm is applied, which offers a tradeoff between disk space and bandwidth. Another scenario is also considered where the RAID level is determined by a classification algorithm utilizing the access characteristics of the VA, i.e., fractions of small versus large access and the fraction of write versus read accesses. The effect of RAID 1 organization on its reliability and performance is studied too. The effect of disk failures on the X-code two disk failure tolerant array is analyzed and it is shown that the load across disks is highly unbalanced unless in an NxN array groups of N stripes are randomly rotated

    Queueing network models of zoned RAID system performance

    No full text
    RAID systems are widely deployed, both as standalone storage solutions and as the building blocks of modern virtualised storage platforms. An accurate model of RAID system performance is therefore critical towards fulfilling quality of service constraints for fast, reliable storage. This thesis presents techniques and tools that model response times in zoned RAID systems. The inputs to this analysis are a specified I/O request arrival rate, an I/O request access profile, a given RAID configuration and physical disk parameters. The primary output of this analysis is an approximation to the cumulative distribution function of I/O request response time. From this, it is straightforward to calculate response time quantiles, as well as the mean, variance and higher moments of I/O request response time. The model supports RAID levels 0, 01, 10 and 5 and a variety of workload types. Our RAID model is developed in a bottom-up hierarchical fashion. We begin by modelling each zoned disk drive in the array as a single M/G/1 queue. The service time is modelled as the sum of the random variables of seek time, rotational latency and data transfer time. In doing so, we take into account the properties of zoned disks. We then abstract a RAID system as a fork-join queueing network. This comprises several queues, each of which represents one disk drive in the array. We tailor our basic fork-join approximation to account for the I/O request patterns associated with particular request types and request sizes under different RAID levels. We extend the RAID and disk models to support bulk arrivals, requests of different sizes and scheduling algorithms that reorder queueing requests to minimise disk head positioning time. Finally, we develop a corresponding simulation to improve and validate the model. To test the accuracy of all our models, we validate them against disk drive and RAID device measurements throughout

    Studies of disk arrays tolerating two disk failures and a proposal for a heterogeneous disk array

    Get PDF
    There has been an explosion in the amount of generated data in the past decade. Online access to these data is made possible by large disk arrays, especially in the RAID (Redundant Array of Independent Disks) paradigm. According to the RAID level a disk array can tolerate one or more disk failures, so that the storage subsystem can continue operating with disk failure(s). RAID 5 is a single disk failure tolerant array which dedicates the capacity of one disk to parity information. The content on the failed disk can be reconstructed on demand and written onto a spare disk. However, RAID5 does not provide enough protection for data since the data loss may occur when there is a media failure (unreadable sectors) or a second disk failure during the rebuild process. Due to the high cost of downtime in many applications, two disk failure tolerant arrays, such as RAID6 and EVENODD, have become popular. These schemes use 2/N of the capacity of the array for redundant information in order to tolerate two disk failures. RM2 is another scheme that can tolerate two disk failures, with slightly higher redundancy ratio. However, the performance of these two disk failure tolerant RAID schemes is impaired, since there are two check disks to be updated for each write request. Therefore, their performance, especially when there are disk failure(s), is of interest. In the first part of the dissertation, the operations for the RAID5, RAID6, EVENODD and RM2 schemes are described. A cost model is developed for these RAID schemes by analyzing the operations in various operating modes. This cost model offers a measure of the volume of data being transmitted, and provides adevice-independent comparison of the efficiency of these RAID schemes. Based on this cost model, the maximum throughput of a RAID scheme can be obtained given detailed disk characteristic and RAID configuration. Utilizing M/G/1 queuing model and other favorable modeling assumptions, a queuing analysis to obtain the mean read response time is described. Simulation is used to validate analytic results, as well as to evaluate the RAID systems in analytically intractable cases. The second part of this dissertation describes a new disk array architecture, namely Heterogeneous Disk Array (HDA). The HDA is motivated by a few observations of the trends in storage technology. The HDA architecture allows a disk array to have two forms of heterogeneity: (1) device heterogeneity, i.e., disks of different types can be incorporated in a single HDA; and (2) RAID level heterogeneity, i.e., various RAID schemes can coexist in the same array. The goal of this architecture is (1) utilizing the extra resource (i.e. bandwidth and capacity) introduced by new disk drives in an automated and efficient way; and (2) using appropriate RAID levels to meet the varying availability requirements for different applications. In HDA, each new object is associated with an appropriate RAID level and the allocation is carried out in a way to keep disk bandwidth and capacity utilizations balanced. Design considerations for the data structures of HDA metadata are described, followed by the actual design of the data structures and flowcharts for the most frequent operations. Then a data allocation algorithm is described in detail. Finally, the HDA architecture is prototyped based on the DASim simulation toolkit developed at NJIT and simulation results of an HDA with two RAID levels (RAID 1 and RAIDS) are presented

    High Availability and Scalability of Mainframe Environments using System z and z/OS as example

    Get PDF
    Mainframe computers are the backbone of industrial and commercial computing, hosting the most relevant and critical data of businesses. One of the most important mainframe environments is IBM System z with the operating system z/OS. This book introduces mainframe technology of System z and z/OS with respect to high availability and scalability. It highlights their presence on different levels within the hardware and software stack to satisfy the needs for large IT organizations

    The Geologic Record of Two Proterozoic Supercontinents within the Belt Basin Region of Western North America

    Get PDF
    The cyclical amalgamation and dispersal of Earth’s continents, a process known as the supercontinent cycle, provided the first-order control on the distribution of Earth resources. This Ph.D. study utilizes U/Pb geochronology (zircon, monazite, apatite), zircon isotopic data (Lu/Hf, O-), and metapelite phase equilibria modelling to establish magmatic, stratigraphic and metamorphic records in the Belt basin region of western North America and refine tectonic models of the first supercontinent Nuna and its predecessor Rodinia

