9,196 research outputs found

    A Polyhedral Method to Compute All Affine Solution Sets of Sparse Polynomial Systems

    Full text link
    To compute solutions of sparse polynomial systems efficiently we have to exploit the structure of their Newton polytopes. While the application of polyhedral methods naturally excludes solutions with zero components, an irreducible decomposition of a variety is typically understood in affine space, including also those components with zero coordinates. We present a polyhedral method to compute all affine solution sets of a polynomial system. The method enumerates all factors contributing to a generalized permanent. Toric solution sets are recovered as a special case of this enumeration. For sparse systems as adjacent 2-by-2 minors our methods scale much better than the techniques from numerical algebraic geometry

    Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations

    Full text link
    We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called "non-intrusive" sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted ℓp\ell_p-spaces for 0<p≤10<p\leq 1. Based on this we show that reconstructions of the parametric solutions computed from the sampled problems converge, with high probability, at the L2L_2, resp. L∞L_\infty convergence rates afforded by best ss-term approximations of the parametric solution up to logarithmic factors.Comment: revised version, 27 page

    Elimination for generic sparse polynomial systems

    Get PDF
    We present a new probabilistic symbolic algorithm that, given a variety defined in an n-dimensional affine space by a generic sparse system with fixed supports, computes the Zariski closure of its projection to an l-dimensional coordinate affine space with l < n. The complexity of the algorithm depends polynomially on combinatorial invariants associated to the supports.Comment: 22 page
    • …
    corecore