39,396 research outputs found

    Geometry of Control-Affine Systems

    Get PDF
    Motivated by control-affine systems in optimal control theory, we introduce the notion of a point-affine distribution on a manifold X - i.e., an affine distribution F together with a distinguished vector field contained in F. We compute local invariants for point-affine distributions of constant type when dim(X)=n, rank(F)=n-1, and when dim(X)=3, rank(F)=1. Unlike linear distributions, which are characterized by integer-valued invariants - namely, the rank and growth vector - when dim(X)<=4, we find local invariants depending on arbitrary functions even for rank 1 point-affine distributions on manifolds of dimension 2

    A Kind of Affine Weighted Moment Invariants

    Full text link
    A new kind of geometric invariants is proposed in this paper, which is called affine weighted moment invariant (AWMI). By combination of local affine differential invariants and a framework of global integral, they can more effectively extract features of images and help to increase the number of low-order invariants and to decrease the calculating cost. The experimental results show that AWMIs have good stability and distinguishability and achieve better results in image retrieval than traditional moment invariants. An extension to 3D is straightforward

    Affine Disjunctive Invariant Generation with Farkas' Lemma

    Full text link
    Invariant generation is the classical problem that aims at automated generation of assertions that over-approximates the set of reachable program states in a program. We consider the problem of generating affine invariants over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment statements), and explore the automated generation of disjunctive affine invariants. Disjunctive invariants are an important class of invariants that capture disjunctive features in programs such as multiple phases, transitions between different modes, etc., and are typically more precise than conjunctive invariants over programs with these features. To generate tight affine invariants, existing constraint-solving approaches have investigated the application of Farkas' Lemma to conjunctive affine invariant generation, but none of them considers disjunctive affine invariants
    corecore