    Annual Report of the University, 2000-2001, Volumes 1-4

    Get PDF
    Message from the President Thank you for joining me in this look back over the past year at the University of New Mexico. It was a year filled with activity, accomplishment and challenge, and this is our opportunity to reflect back on that year. In 2000-2001 we engaged in a University-wide strategic planning process that called on the energies and talents of hundreds of individuals- faculty, staff, students and members of our broader community. The plan, which will be completed in Fall 2001, will serve as our roadmap for the future and will guide our efforts to capitalize on the opportunities and to meet the challenges of the next several years. This process has encouraged us to examine closely our mission and our values, who we are and what we aspire to become. It has given us reason to be proud of our past and cause to think seriously about how we must change in the future. While this was a year for looking ahead, it was also a year of significant accomplishment. For example, we launched a comprehensive set of programs designed to enrich the academic and social experiences of our undergraduate students. We began the implementation of Freshman Learning Communities where small cohorts of students study and learn together in a common set of courses under the guidance of a senior faculty scholar. We reorganized our advisement systems, we undertook the construction or renovation of student-centered facilities on campus, and we created new support systems to enhance student academic success. It was a year in which our support of faculty, staff and students was our highest priority. Through the support of the New Mexico Legislature, faculty and staff received significant salary increases. A new health benefits plan for graduate assistants was implemented. Our Staff as Students program enabled more than 40 staff members to obtain UNM degrees. And, a Center for Scholarship in Teaching and Learning was established to assist faculty in their efforts to develop more effective teaching skills. Finally, this was a year in which UNM dramatically expanded its role in the local community and throughout the state. Never before has the University been as active or as visible in meeting its public responsibility as it was in 2000-2001. From its active participation in economic development initiatives, to its involvement in K-12 educational improvement efforts, to its significant leadership role in health care delivery, UNM demonstrated its ability to help the state meet its most pressing social challenges. And, as UNM took on a more visible role in supporting the state\\u27s citizens, the support for UNM was returned in kind. This year, annual giving to the University rose to a record 35.3 million dollars, a 40% increase over just two years ago. All told, it has been a gratifying and successful year. However, we cannot allow our past accomplishments to mask the continued challenges facing this University. Neither will we allow these challenges to dominate our thinking and diminish out pride in what the University has achieved. So we will savor our successes and continue to move forward. As always, we thank you for sharing our dreams and for supporting the University of New Mexico. Sincerely, William C. Gordon, Presiden

    Best Available Techniques (BAT) Reference Document for Large Combustion Plants. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

    Get PDF
    The BAT Reference Document (BREF) for Large Combustion Plants is part of a series of documents presenting the results of an exchange of information between the EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review, and -where necessary- update BAT reference documents as required by Article 13(1) of Directive 2010/75/EU on Industrial Emissions. This document is published by the European Commission pursuant to Article 13(6) of the Directive. This BREF for Large Combustion Plants concerns the following activities specified in Annex I to Directive 2010/75/EU: - 1.1: Combustion of fuels in installations with a total rated thermal input of 50 MW or more, only when this activity takes place in combustion plants with a total rated thermal input of 50 MW or more. - 1.4: Gasification of coal or other fuels in installations with a total rated thermal input of 20 MW or more, only when this activity is directly associated to a combustion plant. - 5.2: Disposal or recovery of waste in waste co-incineration plants for non-hazardous waste with a capacity exceeding 3 tonnes per hour or for hazardous waste with a capacity exceeding 10 tonnes per day, only when this activity takes place in combustion plants covered under 1.1 above. In particular, this document covers upstream and downstream activities directly associated with the aforementioned activities including the emission prevention and control techniques applied. The fuels considered in this document are any solid, liquid and/or gaseous combustible material including: - solid fuels (e.g. coal, lignite, peat); - biomass (as defined in Article 3(31) of Directive 2010/75/EU); - liquid fuels (e.g. heavy fuel oil and gas oil); - gaseous fuels (e.g. natural gas, hydrogen-containing gas and syngas); - industry-specific fuels (e.g. by-products from the chemical and iron and steel industries); - waste except mixed municipal waste as defined in Article 3(39) and except other waste listed in Article 42(2)(a)(ii) and (iii) of Directive 2010/75/EU. Important issues for the implementation of Directive 2010/75/EU in the Large Combustion Plants sector are the emissions to air of nitrogen oxides, sulphur dioxide, hydrogen chloride and fluoride, organic compounds, dust, and metals including mercury; emissions to water resulting especially from the use of wet abatement techniques for the removal of sulphur dioxide from the flue gases; resource efficiency and especially energy efficiency. This BREF contains 12 Chapters. Chapters 1 and 2 provide general information on the Large Combustion Plants industrial sector and on the industrial processes used within this sector. Chapter 3 provides data and general information concerning the environmental performance of installations within the sector in terms of water consumption, the generation of waste and general techniques used within this sector. It also describes in more detail the general techniques to prevent or, where this is not practicable, to reduce the environmental impact of installations in this sector that were considered in determining the BAT. Chapters 4 to 9 provide the following information given below on specific combustion processes (gasification, combustion of solid fuel, combustion of liquid fuel, combustion of gaseous fuel, multi-fuel combustion and waste co-incineration). Chapter 10 presents the BAT conclusions as defined in Article 3(12) of the Directive. Chapter 11 presents information on 'emerging techniques' as defined in Article 3(14) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 12.JRC.B.5-Circular Economy and Industrial Leadershi

    Bowdoin Orient v.139, no.1-26 (2009-2010)

    Get PDF
    https://digitalcommons.bowdoin.edu/bowdoinorient-2010s/1000/thumbnail.jp
    corecore