5,012 research outputs found

    Tetrisation of triangular meshes and its application in shape blending

    Full text link
    The As-Rigid-As-Possible (ARAP) shape deformation framework is a versatile technique for morphing, surface modelling, and mesh editing. We discuss an improvement of the ARAP framework in a few aspects: 1. Given a triangular mesh in 3D space, we introduce a method to associate a tetrahedral structure, which encodes the geometry of the original mesh. 2. We use a Lie algebra based method to interpolate local transformation, which provides better handling of rotation with large angle. 3. We propose a new error function to compile local transformations into a global piecewise linear map, which is rotation invariant and easy to minimise. We implemented a shape blender based on our algorithm and its MIT licensed source code is available online

    Swim-like motion of bodies immersed in an ideal fluid

    Get PDF
    The connection between swimming and control theory is attracting increasing attention in the recent literature. Starting from an idea of Alberto Bressan [A. Bressan, Discrete Contin. Dyn. Syst. 20 (2008) 1\u201335]. we study the system of a planar body whose position and shape are described by a finite number of parameters, and is immersed in a 2-dimensional ideal and incompressible fluid in terms of gauge field on the space of shapes. We focus on a class of deformations measure preserving which are diffeomeorphisms whose existence is ensured by the Riemann Mapping Theorem. After making the first order expansion for small deformations, we face a crucial problem: the presence of possible non vanishing initial impulse. If the body starts with zero initial impulse we recover the results present in literature (Marsden, Munnier and oths). If instead the body starts with an initial impulse different from zero, the swimmer can self-propel in almost any direction if it can undergo shape changes without any bound on their velocity. This interesting observation, together with the analysis of the controllability of this system, seems innovative. Mathematics Subject Classification. 74F10, 74L15, 76B99, 76Z10. Received June 14, 2016. Accepted March 18, 2017. 1. Introduction In this work we are interested in studying the self-propulsion of a deformable body in a fluid. This kind of systems is attracting an increasing interest in recent literature. Many authors focus on two different type of fluids. Some of them consider swimming at micro scale in a Stokes fluid [2,4\u20136,27,35,40], because in this regime the inertial terms can be neglected and the hydrodynamic equations are linear. Others are interested in bodies immersed in an ideal incompressible fluid [8,18,23,30,33] and also in this case the hydrodynamic equations turn out to be linear. We deal with the last case, in particular we study a deformable body -typically a swimmer or a fish- immersed in an ideal and irrotational fluid. This special case has an interesting geometric nature and there is an attractive mathematical framework for it. We exploit this intrinsically geometrical structure of the problem inspired by [32,39,40], in which they interpret the system in terms of gauge field on the space of shapes. The choice of taking into account the inertia can apparently lead to a more complex system, but neglecting the viscosity the hydrodynamic equations are still linear, and this fact makes the system more manageable. The same fluid regime and existence of solutions of these hydrodynamic equations has been studied in [18] regarding the motion of rigid bodies

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates

    Importance and effectiveness of representing the shapes of Cosserat rods and framed curves as paths in the special Euclidean algebra

    Get PDF
    We discuss how the shape of a special Cosserat rod can be represented as a path in the special Euclidean algebra. By shape we mean all those geometric features that are invariant under isometries of the three-dimensional ambient space. The representation of the shape as a path in the special Euclidean algebra is intrinsic to the description of the mechanical properties of a rod, since it is given directly in terms of the strain fields that stimulate the elastic response of special Cosserat rods. Moreover, such a representation leads naturally to discretization schemes that avoid the need for the expensive reconstruction of the strains from the discretized placement and for interpolation procedures which introduce some arbitrariness in popular numerical schemes. Given the shape of a rod and the positioning of one of its cross sections, the full placement in the ambient space can be uniquely reconstructed and described by means of a base curve endowed with a material frame. By viewing a geometric curve as a rod with degenerate point-like cross sections, we highlight the essential difference between rods and framed curves, and clarify why the family of relatively parallel adapted frames is not suitable for describing the mechanics of rods but is the appropriate tool for dealing with the geometry of curves.Comment: Revised version; 25 pages; 7 figure

    Geometric and Photometric Data Fusion in Non-Rigid Shape Analysis

    Get PDF
    In this paper, we explore the use of the diffusion geometry framework for the fusion of geometric and photometric information in local and global shape descriptors. Our construction is based on the definition of a diffusion process on the shape manifold embedded into a high-dimensional space where the embedding coordinates represent the photometric information. Experimental results show that such data fusion is useful in coping with different challenges of shape analysis where pure geometric and pure photometric methods fai
    • …
    corecore